ISSN 0081-5438, Proceedings of the Steklov Institute of Mathematics, 2015, Vol. 290, pp. 63-69. © Pleiades Publishing, Ltd., 2015.
Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2015, Vol. 290, pp. 72-79.

On Translating Context-Free Grammars
into Lambek Grammars

S. L. Kuznetsov*“
Received March 15, 2015

Abstract—We consider context-free grammars and Lambek grammars enriched with semantic
labeling. Such grammars do not just answer whether a given word belongs to the language
described by the grammar, but, if the answer is positive, also assign the word a A-term that
corresponds to the semantic value (“meaning”) of the word. We present a modification of
W. Buszkowski’s direct translation of context-free grammars in the Chomsky normal form into
Lambek grammars; this modification preserves semantic values of words.

DOI: 10.1134/S0081543815060061

1. FORMAL LANGUAGES AND CATEGORIAL GRAMMARS

A formal language (further we will omit the word “formal”) is an arbitrary set of words built from
elements (letters) of a finite set ¥ (called the alphabet). Languages are usually infinite, and in order
to describe them finitely one uses various grammars, including categorial grammars. A categorial
grammar is a correspondence between letters of the alphabet and logical expressions called syntactic
types. To each letter the grammar assigns a finite number of types (maybe more than one). A word
w = ajp ...a, belongs to the language defined by such a grammar if and only if there exist types
Aq,..., Ay, such that A; is assigned to a; (for all ¢ from 1 to n) and the sequent Ay...A, — H
is derivable by means of a special logical calculus. Here H is some fixed type, one for the whole
grammar. In this case we say that w is accepted or generated by the given grammar.

Note some difference in terminology between studies of “formal” and “real” languages. In lin-
guistic applications letters of 3 correspond not to letters but to words (word forms) of the natural
language; words built from letters of ¥ correspond to sentences. Thus grammars describe the lan-
guage on the syntactic rather than lexical level. In this paper we use the “letter—word” terminology,
not the “word-sentence” one.

One can use various calculi to describe formal languages using categorial grammars; below we
accurately define a particular sort of categorial grammars, namely, grammars based on the product-
free Lambek calculus, or just Lambek grammars [13].

Syntactic types of the Lambek calculus L are built from a set of primitive types (variables) Pr
using two binary connectives \ and /, called the left and right division, respectively. The set of all
syntactic types is denoted by Tp (more precisely, Tp(\,/)).

The Lambek calculus derives expressions of the form A; ... A, — B called sequents. We will
use Greek letters for finite (possibly empty) sequences of types.

The axioms of L are sequents of the form A — A, and the rules of inference are as follows:

All - B . I—-A I'BA—=C
here IT t

M- A\ B’ where IT is nonempty, TTI(A\ B)A — C °

A — B where II is nonempty - A FBA_)C.

nI—B/A ’ I'(B/AIA = C

@ Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia.

E-mail address: sk@Qmi.ras.ru

63



64 S.L. KUZNETSOV

The cut rule

II—- A TAA = C
T'lIA — C

is admissible in L [13]. (This means that adding the cut rule does not enlarge the set of derivable
sequents. )

We write L - II — B if the sequent II — B is derivable in L.

Finally, a Lambek grammar is a 3-tuple G = (3,1, H), where ¥ is an alphabet, H € Tp is a
distinguished type, and > C X x Tp is a finite binary correspondence between letters of the alphabet
and syntactic types. As said earlier, the word w = a1 ...a, is accepted by the grammar G if and
only if there exist types Ay, ..., A, such that a; > A; (for all i from 1 ton) and L+ A;... A4, — H.

Note that Lambek grammars as defined above never generate the empty word. However, one
can drop the constraint of II being nonempty from the rules, which yields a modified calculus L*.
Grammars based on L* can describe languages containing the empty word.

