
ISSN 0081-5438, Proceedings of the Steklov Institute of Mathematics, 2015, Vol. 290, pp. 166–177. c© Pleiades Publishing, Ltd., 2015.
Original Russian Text c© E.V. Shchepin, 2015, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2015, Vol. 290, pp. 178–190.

On the Complexity of Constructing
Multiprocessor Little-Preemptive Schedules

E. V. Shchepin a

Received March 15, 2015

Abstract—We present a full and correct proof of the fact that the problem of construct-
ing an optimal schedule for the open shop problem with at most m − 3 preemptions for an
m-processor system is NP-hard. We also show that the proof of this result given by E. Shchepin
and N. Vakhania in Ann. Oper. Res. 159, 183–213 (2008) is incorrect.

DOI: 10.1134/S0081543815060152

1. INTRODUCTION

The open shop scheduling problem consists in the following: There are m machines (or pro-
cessors) M1, . . . ,Mm and n jobs J1, . . . , Jn (or tasks). Each job is split into parts (operations),
Jk = {Jk

1 , . . . , J
k
m}, where the operation Jk

i belongs to the kth job and should be processed by
the ith machine. For every operation, its processing time1 on the machine to which it is assigned
is known. It is required to compile a minimum-length schedule of jobs for machines; i.e., for each
machine and every moment of time, it is required to point out a job that a machine should process so
that all the jobs are processed in the minimum possible time. In the open shop problem, there are
only two constraints on scheduling: at every moment of time, each job can be processed by at most
one machine and each machine can process at most one job. The processing order of operations of
a job can be arbitrary.

A preemption in a schedule is a situation when the already started processing of an operation on
some machine is interrupted, although the operation is not completed, and the machine is switched
to another job (or is idle for some time) and returns to the processing of this operation after some
time. As shown in [1], the non-preemptive version of the open shop problem is NP-hard. On the
other hand, in [2], a polynomial algorithm for the open shop problem is presented that generates
an optimal schedule with at most 4m2 − 6m+ 3 preemptions.

The main result of the present paper consists in proving the fact that the version of the open

shop problem with at most m− 3 preemptions remains NP-hard. This result was announced in [3];
however, the proof proposed there, as pointed out in [4] and shown in the present paper, contains
a significant gap.

A job consisting of one nonfictitious operation will be called simple, and a job that has more
than one nonfictitious operation will be called composite. If all jobs are simple, then an optimal
schedule of the open shop can be constructed in linear time. However, as shown in the present
study, the appearance of at least one composite job makes the problem NP-hard.

It remains an open question whether one can construct an optimal schedule in polynomial time
for the open shop problem with at most m − 2 preemptions. A positive result in this direction
is contained in [5], where a polynomial-time (and even linear-time) algorithm is constructed that
generates an optimal schedule with at most m− 2 preemptions for the open shop problem in the

a Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia.
E-mail address: scepin@mi.ras.ru

1Operations may be fictitious, i.e., they may require no time for processing.

166



ON THE COMPLEXITY OF CONSTRUCTING MULTIPROCESSOR SCHEDULES 167

case of so-called acyclic distributions of jobs on machines; this class of distributions includes those
with a single composite job as a particular case.

By a scheme of a distribution of jobs on machines we will mean a simplicial complex whose
vertices are in one-to-one correspondence with the machines and whose maximal simplices (i.e.,
those that are not proper subsets of other simplices) are in one-to-one correspondence with the
jobs; moreover, for every job, the vertex set of the simplex associated with this job must correspond
to the set of machines to which nonfictitious operations of this job are assigned. A distribution
of jobs on machines is said to be acyclic if its scheme has no one-dimensional cycles that are not
homologous to zero. Acyclic distributions were introduced in [6]; however, the definition given there
operates not with the entire scheme but only with its one-dimensional skeleton, which was called
there a (full) preemption graph.

It follows from what is proved in the present study that the problem of constructing an optimal
schedule with at most m− 3 preemptions for the open shop problem with acyclic distribution of
jobs is NP-hard.

In scheduling theory, the importance of the open shop problem with acyclic distribution is
associated with the fact that one can reduce to it the general problem of compiling an optimal
schedule of independent jobs with preemptions for unrelated processors (see [7]). The difference
between these two problems is that in the latter the jobs can be arbitrarily divided into parts
and distributed among processors. It turns out that the division minimizing the load (the total
processing time of all jobs assigned to a given machine) of the most loaded machine can be made (in
polynomial time) acyclic (see [8]). Therefore, the construction of an optimal schedule for a system
of unrelated processors reduces to the open shop problem with acyclically distributed jobs.

Notice also that the fact that m − 2 is the NP-critical number of preemptions for the open

shop problem with acyclic distribution of jobs plays an essential role in the result of [3] stating that
the problem of constructing an optimal schedule becomes NP-hard if the number of preemptions is
not greater than 2m− 3 for a system without slow processors (which is a particular case of a system
of unrelated processors). The present study fills a gap in the proof of the indicated fact. Thus,
the result from [3] concerning systems without slow processors can be considered completely proved
only after the publication of the present paper.

2. PARTITION AND OPEN SHOP

In this section, we repeat the arguments of [3] underlying the proof of Theorem 13 in [3], which
states that the problem of constructing an optimal schedule with at most m − 3 preemptions for
the m-machine open shop problem with acyclic distribution is NP-hard.

