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On Lebesgue Constants of Local Parabolic Splines
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Abstract—Lebesgue constants (the norms of linear operators from C to C) are calculated
exactly for local parabolic splines with an arbitrary arrangement of knots, which were con-
structed by the second author in 2005, and for N.P. Korneichuk’s local parabolic splines, which
are exact on quadratic functions. Both constants are smaller than the constants for interpolating
parabolic splines.
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INTRODUCTION

For a function f : R → R, we consider a linear method S(x) = S(f, x) of approximating this
function on the axis R by polynomial splines of minimal defect of degree r (of order r + 1) with
arbitrary knots. One of the stability characteristics of the method S is the behavior of the uniform
norm of the operator S (as an operator acting from the space C = C(R) of functions continuous
on the axis to C); this is the value

L = ‖S‖C
C = sup

‖f‖C≤1
‖S(f, ·)‖C .

The number L is called the Lebesgue constant of the method S. The smaller this constant, the
greater the stability of the method with respect to a change in approximation conditions.

Various issues related to Lebesgue constants for interpolating polynomial splines (and their gen-
eralizations) were studied by Schurer and Cheney [1], Richards [2], Zhensykbaev [3], Tzimbalario [4],
Morsche [5], Subbotin and Telyakovskii [6], Kim [8, 9], and many others. A fundamental result
in this area belongs to Subbotin and Telyakovskii [6], who proved that Lebesgue constants L of
interpolating N -periodic polynomial splines Sr,N (x) of degree r with uniform knots have asymptotic
behavior

L = ‖Sr,N‖C
C =

2
π

ln(min(N, r)) + O(1), (0.1)

where the term O(1) is independent of N and r. Note that it is not always possible to calculate
the constants L exactly, and even finding orders of L in different parameters is of great interest.
It is natural to pose the question of studying Lebesgue constants for noninterpolating polynomial
splines (and their generalizations), which approximate (in some sense) continuous functions on a
closed interval of the real line R and on the whole real axis. Let us give more exact formulations.
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Let values {yj}j∈Z of some function f(x) be given at the nodes of a uniform grid {jh}j∈Z of the
real line with step h > 0: yj = f(jh), j ∈ Z. Denote by ˜Br+1 the normalized (in C) polynomial
basis spline (B-spline) of degree r (of order r+1) with support supp ˜Br+1 = [0; (r+1)h] and uniform
knots 0, h, 2h, . . ., (r + 1)h (see, for example, [10, Ch. 1]). In 1975, Lyche and Schumaker [11] (see
also [10, Ch. 9]) constructed for any function f : R → R local polynomial splines of order (r + 1)
of the form

Sr+1(x) = Sr+1(f, x) =
∑

j∈Z

∑

s=−k

γsf((j + s)h) ˜Br+1

(

x − jh − r + 1
2

h
)

(x ∈ R), (0.2)

where k = [r/2] and the real coefficients γs were chosen from the condition that the formula
Sr+1(f, x) = f(x) is exact for algebraic polynomials of degree r. It was proved that the choice
of the coefficients is unique. A local spline of form (0.2) is not interpolating, since Sr+1(jh) �= yj

(j ∈ Z), and its value at a fixed point x ∈ R depends only on several values yj = f(jh) defined
by the supports of the shifts of the B-spline that contain the point x. Lyche and Schumaker’s
results [11] were developed and generalized in different directions (see, for example, references in
the authors’ paper [12]). Methods of local spline approximation (with uniform and nonuniform
knots) became an effective tool for solving various problems in function approximation theory and
numerical analysis as a useful alternative for the interpolation method. It turned out (see, for
example, [10, 13]) that the orders of approximation by local polynomial splines of order (r + 1)
with uniform knots of the classical Sobolev classes W r

∞ of r times almost everywhere differentiable
functions in the uniform metric coincide with the orders of approximation of these classes by the
corresponding interpolation splines and are equal to the orders of the Kolmogorov widths of these
function classes. Recall that the function class W r

∞ is defined as follows:

W r
∞ = {f : f (r−1) ∈ AC, ‖f (r)‖L∞ ≤ 1}.

Here, AC is the class of locally absolutely continuous functions and ‖g‖L∞ = ‖g‖∞ = ess sup
x∈R

|g(x)|.

In addition to the simplicity of construction, methods of local spline approximation (in contrast to
interpolation methods) possess useful shape-preserving and smoothing properties (see, for example,
[14–16] and references therein). It is natural to consider the question of comparing local and
interpolating splines in the sense of their stability to a change in the initial data (i.e., the numbers
yj = f(jh)). It is interesting to find which of these splines have smaller Lebesgue constants. Let
us pose the problem of calculating (or estimating) the Lebesgue constants

L = ‖Sr+1‖C
C = sup

‖f‖C≤1
‖Sr+1(f, ·)‖C

for Lyche and Schumaker’s local polynomial splines of form (0.2) Sr+1(f, x) [11]. At present, no
approaches to finding these values in the case of arbitrary r are known. First, it would be desirable
to obtain an asymptotic equality of type (0.1).