2. LAMBEK GRAMMARS ENRICHED WITH SEMANTIC LABELS

Lambek grammars defined in the previous section describe languages in the weak sense, just
as sets of words. However, they can be enriched to solve a more sophisticated problem: if a word
belongs to the language, then the grammar not only just generates it but also yields an object,
called the semantic value, that is assigned to the word and considered to encode its “meaning.” Of
course, since some letters can be assigned more than one syntactic type, and also some sequents
have more than one derivation in L, there could be words with more than one semantic value. (From
the linguistic point of view this models homonymy, both lexical and syntactic.)

In this paper semantic values for words and parts of words will be represented by typed A-terms.
The system of types used in the A-formalism differs from the type system of the Lambek calculus.
To avoid misunderstanding, we will call the types of the A-terms semantic types.

Semantic types are built from a set B of basic types using one binary connective “—.” The set
of all semantic types is denoted by T. Types are populated with A-terms: for every semantic type
we have a countable number of variables of this type; we also allow constants (technically, the only
difference between constants and variables is that substitution and A-abstraction (see below) are
permitted only for variables). If f is a term of type A — B and u is a term of type A, then (fu) is
a term of type B; if v is a term of type B and x is a variable of type A, then Ax.v is a term of type
A — B. If uis a term of type A, we write u: A. By u[z := v] we denote the result of substituting
the term v for all free (not under \) occurrences of the variable z (x and v must be of the same
type). The set of all A\-terms is denoted by Tmy.

Terms are considered modulo a-, 8-, and n-equivalence: one can freely rename bounded variables
and perform reductions on subterms: (Az.u)v ~»g u[x := v] (if free variables of v are not bounded
in w) and Az.(ux) ~+, u if = is not a free variable of u.

Now we introduce a translation o: Tp — T from syntactic to semantic types. On primitive types
this function is defined arbitrarily (and the image of a primitive syntactic type is not necessarily a
basic semantic type), and then o is uniquely extended to Tp: 0(A\ B) =o(B/A) = 0(A) — o(B).

We denote both syntactic and semantic types by capital Latin letters (A, B,C,...). If Ais a
syntactic type and u is a term, we also write u: A, meaning u: o (A).

Now we enrich the Lambek calculus with semantic labeling [2| (see, e.g., [5]). This is done
in a Curry—Howard style [10]. If IT = A;... A, and & = (z1,...,2,) is a sequence of variables,
then by Z:1I we denote the sequence z1: Ay,...,z,: A,. Sequents of the enriched calculus L) are
expressions of the form 7: 11 — w: A.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 290 2015



ON TRANSLATING CONTEXT-FREE GRAMMARS 65
Axioms of Ly are sequents of the form x: A — x: A. The rules of inference are as follows:
z:Ay: 1l - u:B y:ll,x:A—u:B
g:II — (Az.w): (A\ B)’ 7:II = (A\z.u): (B/A)
Z:—-u:A y:Tt:B,2:A—wv:C
g:0,2: 00, f: (A\B),Z: A = o[t := (fu)]: C’
Z:M—-u:A y:Tt:B,zZ:A—wv:C
g:T,f:(B/A),Z:1,Z: A = o[t .= (fu)]:C

where II is nonempty,

The cut rule in L) is also admissible and is formulated as follows (actually it acts as the substi-
tution operation on A-terms):

Z:ll—-uA y:It:AZ:A—wv:C
g: 0,2 1,2 A > ot :i=u]: C

One can easily see (and prove by induction on the derivation length) that if LF- Ay ... A, — H,
then there exists a term v : H such that Ly Fxz1:A1,...,2,: A, - v: H and the bounded variables
of v are contained in {x1,...,2,}. Thus the term v somehow encodes the derivation of the sequent
Ay... A, — H in L, and it will be used to build the semantic value of the corresponding word.
This semantic value is composed from the semantic values assigned by the grammar to letters of
the word, which are substituted for the corresponding variables x;.

Let us define the notion of Ly-grammar more accurately and formally. An Ly-grammar is a
3-tuple G = (X,D,H). As in the definition of L-grammar, here ¥ is an alphabet, H € Tp, but
now instead of a binary correspondence > we use a ternary relation D C ¥ x Tp x Tmy, called the
categorial vocabulary. The set D is finite, and if (a, A,u) € D, then u: A. Implicitly, the mapping
o: Tp — T is also part of G.