Let C = {c1, . . . , cn}, where ci ∈ N, i = 1, . . . , n, and S/2, where S =
∑n

i=1 ci > 2 is an even
number, form an input of the partition problem.2 Recall that the problem consists in determining
whether there exists a subset of C with the sum of elements equal to S/2.

Given an input of the partition problem with a set C and a number m ≥ 3, we define a
shop O(C,m). Namely, O(C,m) includes 1 + n(m − 2) + 2m − 2 = (n + 2)m − 2n − 1 jobs and
m machines {Mi}mi=1. The set of jobs is split into the following three categories:

1. There exists exactly one composite job I, which we call the common job. It includes non-
fictitious operations on all machines. The processing time of the part of I assigned to the ith
machine Mi is 1 for all i = 1, . . . ,m. Hence, the total processing time of the job I is m.

2. The jobs of the second type are called partition jobs. All these jobs are simple. Partition jobs
are assigned to all machines except for the first, M1, and the last, Mm (which are called extremal

2In this section, n denotes exclusively the number of elements of the set C in the partition problem; in the rest
of the paper, n stands for the number of jobs.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 290 2015



168 E.V. SHCHEPIN

machines, while the remaining machines are said to be intermediate). There are (m− 2)n partition
jobs in total; the jth, j ≤ n, partition job assigned to the machine Mi, 1 < i < m, is denoted
by Pi,j. The processing time of the job Pi,j is cj/S

2i. Notice that the total processing time of all
partition jobs on Mi is 1/S2i−1 < 1.

3. The jobs of the third type are called fixers and are denoted by

F1, F
+
2 , F−

2 , F+
3 , F−

3 , . . . , F+
m−1, F

−
m−1, Fm.

All these jobs are simple. As the notation suggests, there is only one fixer on each of the extremal
machines M1 and Mm, and there are two fixers on each intermediate machine. The processing time
of the fixers F1 and Fm is m − 1. The processing time of the first fixer F+

i of Mi, 1 < i < m, is
i− 1− 1/(2S2i−1), while the processing time of the second fixer F−

i is m− i− 1/(2S2i−1).

A machine is said to be idle at some moment (or on some time interval) if no job is assigned to
the machine at this moment (on this interval, respectively). We will say that a schedule σ is tight
if all machines are engaged from the beginning to the end (i.e., to the completion time of the last
job). A tight schedule without preemptions is uniquely defined by the processing order of jobs on
each machine.

The following statement is obvious.

Lemma 1. Any tight schedule for the shop O(C,m) is optimal and has makespan m.

It is useful to notice that if σ is an optimal schedule for the shop O(C,m), then the common
job I must be being processed at every moment up to the end of σ (because the processing time
of I is equal to the makespan of the schedule σ).

In [3], a proof of the following statement is presented.

Theorem 1. The problem of constructing an optimal schedule with at most m− 3 preemptions
for the shop O(C,m) is NP-hard.

The proof of this theorem is based on reducing the NP-complete partition problem (with
input C) to O(C,m). Namely, given a solution

∑
i≤k ci = S/2 to the partition problem, we can

for any m construct a tight schedule of makespan m without preemptions for O(C,m) in linear time
(see Lemma 1). We construct this schedule as follows. On M1, we first process the fixer F1 and then
the common job I. On the last machine, we first process I and then Fm. On the other machines Mi,
we first process the fixer F+

i , then all Pi,j , j ≤ k (in an arbitrary order), and then I, which is followed
by the remaining partition jobs Pi,j, j > k, and the second fixer F−

i is processed last.
To prove the reduction in the opposite direction, we introduce the following definition. A sched-

ule σ is said to be a partitioning schedule if there exists an intermediate machine Mi in σ and a
moment of time t such that the processing of any partition job on Mi is either completed by the
time t or starts not earlier than t and the total processing time of the completed partition jobs
on Mi at time t is equal to the total processing time of the remaining partition jobs. The moment t
is called a partitioning time in the schedule σ.

Lemma 2. Given any feasible schedule σ for O(C,m) of makespan m with at most m − 3
preemptions, one can construct another schedule σ′ of makespan m with at most m− 3 preemptions
in linear time such that σ′ is a partitioning schedule.

Suppose that Lemma 2 is valid. Let σ be a feasible schedule for O(C,m) of makespan m with
at most m− 3 preemptions. According to Lemma 2, in linear time one can construct a schedule σ′

that contains an intermediate machine with a partitioning time. Such a switching point can be
found in linear time by verifying all switching points of the schedule on intermediate machines. It is
clear that any partitioning time gives a solution to the partition problem. This proves Theorem 1.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 290 2015



ON THE COMPLEXITY OF CONSTRUCTING MULTIPROCESSOR SCHEDULES 169

3. COUNTEREXAMPLE

So, we can see that everything hinges on Lemma 2, whose original proof occupied more than ten
pages and, in the referees’ opinion, was too lengthy. Therefore, it was significantly reduced in [3].
In this section, we show that the reduced proof is invalid, while the rest of the paper reproduces a
somewhat improved original proof of Lemma 2.

The simplified proof (“in the opposite direction”) given in [3, p. 208] makes nothing of the fact
that the sizes of the partition jobs of the shop O(C,m) on different machines are different. Therefore,
this argument is disproved below by an example in which the lengths of all partition jobs on different
machines are identical.