For parabolic splines (i.e., for r = 2) preserving quadratic function, the following equality will
be shown later (Theorem 1):

‖S3‖C
C = 1.25.

Kim [8] proved that the Lebesgue constant for interpolating parabolic splines with a knot grid
shifted half-step (i.e., by h/2) with respect to the grid of interpolation nodes is L =

√
2 ≈ 1.41.

The comparison of these results shows that, in the question of stability, local parabolic splines of
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form (0.2) (their coefficients γ−1 = −1/8, γ2 = 5/4, and γ3 = −1/8 were found by Korneichuk [17])
have an advantage over corresponding interpolating splines.

On the class of functions W 2
∞ given on a uniform grid {jh}j∈Z, Subbotin [14] constructed

in 1993 one more (noninterpolating) method of local parabolic approximation, which used parabolic
splines with additional knots and preserved certain locally geometric properties (monotonicity and
convexity) of the initial data yj = f(jh) (j ∈ Z). In the periodic case, this method turned out
to be extremal in the sense of Kolmogorov’s and Konovalov’s widths. In 2005, one of the authors
of the present paper Shevaldin [15] extended this method to parabolic splines with an arbitrary
arrangement of knots. We have proved (see Theorem 2 below) that, for any grid of spline knots,
Lebesgue constants of such splines are equal to 1.

1. KORNEICHUK’S SPLINES

Let B3(x) = ˜B3(x + 3h/2) (see, for example, [10]) be the normalized parabolic B-spline with
uniform knots −3h/2, −h/2, h/2, and 3h/2. It can be written in the form

B3(x) =
1

2h2

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

x +
3h
2

)2
, x ∈

[

− 3h
2

;−h

2

]

,

3h2

2
− 2x2, x ∈

[

− h

2
;
h

2

]

,

(3h
2

− x
)2

, x ∈
[h

2
;
3h
2

]

,

0, x �∈
[

− 3h
2

;
3h
2

]

.

(1.1)

For a function f : R → R, define yj = f(jh) (j ∈ Z) and consider the sequence of linear functionals

Ij =
(

− 1
8

)

yj−1 +
5
4
yj +

(

− 1
8

)

yj+1 (j ∈ Z). (1.2)

Consider the local parabolic spline

S3(x) = S3(f, x) =
∑

j∈Z

Ij B3(x − jh) (x ∈ R). (1.3)

Formula (1.3) is a special case of formula (0.2) for r = 2. Such local splines were studied by
Korneichuk [17]. He proved that, for any quadratic polynomial p2(x) ∈ P2,

S3(p2(·), x) = p2(x) (x ∈ R). (1.4)

Here, P2 is the space of algebraic polynomials of second degree with real coefficients. Equality (1.4)
means that local approximation scheme (1.2), (1.3) preserves the space P2. It is easy to verify
that S3(jh) �= yj (j ∈ Z); i.e., the constructed local splines are not interpolating. In addition,
Korneichuk proved that

sup
f∈W 2∞

‖f − S3‖C =
9
32

h2. (1.5)

Let
dm(W 2

∞)C = inf
dimMm≤m

sup
f∈W 2

∞

inf
g∈Mm

‖f − g‖C (1.6)
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be the Kolmogorov width of order m of the function class W 2
∞ = W 2

∞(R). It is known (see, for
example, [13]) that, for 1-periodic functions, the equality

d2n−1(W 2
∞)C = d2n(W 2

∞)C =
h2

8

(

h =
1
n

)

holds, and an extremal subspace Mm (which implements the outer infimum in (1.6)) for even
m = 2n is the space of interpolating parabolic splines with uniform knots (their interpolation
nodes are shifted half-step with respect to spline knots) and Subbotin’s space of local splines [14].
Equality (1.5) means that, though Korneichuk’s splines approximate the class of functions W 2

∞ with
the same order h2, they do not form an extremal subspace (in the sense of Kolmogorov widths).
Consider now the Lebesgue constant of Korneichuk’s method [17]. We are interested in the answer
to the following question. Let all the numbers yj be such that |yj | ≤ 1 (j ∈ Z). In this case, what
is the numerical value of the expression

L1 = max
x∈R

{

|S3(x)| : |yj| ≤ 1 (j ∈ Z)
}

?

Theorem 1. The following equality hods:

L1 = 1.25.