The word w = ay ...a, is accepted by G if and only if there exist syntactic types Aq,..., A,
and terms uq,...,u, such that (a;, A;,u;) € D (i=1,...,n)and Ly Fx1: Ay,...,2p: Ay > v: H
for some term v. In this case the grammar yields the term v[z := uq,..., 2, := u,] as a semantic
value for w.

3. CONTEXT-FREE GRAMMARS AND LAMBEK GRAMMARS

Another, more common, class of grammars used for describing fragments of natural languages
and also programming languages is the class of context-free grammars introduced by Chomsky |[6].
A context-free grammar is a 4-tuple G = (N, 3, P, s), where N and ¥ are disjoint alphabets (ele-
ments of N are called nonterminal symbols), s € N is the start symbol, and P is a finite set of rules.
Each rule is of the form p = «, where p € N and « is a word constructed from letters of the united
alphabet N U X. The rule p = a can be applied to a word of the form ¢pi) (in the united alphabet),
yielding ¢atp. A word w is accepted by G if it can be obtained from the one-letter word s by a
finite number of rule applications and does not contain nonterminal symbols.

Languages described by context-free grammars are called context-free languages.

Further we mainly consider context-free grammars in Chomsky normal form. Rules of such
grammars can be of two forms: either p = gr, where ¢, € N, or p = a, where a € X.. If a context-
free language does not contain the empty word, it can be described by a context-free grammar in
Chomsky normal form.

It is known [14] that context-free grammars and Lambek grammars are equivalent in the weak
sense: every context-free language is generated by some Lambek grammar, and vice versa, any
language generated by a Lambek grammar is also generated by a context-free one.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 290 2015



66 S.L. KUZNETSOV

However, as shown earlier, besides judging whether a word belongs to the language, a Lambek
grammar also assigns a A-term (called the semantic value of the word) to every word that belongs
to the language.

Context-free grammars can also be enriched with semantic labels, so they could assign seman-
tic values (A-terms) to the words accepted. For context-free grammars this enrichment is called
Montague semantics (see, e.g., [7]). First, we associate a semantic type with every nonterminal
symbol. This is done by a function o: N — T. Now let p = « be a rule of the grammar G and «
contains nonterminal symbols qi, ..., g (in the order as listed). Then this rule is associated with
a A-term u of type o(p) with free variables from the list x1,...,x;. In particular, if the right-
hand side of the rule does not contain any nonterminal symbol, the term u cannot contain any
free variables (it must be closed). Finally, if a word w is generated from s by a sequence of rule
applications: s = 81 = ... = 5, = w, then, going from right to left, we assign a closed A-term to
each nonterminal symbol. If 8; = ¢py), B;11 = ¢arh, and nonterminal symbols q1, ..., qr from « are
already associated with terms vy, ..., v, then p is associated with the term u[x] := v1,..., 2 1= vi].
Terms associated to nonterminal symbols from ¢ and 1) are kept unmodified.

Thus it is interesting to have translations between context-free grammars and Lambek grammars
that preserve not only languages generated by the grammars as sets of words but also semantic values
of the words.

Historically, the first method of translating context-free grammars into Lambek grammars, in-
troduced by Gaifman [1],! proceeds in two steps: first the context-free grammar is transformed into
Greibach normal form [8], and then this grammar in Greibach normal form is translated into a
Lambek grammar. (Strictly speaking, only context-free grammars not generating the empty word
can be transformed into Greibach normal form. For languages containing the empty word Gaifman’s
construction can also be used via an easy technical trick [12].)

Kanazawa and Salvati [11] presented a method to transform a context-free grammar into
Greibach normal form while preserving semantic values of words. This method works only for
grammars without e-rules, i.e., rules with empty right-hand side (in particular, the generated lan-
guage should not contain the empty word), and cyclic rules, i.e. rules of the form p = ¢, where
p,q € N. Then, given a context-free grammar in Greibach normal form, one can apply Gaifman’s
translation, which can also be naturally used to convey semantic labeling. The prohibition of e-rules
and cyclic rules is inevitable, because a context-free grammar with such rules can assign an infinite
number of semantic values to the same word, which is impossible for Lambek grammars.