Consider a shop O′(C,m) that has the same three types of jobs as O(C,m). Just as in O(C,m),
the common job I is evenly distributed among the machines, and the total processing time of the
job I is m. The partition jobs are again assigned to all intermediate machines; however, in contrast
to O(C,m), the processing time of the jth partition job, j ≤ n, assigned to the machine Mi,
1 < i < m, is cj/S irrespective of the machine. Thus, the total processing time of all partition jobs
on the same machine is equal to one. The lengths of the fixers on the intermediate machines are
defined in such a way that the processing time of the first fixer F+

i of Mi, 1 < i < m, is i− 1− 1/2,
while the processing time of the second fixer F−

i is m− i− 1/2.
Let us show that for the shop O′(C,m) there exists an optimal schedule with two preemptions

such that on every machine all partition jobs are processed successively one after another in the
same order. Such a schedule is not a partitioning one and gives nothing for the solution of the
partition problem. The schedule σ′ has the following structure:

(1) on the first machine, the common job is processed in the interval [0, 1), and then the fixer;
(2) on the ith intermediate machine, i = 2, . . . ,m − 1, first a fixer is processed in the interval

[0, i − 3/2), then all partition jobs are processed successively in the interval [i− 3/2, i − 1/2),
and then the common job is processed in the interval [i− 1/2, i + 1/2). The second fixer is
processed last;

(3) on the last machine, the fixer is processed in the interval [0, 1). In the interval [1, 3/2), the
common job is processed. In the interval [3/2,m − 1/2), the fixer is again processed. Finally,
in the interval [m− 1/2,m), the remaining part of the common job is processed.

The schedule σ′ is tight and has only two preemptions, both on the last machine.

4. PROOFS

A schedule for an m-processor system M = {M1, . . . ,Mm} with n jobs (tasks) J = {J1, . . . , Jn}
shows which job should be made by a given processor (machine) at every time point. Formally, a
schedule σ can be considered as a subset in J ×M× R

+, where R
+ is the set of nonnegative real

numbers (time). The condition (J,M, t) ∈ σ means that the job J is processed by the machine M
at time t according to σ. The least T for which σ ⊂ J ×M× [0, T ] is called the makespan of the
schedule and is denoted by ‖σ‖.

For a pair (J,M) ∈ J × M, the set σ(J,M) = {t ∈ R
+ | (J,M, t) ∈ σ} may consist of

a single left-closed (and right-open) interval or may be a left-closed multi-interval, i.e., a union
of two or more disjoint left-closed intervals. The total length of these intervals from σ(J,M) is
denoted by |σ(J,M)| and called the processing time of the job J on the machine M according to
the schedule σ.

A feasible schedule σ must satisfy the following conditions:

(1) for each M ∈ M, the set of jobs σ(M, t) = {J ∈ J | (J,M, t) ∈ σ} contains at most one
element;

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 290 2015



170 E.V. SHCHEPIN

(2) for each J ∈ J , the set of machines σ(J, t) = {M ∈ M | (J,M, t) ∈ σ} contains at most one
element;

(3) for each J ∈ J , the equality
∑

M∈M(|σ(J,M)|/M(J)) = 1 holds, where M(J) denotes the
processing time of the job J by the processor M .

A feasible schedule with minimum makespan is said to be optimal.

Switchings and components. The maximum (connected) time interval during which a ma-
chine processes one job is called a component of a schedule. A schedule can be defined by specifying
all its components. Formally, a component of a schedule σ is a triple (J,M, [p, q)), where J is
a job, M is a machine, and [p, q) is a time interval that is a connected component of σ(J,M).
We will call the component (J,M, [p, q)) a J-component of the schedule σ on the machine M or a
(J,M)-component of the schedule σ.

The boundary points of the set σ(J,M) are called switching points of the job J on M or
J-switching points on M . At such a time point, M interrupts the processing of the job J or
restarts it.

Preemptions. A job J is said to be split on a machine M if σ(J,M) is a multi-interval, i.e.,
if it consists of two or more components. The number of preemptions pr(σ(J,M)) of a job J on a
machine M in a schedule σ is defined as the number of components in σ(J,M) reduced by one. The
number prσ(M) =

∑
J∈J pr(σ(J,M)) is called the number of preemptions of the schedule σ on the

machine M ; the sum pr(σ) =
∑

M∈M prσ(M) is the total number of preemptions of the schedule σ.
Next, notice that the number of switching points is closely related to the number of preemptions.

The following lemma presents an exact formula; its proof is left to the reader.

Lemma 3. The number of preemptions of a tight schedule on a machine M is s− n− 1, where
s is the number of all switching points on M and n is the number of jobs assigned to M .

Schedule editing. There are three schedule editing operations: cutting, inserting, and mov-
ing. Let p and q, p < q, be time points.

Cutting. We say that a schedule σ′ is obtained from a schedule σ by the (p, q)-cutting on a
machine Mi if the following conditions hold:

(1) σ′(J,M) = σ(J,M) for all M �= Mi and all J ;
(2) σ′(Mi, t) = σ(Mi, t) for t < p;
(3) σ′(Mi, t) = σ(Mi, t+ q − p) for t ≥ p.