However, there also exists a direct transformation of a context-free grammar in Chomsky normal
form into a Lambek grammar, suggested by Buszkowski [4]. For practical purposes this translation
is preferable, because it does not increase (more precisely, increases only linearly) the grammar’s size
and keeps the structure of derivation trees. And it happens that this translation can be performed
in such a way that it preserves semantic values of the words accepted by the grammar. In the next
section, we will describe a modification of Buszkowski’s translation that preserves semantic values.

A translation in the opposite direction—from Lambek grammars to context-free ones—was first
constructed by Pentus [14]. Kanazawa and Salvati [11] showed that this translation can be extended
to a translation of grammars with semantic labeling that keeps the semantic values of words. Unfor-
tunately, Pentus’s construction is inefficient: it leads to exponential growth of the grammar’s size.
This inefficiency is apparently unavoidable due to complexity reasons: the derivability problem in
the product-free Lambek calculus is NP-complete [15], whereas one can decide whether a word
belongs to a context-free language in polynomial time.

L Gaifman considered not Lambek grammars but a weaker formalism called Ajdukiewicz—Bar-Hillel grammars or

basic categorial grammars. The fact that Gaifman’s construction also works for Lambek grammars was noted by
Buszkowski [3].

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 290 2015



ON TRANSLATING CONTEXT-FREE GRAMMARS 67

4. A MODIFICATION OF BUSZKOWSKI’S TRANSLATION
THAT PRESERVES SEMANTIC VALUES

For simplicity we consider Montague semantics of a specific kind. Each rule of the form ¢t = a
is associated with a closed A-term, and rules of the form p = ¢r can be of two sorts: right-to-left,
for which o(r) = o(q) — o(p), and left-to-right, for which o(q) = o(r) — o(p), and the A-term
associated with the rule is (xex1) or (z122), respectively. Intuitively, p is associated with the A-term
which is the application of the A-terms associated with ¢ and r to each other (in the right-to-left
or left-to-right order). This case is most often used in practice 7] and is chosen in order to make
the proof easier. The modification of Buszkowski’s construction presented below also works in the
general case.

Given a context-free grammar G with a Montague-style semantic labeling, we need to construct
a Lambek grammar G that generates the same language and assigns the same semantic values to
the words of this language as G.

Consider all nonterminal symbols of the grammar G as primitive types (N C Pr); the mapping o
is also preserved. With every nonterminal symbol we associate a set I(¢) C Tp in the following way:

o tcl(t)
o if p= ¢t is a rule of G, then (¢\p) € I(t);
e if ¢ is a nonterminal symbol and p = ¢r is a rule of G, then (¢\p) /(t\r) € I(t).
Now we define the categorial grammar G. Let H = s. For every rule of the form ¢ = a
associated with the term w:o(t) and for A € I(t), we add an entry to the categorial vocabulary D
in the following way:
o if A=t then we add (a, 4, u);
e if A =gq\pand p = ¢t is a right-to-left rule, then we add (a, A,u) (in this case o(t) =
o(q) — o(p); thus u has the correct type o(A));

e if A=¢g\pandp = qtis aleft-to-right rule, we take a variable f of type o(q), let w = Af.(fu),
and add (a, A, u) (u is a well-formed term of type o(q) — o(p) = o(q\p) = o(A));

o if A= (q\p)/(t\r)and p = qris aright-to-left-rule, we take a variable g of type o (t) — o(r),
let @ = Ag.(gu), and add (a, A,u) (u is now of type (o(t) = o(r)) — o(r) = o(A));

e finally, if A = (¢\p)/(t\r) and p = qr is a left-to-right rule, we take two variables g and f
of types o(t) — o(r) and o(r) — o(p), respectively, let u = Ag.\f.(f(gu)), and add (a, A,u).
As in the previous cases, u has the correct type o(A).

Proposition 1. If a word w € ¥ is accepted by G, then it is also generated by G.