Note that if σ is tight, then the schedule σ′ obtained from σ by the (p, q)-cutting on Mi is also
tight and the completion time of the last job on Mi in σ′ is less by q − p than that in σ. Next, if p
and q are switching points in σ, then the number of preemptions in σ′ is not greater than that in σ.
Moreover, this number may even be less by one if Mi processes the same job immediately before
the time p and immediately after the time q in σ.

Insertion. We say that a schedule σ′ is obtained from a schedule σ by the (p, q)-insertion of
a job J on a machine Mi if the following conditions hold:

(1) σ′(J̃ ,M) = σ(J̃ ,M) for all M �= Mi and all J̃ ;
(2) σ′(Mi, t) = σ(Mi, t) for t ≤ p;
(3) σ′(Mi, t) = J for t ∈ [p, q);
(4) σ′(Mi, t) = σ(Mi, t− (q − p)) for t ≥ q.

The tightness of σ′ follows from the tightness of σ, and the completion time of the last job
on Mi in σ′ is greater by q − p than that in σ. Next, if p is a switching point in σ on Mi, then
the insertion cannot create preemptions of any job different from the inserted job J ; the insertion

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 290 2015



ON THE COMPLEXITY OF CONSTRUCTING MULTIPROCESSOR SCHEDULES 171

generates a new preemption of the job J if J has already been assigned to Mi in σ and p is not a
boundary point of σ(J,Mi).

Moving. We use the notation (p, i, q) for a component of the schedule that assigns a job J to
the machine Mi on the time interval [p, q). A moving, denoted by (p, q) → (p′, q′), removes a whole
J-component (p, i, q) of a schedule σ from the interval [p, q) and inserts it into the interval [p′, q′)
(of the same length) on the same machine Mi. Thus, the moving is performed in two steps: the
(p, q)-cutting followed by the (p′, q′)-insertion.

The moving does not affect the tightness of a schedule and the completion time |σ|Mi of the
last job on the machine Mi if q′ ≤ |σ|Mi . Notice that if p > p′ and p′ is a switching point in σ,
then the (p′, q′)-insertion does not create any new preemption of jobs processed on Mi. Hence, any
moving (p, q) → (p′, q′) of a J-component does not increase the number of preemptions. Moreover,
if Mi processes the same job immediately before the time p and after the time q according to σ,
then the number of preemptions of the resulting schedule σ′ is less by one than that of σ. If p is
not a switching point, then a moving of a J-component can increase the number of preemptions at
most by 1.

If Mi is an extremal machine, then a moving (p, q) → (p′, q′) of its I-component does not increase
the number of preemptions for 0 < p < q < |σ|Mi . Indeed, since only two jobs (the common job and
the fixer) are processed on Mi, the cutting of the I-component reduces the number of preemptions
of the fixer by one.

The following lemma summarizes the above remarks.
Lemma 4. Suppose a schedule σ′ is obtained from a schedule σ by a moving (p, q) → (p′, q′)

of its J-component on a machine Mi and q′ ≤ |σ|Mi . Then

(1) σ′ is tight if σ is tight ;
(2) pr(σ′) ≤ pr(σ) + 1;

(3) pr(σ′) ≤ pr(σ) if p′ < p and p′ is a switching point of σ on Mi;

(4) pr(σ′) < pr(σ) and pr(σ′(J,Mi)) < pr(σ(J,Mi)) if p′ < p and p′ is a switching point for J
on Mi according to σ;

(5) pr(σ′) ≤ pr(σ) if i = 1 or i = m.

Schedule preprocessing. Now we introduce procedures based on cutting, inserting, and
moving that allow us to simplify the structure of a schedule while not increasing its makespan. A se-
quence of I-components (p1, i1, q1), (p2, i2, q2), . . . , (pk, ik, qk) will be called an I-loop if qj = pj+1 for
all j < k and i1 = ik; we will say that this I-loop passes through the machines Mi2 ,Mi3 , . . . ,Mik−1

.
An I-component (p, i, q) will be called unit if q − p = 1, and an I-loop will be called integral if all
its components except for the first and last ones are unit and every intermediate machine passed
by this loop has at least one preemption.

We say that an I-component (p, i, q) splits a job J if both p and q are switching points for J ,
i.e., if Mi processes J immediately before the time p and immediately after the time q.

Lemma 5. If an I-component splits another job, then any moving of this I-component does
not increase the total number of preemptions.

Proof. The cutting of an I-component in this case reduces the number of preemptions, and the
insertion can again increase their number, but at most by 1. Hence, the total number of preemptions
does not increase. �

Lemma 6. For any tight schedule σ, one can construct in linear time another tight schedule σ′

such that pr(σ′) ≤ pr(σ) and any machine Mi with preemptions but without I-preemptions according
to σ has at most one preemption in σ′ (and this preemption is a splitting generated by the single
I-component).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 290 2015



172 E.V. SHCHEPIN

Proof. Let (p, i, p + 1) be the only I-component on Mi, and let prσ(Mi) > 0. A tight sched-
ule σ′ with at most one preemption on Mi can be obtained as follows. First, we construct a tight
schedule on Mi for all jobs assigned, according to σ, to Mi except for I. This schedule has no
preemptions. Then we perform the (p, p + 1)-insertion of the job I on Mi. The schedule obtained
satisfies our requirements on Mi. We perform an analogous procedure on all other machines without
I-preemptions and obtain a schedule σ′ such that pr(σ′) ≤ pr(σ). �

Lemma 7. For any tight schedule σ, one can construct in linear time another tight schedule σ′

without integral I-loops such that pr(σ′) ≤ pr(σ).