Proof. For every right-to-left rule of the form p = gr consider the sequent z:q, f :r — (fz):p,
and for every left-to-right rule p = rq consider the sequent f:r,z:q — (fx):p. Denote the set
of all such sequents by A. Let us add them as new axioms to Ly and also add the cut rule, thus
getting a new calculus Ly + A.

Now let t € N and A € I(t). One can easily check that then Ly + AF z:¢t — 2/: A, where 2/ is
a term of type o(A) (either x, or T, or Z).

Let the word w = a; ... a, be accepted by G. Then Ly - x1: Ay,...,25: Ay = v:s. By the cut
rule, we get

La+AFzyity,.. ity > vy =2, =) s,
Now we reformulate the calculus Ly + A in an equivalent form. Instead of the set A of axioms
we introduce a set R of the following rules of inference:
Z1: ' —wwiq Z5:T9g —wu:r

., . for every right-to-left rule p = qr,
Z1:T1,%25:T9 — (uv) :p y g

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 290 2015



68 S.L. KUZNETSOV

Z1: 'y —u:r Zp:T'y —w:igq

., . for every left-to-right rule p = rq.
Z1:T1,%25:T9 — (uv) :p Y &

The calculi Ly + A and Ly + R derive the same sequents, but Ly + R enjoys cut elimination (this
is proved in a standard way). Therefore,

Ly+RFxi:t1,..., 2ty =0 5

(for some v'), and the derivation does use the cut rule. Since types in this sequent do not contain
logical connectives, the only rules that can be used in the derivation are rules from R, and the
derivation itself is actually a sequence of applications of G-rules. Hence, w is accepted by G. 0O

This proposition shows that G does not generate any extra words in comparison with G. More-
over, the cut elimination procedure in Ly 4+ R preserves the term on the right-hand side of the
sequent (modulo -, -, and n-equivalence; this is proved in the same way as for Ly itself [9]).
Hence, v’ is the same term as v[x; := z,...,z, := 2], and at the same time it is the semantic
value assigned to the word w by G. The choice of z;, Z;, or Z; for z is determined by the type A;.
Thus the semantic values coincide.

Proposition 2. Ifa word w is generated by G, then it is accepted by G with the same semantic
value.

Proof. Proceed by induction on the length of the sequence of applications of G-rules. We
decorate nonterminal symbols with syntactic types. The start symbol s is decorated with itself (as
a primitive type). At the induction step we apply a rule of the form p = ¢r, decorate r with (¢ \ p),
and consider several cases:

e p is decorated with itself; then decorate ¢ with itself as well;
e p is decorated with a type of the form (q; \ p1); then decorate ¢ with (g1 \ p1) /(¢ \p);
e p is decorated with a type of the form (g1 \ p1) /(p\ s); then decorate g with (q1 \ p1) /(¢ \ s).

One can easily check by induction that every occurrence of a nonterminal symbol ¢ is decorated
by a type from I(t).

All nonterminal symbols occurring in the sequence of applications of G-rules are assigned some
A-terms by the grammar G. Now we go along this sequence backwards and assign one more term
to each nonterminal symbol according to the derivation in the Lambek calculus, so that if the old
term was u, then the new term will be either u, or &, or w. More precisely, we prove the following
statement by induction: if after a number of applications of G-rules one obtains a word ¢ ...t
(t; € N) from s and every t; is assigned a term u; by G, then there exist terms v/, ..., u), such that
for every i the term w/ is either u;, or u;, or u;, with u} : A;, where A; is the type that decorates the
occurrence of t; (the choice of one of the three alternatives for u; is determined by this type), and,
finally,

LakFaxi: Ay, . .yem A — 0 s,

where 0[z1 = u), ...,z = ul,] is the term assigned to the starting symbol s (the semantic value of
the word).

The induction base is evident: m =1, A; = s, and we take v for u].