Proof. By Lemma 6, we can assume without loss of generality that all machines with unit
I-components in the schedule σ have at most one preemption. If σ contains an integral loop
(p, i, q), (q, i1, q + 1), (q + 1, i2, q + 2), . . . , (q + k − 1, ik, q + k), (q + k, i, r), then each of the ma-
chines Mi1 , . . . ,Mik has exactly one preemption generated by the corresponding I-component.
Then, according to Lemma 5, the moving of these components does not increase the number
of preemptions. Hence, a schedule σ′ obtained from σ by the following sequence of movings
will have a smaller number of preemptions than σ: on Mi the moving (q + k, r) → (q, r − k)
is performed, on Mi1 the moving (q, q + 1) → (r − k, r − k + 1) is performed, on Mi2 the
moving (q + 1, q + 2) → (r − k + 1, r − k + 2) is performed, and so on; the last moving
(q + k − 1, q + k) → (r − 1, r) is performed on Mik . The first of the movings described reduces
the number of preemptions on Mi, and all the subsequent movings do not increase the number of
preemptions. Now, if σ′ still contains an integral loop, we again apply the same procedure. The
process cannot recur more than pr(σ) times. �

We will say that an intermediate machine Mi in a schedule σ is incorrect if σ has no preemptions
on Mi and the common job I is assigned to Mi first or last.

Lemma 8. For any tight schedule σ of the shop O(C,m), one can construct in linear time
another tight schedule σ′ such that pr(σ′) ≤ pr(σ) and σ′ has no incorrect machines.

Proof. Note that σ cannot have more than two incorrect machines to which I is assigned first
or last. Let Mi be an incorrect machine on which I is processed first (the second case is similar).
The schedule σ′ to be constructed on the basis of σ coincides with σ on all machines except M1

and Mi. We define σ′ on M1 as follows: σ′(I,M1) = [0, 1) and σ′(F1,M1) = [1,m).
Now, let (p1, 1, q1), (p2, 1, q2), . . . , (pk, 1, qk) be an increasing sequence of all I-components on

the machine M1 in σ. Since p1 > 0, the number of preemptions of the schedule σ on M1 is equal
to 2k − 2 if qk = m and is equal to 2k − 1 otherwise. The schedule σ′ on Mi is defined as follows.
First, we perform the (0, 1)-cutting on Mi, after which there remain no preemptions on Mi. Second,
we perform step by step the (pi, qi)-insertions of the job I on Mi. All these insertions except the
last one increase the number of preemptions at most by 2. The last insertion increases the number
of preemptions by 1 if qk = m. Hence, the number of preemptions of the schedule σ′ on Mi does not
exceed the number of preemptions of the schedule σ on M1, and prσ(Mi) = prσ

′
(M1) = 0. Thus,

pr(σ′) ≤ pr(σ). �
Proper times. Starting from this moment, we will deal only with a tight nonpartitioning

schedule σ for O(C,m) without integral loops and incorrect machines. By Lemmas 7 and 8, it
suffices to prove Lemma 2 for such σ.

For a real x, denote by 〈x〉 its fractionality, i.e., the distance from x to the nearest integer.
A noninteger moment of time t is called a proper time for an intermediate machine Mi according

to a schedule σ if it is a sum of an integer and the processing times of a proper subset (i.e., a nonempty
subset smaller than the entire set) of jobs assigned in σ to Mi and different from I. For the machines
M1 and Mm, we define a proper time as an arbitrary integer. The following inequalities are valid
for intermediate machines Mi.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 290 2015



ON THE COMPLEXITY OF CONSTRUCTING MULTIPROCESSOR SCHEDULES 173

Lemma 9. The fractionality of a proper time t of an intermediate machine Mi of a tight
schedule for O(c,m) satisfies the inequalities

1

S2i
≤ 〈t〉 ≤ 1

S2i−1
.

Proof. Any proper time t of Mi can be represented as f + p, where f is either zero or the sum
of processing times of one or two fixers and p is the sum of processing times of some set of partition
jobs. (Notice that, by definition, f + p > 0 is not integer, because this sum cannot include all fixers
and partition jobs.) Since at least one of the jobs is included in f + p, the definition of processing
times of the partition jobs and fixers immediately implies the inequality 〈f + p〉 ≥ S−2i. To verify
the validity of the second inequality, notice that 0 ≤ p ≤ S1−2i and that the list of possible values
of f is 0, i− 1− S1−2i/2, m− i− S1−2i/2, and m − 1− S1−2i. A simple check shows that in any
case the inequality 〈f + p〉 ≤ S1−2i is valid. �

We will say that a moment of time is strongly improper for a machine Mi (according to σ) if it
is proper for some other machine.

Lemma 10. In a tight schedule of the shop O(c,m), a strongly improper time for any inter-
mediate machine is not proper for it.

Proof. By Lemma 9, the fractionality of a proper time of an intermediate machine Mi belongs
to the interval [S−2i, S1−2i]. If t is a proper time for an intermediate machine Mj , j �= i, then 〈t〉
belongs to the interval [S−2j , S1−2j ]. However, the intersection of these intervals is empty. If Mj is
an extremal machine, then all its proper times are integer. �

Lemma 11. If t1 and t2 are strongly improper times of an intermediate machine Mi (with
respect to a nonpartitioning tight schedule of the shop O(c,m)), then their difference is not a proper
time for this machine.

Proof. Suppose that t1 and t2 are proper for different machines Mj and Mk, respectively. If
their difference t3 were a proper time for Mi, then, for l = max{� ∈ {i, j, k} | � < m}, two numbers
among S2l−2ti, i = 1, 2, 3, would be integer, while the fractionality of the third would belong to the
interval [S−2, S−1] by Lemma 9. This is impossible for S2l−2t3 = S2l−2t2 − S2l−2t1 and, hence, for
t3 = t2 − t1 as well.

Now, assume that t1 and t2 are proper for the same machine Mj. It is clear that j �= m.
If i < j < m, then the fractionality of their difference is not greater than 2S1−2j by Lemma 9,
whereas the fractionality of any proper time of Mi is not less than S−2i ≥ S2−2j > 2S1−2j . If i > j,
then S2j(t2 − t1) is integer, whereas any proper time of Mi, being multiplied by S2j , has nonzero
fractionality, as follows from the estimates of Lemma 9. �

The following lemma is an immediate corollary to the definition of proper times.
Lemma 12. If σ is a tight nonpartitioning schedule for O(c,m), then, for any correct ma-

chine Mi without preemptions, all switching points except 0 and m are proper.
Improper components. We want to prove that a tight nonpartitioning schedule σ for

O(C,m) without integral loops and incorrect machines has at least m − 2 preemptions. If σ has
preemptions on all intermediate machines, then the number of preemptions is at least m− 2 and our
claim is valid. It remains to consider the case when some intermediate machine has no preemptions.

Denote by si and fi the starting and finishing times of the common job I on the machine Mi.
Note that I has no preemptions on Mi if and only if fi − si = 1. Let Mi,Mj be a pair of machines
without preemptions such that fi ≤ sj. We call such a pair σ-successive if there is no machine Mk

without preemptions in σ such that fi ≤ sk ≤ fk ≤ sj.
It is obvious that a successive pair cannot be formed by extremal machines; therefore, at least

one of the machines of the pair is intermediate. Since a strongly improper time for an intermediate
machine is improper, sj is in fact strictly greater than fi. Hence, there exists at least one machine

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 290 2015



174 E.V. SHCHEPIN

with preemptions to which an I-component is assigned within the interval [fi, sj ] (since the job I
must be being processed at any moment of time before the end of σ).

We say that an I-component (p, k, q) precedes another I-component (p′, k′, q′) if q ≤ p′, and that
an I-component (p, k, q) is (i, j)-intermediate if fi ≤ p ≤ q ≤ sj.

An I-component (p, k, q) is said to be improper for an extremal machine Mk if q − p < 1 and
0 < p < q < m. Such a component is said to be improper for an intermediate machine Mk if, in
addition, both p and q are improper times for Mk.

An improper I-component both ends of which are strongly improper is itself called strongly
improper.

Lemma 13. Let Mi,Mj be a σ-successive pair. Then

(1) there exists an (i, j)-intermediate improper I-component ;
(2) if the earliest scheduled (i, j)-intermediate improper I-component belongs to an intermediate

machine, then its starting time is strongly improper ;
(3) if the last scheduled (i, j)-intermediate improper I-component belongs to an intermediate

machine, then its finishing time is strongly improper.

Proof. The difference sj − fi is not an integer; otherwise sj an fi would be proper for both
machines Mi and Mj , which is impossible in view of Lemma 10, because at least one of these
machines is intermediate. Since the length of I coincides with the makespan of the schedule, this
job is being processed during the whole interval [fi, sj); in particular, there is an I-component in
this interval. Let (p1, k1, q1) be the earliest nonunit I-component scheduled after fi. If Mk1 is an
extremal machine, then this I-component is improper just because it is nonunit, and assertion (1)
is valid. If Mk1 is an intermediate machine, then p1 may differ from fi only by an integer (by
the sum of processing times of unit I-components); therefore, it is proper for Mi and strongly
improper for Mk1 . If q1 is not proper for Mk1 , then this component is improper, and the validity
of assertions (1) and (2) is proved. Suppose that q1 is a proper time for Mk1 . Then we continue to
search for an improper I-component. The difference sj − q1 is again noninteger, because it is the
difference of proper times of different machines. Hence, there is at least one nonunit I-component
scheduled between q1 and sj . Let (p2, k2, q2) be the earliest such component. If k2 = 1 or k2 = m,
then this component is improper, and the lemma is proved. Suppose that 1 < k2 < m. Since σ has
no integral loops, k2 �= k1. Since the moment p2 is the sum of q1 and an integer, it is proper for Mk1

and is therefore strongly improper for Mk2 . If q2 is improper, then (p2, k2, q2) is improper, and
assertions (1) and (2) are proved. Otherwise, we continue the search and find the next I-component
(p3, k3, q3), and so on. This process cannot recur more times than there are preemptions in σ, and
we obtain an improper I-component with a strongly improper starting time. Thus, assertions (1)
and (2) are proved.