If a right-to-left rule of the form p = g¢r is applied at the induction step and the nonterminal
symbol p is associated with a term u by G, then this term is of the form (hu,), where h is associated
with r and w7 is associated with ¢q. Also let p, ¢, and r be decorated with types A, B, and C,
respectively. Considering possible cases for the types A, B, and C, one can easily check that

LyFu):B A :CFu A,
and then it is sufficient to apply the cut rule.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 290 2015



ON TRANSLATING CONTEXT-FREE GRAMMARS 69

The left-to-right case is considered symmetrically.

Finally, we apply the rules of the form ¢; = a. Since the choice of the correct ) is determined
by A;, the corresponding 3-tuples (a;, A;, u}) exist in the categorial vocabulary D. Hence, the word
ai . ..ap is accepted by G with semantic value v. [

These two propositions together yield the following result:

Theorem. If G is a context-free grammar in Chomsky normal form with Montague semantics
and G is the Lambek grammar built from G as described above, then G generates the same language
as G and assigns the same semantic values to the words of this language as G.

ACKNOWLEDGMENTS

The author is grateful to the participants of the workshop “Natural Language and Computer
Science” held at Vienna Summer of Logic 2014 (Vienna, Austria), and especially to M. Kanazawa,
for fruitful discussions. The author is also grateful to Prof. M.R. Pentus for his attention to this
work.

This work is supported by the Russian Science Foundation under grant 14-50-00005.

REFERENCES

1. Y. Bar-Hillel, C. Gaifman, and E. Shamir, “On categorial and phrase-structure grammars,” Bull. Res. Council
Israel, Sect. F 9F, 1-16 (1960).

2. J. van Benthem, “The semantics of variety in categorial grammar,” in Categorial Grammar (J. Benjamins,
Amsterdam, 1988), pp. 37-55.

3. W. Buszkowski, “The equivalence of unidirectional Lambek categorial grammars and context-free grammars,”
Z. Math. Logik Grundlagen Math. 31, 369-384 (1985).

4. W. Buszkowski, “On the equivalence of Lambek categorial grammars and basic categorial grammars,” Preprint

LP-93-07 (Univ. Amsterdam, Inst. Logic Lang. Comput., Amsterdam, 1993), ILLC Prepubl. Ser.

B. Carpenter, Type-Logical Semantics (MIT Press, Cambridge, MA, 1997).

N. Chomsky, “Three models for the description of language,” IRE Trans. Inf. Theory IT-2 (3), 113-124 (1956).

D. R. Dowty, R. E. Wall, and S. Peters, Introduction to Montague Semantics (D. Reidel, Dordrecht, 1981).

S. A. Greibach, “A new normal-form theorem for context-free phrase structure grammars,” J. Assoc. Comput.

Mach. 12 (1), 42-52 (1965).

9. H. Hendriks, “Studied flexibility: Categories and types in syntax and semantics,” PhD Dissert. (Univ. Amsterdam,
Amsterdam, 1993).

10. W. A. Howard, “The formulae-as-types notion of construction,” in To H.B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism, Ed. by J. P. Seldin and H. J. Roger (Academic, London, 1980), pp. 479-490.

11. M. Kanazawa and S. Salvati, “The string-meaning relations definable by Lambek grammars and context-free
grammars,” in Formal Grammar: Proc. 17th and 18th Int. Confs., FG 2012/2013, Ed. by G. Morrill and
M.-J. Nederhof (Springer, Berlin, 2013), Lect. Notes Comput. Sci. 8036, pp. 191-208.

12. S. Kuznetsov, “Lambek grammars with one division and one primitive type,” Log. J. IGPL 20 (1), 207221
(2012).

13. J. Lambek, “The mathematics of sentence structure,” Am. Math. Mon. 65 (3), 154-170 (1958).

14. M. R. Pentus, “Lambek calculus and formal grammars,” Fundam. Prikl. Mat. 1 (3), 729-751 (1995).

15. Yu. Savateev, “Product-free Lambek calculus is NP-complete,” in Logical Foundations of Computer Science:
Proc. Int. Symp. LFCS 2009, Ed. by S. Artemov and A. Nerode (Springer, Berlin, 2009), Lect. Notes Comput.
Sci. 5407, pp. 380-394.

® N oo

Translated by the author

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 290 2015