The proof of assertion (3) is similar to the above proof; one should just consider the latest
components instead of the earliest ones. �

Marked components. We apply Lemma 13 in order to mark intermediate improper I-compo-
nents for any σ-successive pair (Mi,Mj). Namely, among (i, j)-intermediate improper I-components
on an extremal machine, we mark the earliest one. For an intermediate machine, if there is only one
(i, j)-intermediate improper I-component, we mark this component (it will have strongly improper
starting and finishing times in view of Lemma 13). If there are more than one (i, j)-intermediate
improper I-component, we mark the earliest and the latest of them; a pair of such components
is called a twin couple. The I-components of a twin couple may be assigned either to the same
machine or to different machines.

By mr(M) we will denote the number of marked I-components assigned to the machine M . If
mr(M) > 0, then the machine M is said to be marked. Let M be a machine with preemptions.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 290 2015



ON THE COMPLEXITY OF CONSTRUCTING MULTIPROCESSOR SCHEDULES 175

Then we define the reduced number of preemptions on M as pr−(M) = prσ(M)− 1. For a machine
without preemptions, the reduced number of preemptions is assumed to be zero.

Lemma 14. If M is an extremal marked machine, then pr−(M) ≥ mr(M).
Proof. Notice that the number of switchings on M is at least 2mr(M) + 2. Applying Lemma 3

for n = 2 and s = 2mr(M) + 2, we obtain prσ(M) ≥ 2mr(M) + 2 − 2 − 1 = 2mr(M) − 1.
If mr(M) > 1, then 2mr(M) − 1 ≥ mr(M) + 1; if mr(M) = 1, then the job I has at least
one preemption and the fixer also has at least one preemption, because the marked component is
processed in the intermediate position on M . �

Lemma 15. If mr(Mk) > 2 for an intermediate machine Mk, then pr−(Mk) ≥ mr(Mk).
Proof. First, consider the case when there is a nonmarked I-component on the machine Mk,

which is equivalent to the inequality pr(σ(I,Mk)) ≥ mr(Mk). (If there are more than one nonmarked
component, then the assertion of the lemma is obviously valid.) In this case, to prove the lemma,
it suffices to find a split job on Mk that is different from I. Let p1 be the starting time of the
earliest marked I-component on Mk. If only components of jobs different from I are processed
in the interval (0, p1), then at least one of these components must be a fractional (incomplete)
component of an appropriate job since the length of this interval is improper. If there is a nonmarked
I-component in this interval, then we consider the interval (q,m) whose left end is the finishing
time of the last marked I-component. Now, regarding this interval, we can state that it does not
contain I-components and that its length is again improper. Therefore, we find that there exist
split jobs different from I.

So, we may assume that pr(σ(I,Mk)) < mr(Mk), i.e., that all I-components on Mk are marked.
Next, we consider the case when there are at least three marked I-components (p1, k, q1), (p2, k, q2),
and (p3, k, q3), p1 < p2 < p3, that do not contain twin couples. Hence, all these components are
intermediate for three different σ-successive pairs of machines. In this case, each of the intervals
(0, p1), (q1, p2), (q2, p3), and (q3,m) contains a subinterval of unit length in which only components
of jobs different from I are processed. Hence, in each of these intervals, a fixer is scheduled. If the
same fixer is scheduled in two different intervals, then it has a preemption; if a fixer is scheduled
in three different intervals, then it has at least two preemptions. It is easy to see that in all cases
there are at least two preemptions of the fixers. On the other hand, the number of preemptions of
the job I is at least mr(Mk) − 1. As a result, the total number of preemptions on Mk is not less
than mr(Mk)− 1 + 2 = mr(Mk) + 1.

Now, consider the case when there are exactly three marked components on Mk of which the
first two form a twin couple. Since p1 and q3 are improper, the intervals (0, p1) and (q3,m) contain a
fractional component of some job, say, J1 for (0, p1) and J2 for (q3,m). If J1 �= J2, then prσ(Mk) ≥
pr(σ(I,Mk)) + 2 = mr(Mk) + 1, and the validity of the lemma is proved. Suppose that J1 = J2.
Notice that Lemma 13 implies that p1 and q2 are strongly improper for Mk. Moreover, either p3
or q3 is strongly improper. First, assume that p3 is strongly improper. Then the interval (q2, p3) has
improper length according to Lemma 11; therefore, it contains a fractional component of some job,
say, J3. If J3 �= J1, then arguments similar to those used for J2 prove our lemma. If J3 = J1, then
J1 has at least two preemptions, so prσ(Mk) ≥ pr(σ(I,Mk)) + pr(σ(J1,Mk)) ≥ mr(Mk) − 1 + 2,
and the lemma is proved.

Now, suppose that q3 is strongly improper. Since all I-components on Mk are marked, the sum
of lengths of all I-intervals (pi, qi) is 1, while the sum of lengths of the intervals (q1, p2) and (q2, p3)
is q3 − p1 − 1 and is improper by Lemma 11. Hence, one of these intervals must contain a fractional
component of the job. Now, the proof can be completed in the same way as this was done in the
cases analyzed above.

The case when a twin couple follows a marked I-component is analogous. Finally, it remains to
analyze the case when there are exactly four marked I-components on Mk that form two different

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 290 2015



176 E.V. SHCHEPIN

twin couples. Then each of the three intervals (0, p1), (q2, p3), and (q4,m) has improper length and,
hence, contains a fractional component of a job different from I, so we again find an additional
preemption. �

Lemma 16. If mr(Mk) = 2 and at least one marked component on Mk is strongly improper,
then pr−(Mk) ≥ 2.

Proof. Suppose that (p, k, q) is a strongly improper marked I-component. In this case, the
second marked I-component (p′, k, q′) has one strongly improper end. Suppose that q < p′ and q′

is strongly improper (hence, p′ is improper). The length of the interval (0, p) is improper for Mk;
hence, this interval contains a fractional component of some job, say J1. The same is valid for the
interval (q′,m). If this interval contains a fractional component of some other job J2, then we have
already found three split jobs: I, J1, and J2, and the lemma is proved. Suppose J2 = J1. If I has
more than two components on Mk, then I has two preemptions and J1 gives another one, so we
again have three preemptions on Mk. Suppose I has exactly one preemption on Mk. In this case, the
length of the interval (q, p′) is less by one than the length of the interval (p, q′); the latter is improper
as the difference of two strongly improper times (Lemma 11). Thus, the length of (q, p′) is improper,
and this interval contains a fractional component of a job. If this component belongs to the job J1,
then J1 has two preemptions, and together with the preemption of I we obtain three preemptions
on Mk. If this component belongs to some other job, then we again obtain three split jobs.

The case when p′ is strongly improper is simpler, because we immediately find that the length
of the interval (q, p′) is improper as the difference of strongly improper moments of time. The
case q′ < p is analogous. �

Lemma 17. Every machine Mk with marked jobs has at least two preemptions.
Proof. If I has more than one preemption on Mk, then we already have the promised number of

preemptions. Suppose that I has exactly one preemption and that (p, k, q) is a marked I-component.
Either the interval (0, p) or the interval (q,m) does not contain the components of the job I. Since
this interval, in addition, has improper length, it must contain a fractional component of some job
different from I. Thus, we have found two split jobs on Mk. �

Proof of Lemma 2. Finally, we are ready to prove the main lemma. As already mentioned
above, it suffices to consider the case when some intermediate machine has no preemptions (other-
wise there are at least m− 2 preemptions). Let k be the number of machines without preemptions
and m− k be the number of machines with preemptions. The total number of preemptions pr(σ)
is equal to m− k plus the sum of the reduced numbers of preemptions. Hence, it suffices to prove
that pr−(σ) ≥ m− 2− (m− k) = k − 2.

Denote by p the number of σ-successive pairs for which a twin couple is marked. Then the total
number of marked components is k − 1 + p. Indeed, the number of σ-successive pairs is k − 1.
Each such pair generates one or two marked components, while the number of pairs generating two
components is p.

We call a machine distinguished if it contains exactly two marked components each of which has
a twin (these two components may belong to different twin couples). Denote by q the number of
all distinguished machines. Since the total number of twins is 2p and the number of twins assigned
to distinguished machines is 2q, we obtain 2q ≤ 2p, i.e., q ≤ p.

By Lemma 17, each distinguished machine has at least two preemptions. So, the distinguished
machines make a total contribution of at least q to pr−(σ). The number of marked components
assigned to nondistinguished machines is equal to (k − 1 + p) − 2q ≥ k − 1 − q. By Lem-
mas 14–16, each marked component on a nondistinguished machine makes a contribution of at
least 1 to pr−(σ). Hence, the sum of reduced preemptions is estimated from below by the number
q + (k − 1− q) = k − 1 (this estimate is even better than required; it is valid only if there exists an
intermediate machine without preemptions).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 290 2015



ON THE COMPLEXITY OF CONSTRUCTING MULTIPROCESSOR SCHEDULES 177

ACKNOWLEDGMENTS

This work is supported by the Russian Science Foundation under grant 14-50-00005.

REFERENCES
1. T. Gonzalez and S. Sahni, “Open shop scheduling to minimize finish time,” J. Assoc. Comput. Mach. 23, 665–679

(1976).
2. E. L. Lawler and J. Labetoulle, “On preemptive scheduling of unrelated parallel processors by linear program-

ming,” J. Assoc. Comput. Mach. 25, 612–619 (1978).
3. E. V. Shchepin and N. Vakhania, “On the geometry, preemptions and complexity of multiprocessor and shop

scheduling,” Ann. Oper. Res. 159, 183–213 (2008).
4. E. V. Shchepin and N. Vakhania, “A note on the proof of the complexity of the little-preemptive open-shop

problem,” Ann. Oper. Res. 191, 251–253 (2011).
5. E. Shchepin and N. Vakhania, “Little-preemptive scheduling on unrelated processors,” J. Math. Model. Algo-

rithms 1, 43–56 (2002).
6. E. V. Shchepin and N. Vakhania, “Task distributions on multiprocessor systems,” in Theoretical Computer

Science: Exploring New Frontiers of Theoretical Informatics: Proc. Int. Conf. IFIP TCS 2000, Sendai (Japan),
2000 (Springer, Berlin, 2000), Lect. Notes Comput. Sci. 1872, pp. 112–125.

7. E. V. Shchepin, “On the geometry of multiprocessor distributions,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad.
Nauk 239, 323–331 (2002) [Proc. Steklov Inst. Math. 239, 306–314 (2002)].

8. E. V. Shchepin and N. Vakhania, “An optimal rounding gives a better approximation for scheduling unrelated
machines,” Oper. Res. Lett. 33, 127–133 (2005).

Translated by I. Nikitin

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 290 2015