Proof. For x ∈ [(l − 1/2)h; (l + 1/2)h] (l ∈ Z), the spline S3(x) defined by formulas (1.2) and
(1.3), in view of equality (1.1), can be represented in the form

S3(x) =
1

16h2

[

(−yl−2 + 10yl−1 − yl)
(

t − h

2

)2
+ (−yl−1 + 10yl − yl+1)

(3h2

2
− 2t2

)

+ (−yl + 10yl+1 − yl+2)
(

t +
h

2

)2]

=
1

16h2

5
∑

s=1

yl+s−1qs(t), (1.7)

where t = x − lh ∈ [−h/2;h/2] and

q1(t) = −
(

t − h

2

)2
, q2(t) = 12t2 − 10th + h2, q3(t) = −22t2 +

29
2

h2,

q4(t) = 12t2 + 10th + h2, q5(t) = −
(

t +
h

2

)2
.

Without loss of generality, we can assume that l = 0. From (1.7), we have

|S3(x)| ≤ 1
16h2

q(t) max
−2≤j≤2

|yj|, (1.8)

where q(t) =
∑5

s=1 |qs(t)|. Analyzing zeros of the quadratic polynomials qs(t) (s = 1, 5), we find
that

q(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

5(−4t2 − 4th + 3h2), −h

2
≤ t ≤ −5 +

√
13

12
h,

4t2 + 17h2,
−5 +

√
13

12
h ≤ t ≤ 5 −

√
13

12
h,

5(−4t2 + 4th + 3h2),
5 −

√
13

12
h ≤ t ≤ h

2
.

(1.9)
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From (1.9), we derive the equality

max
t∈[−h/2;h/2]

q(t) = q
(

− h

2

)

= q
(h

2

)

= 20h2; (1.10)

moreover, the equality in (1.8) is realized for y−2 = y1 = y2 = −1 and y−1 = y0 = 1 in the case
t = −h/2 and for y−2 = y−1 = y2 = −1 and y0 = y1 = 1 in the case t = h/2. The statement of
Theorem 1 follows from (1.8)–(1.10).

2. LOCAL PARABOLIC SPLINES WITH ARBITRARY KNOTS

PRESERVING LINEAR FUNCTIONS

Consider on the axis R the node grid . . . < x−2 < x−1 < x0 < x1 < x2 < . . ., which is infinite on
either side, with hj = xj+1 − xj and xj+1/2 = 0.5(xj + xj+1) (j ∈ Z). For a function f ∈ W 2

∞(R),
we construct a second-order divided difference using the values of the function y = f(x) at the
points xj , xj+1, and xj+2:

[yj, yj+1, yj+2] = f [xj, xj+1, xj+2] =
yj+2

hj+1(hj+1 + hj)
− yj+1

hj+1hj
+

yj

hj(hj+1 + hj)
(j ∈ Z).

A function f ∈ W 2
∞(R) is associated (see [15]) with the local parabolic spline

˜S3(x) = ˜S3(f, x) = f(xj) +
hj−1hj

4
f [xj−1, xj, xj+1] +

f(xj+1) − f(xj−1)
hj + hj−1

(x − xj)

+
hj−1

hj
(x − xj)2f [xj−1, xj , xj+1] +

(hj+1

hj
f [xj, xj+1, xj+2] −

hj−1

hj
f [xj−1, xj , xj+1]

)

× (x − xj+1/2)
2
+, x ∈ [xj ;xj+1] (j ∈ Z), (2.1)

where (x− xj+1/2)2+ = max{0; (x − xj+1/2)}2. For a uniform node grid hj = h (j ∈ Z), spline (2.1)

was constructed by Subbotin [14]. The spline ˜S3(x) has shape-preserving and smoothing properties
(see [15, Theorem 1]) and preserves linear functions. On the class of functions W 2

∞(R), the
approximation errors

sup
f∈W 2∞

‖f − ˜S3‖C , sup
f∈W 2∞

‖f ′ − ˜S′
3‖C

were calculated for this spline in [15]. In the case of a uniform grid, Subbotin showed [14] that the
first value is h2/8 and the second is h/2.

In the present paper, we study the Lebesgue constant

L2 = max
x∈R

{

|˜S3(x)| : |yj| ≤ 1 (j ∈ Z)
}

.

Theorem 2. The following equality holds:

L2 = 1.

Proof. Collecting similar terms in(2.1) for x ∈ [xj ;xj+1/2], we obtain

˜S3(x) = yj−1r1(x) + yjr2(x) + yj+1r3(x), (2.2)
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where

r1(x) =
1

hj−1 + hj

(hj

4
− (x − xj) +

(x − xj)2

hj

)

, r2(x) =
3
4
− (x − xj)2

h2
j

,

r3(x) =
1

hj−1 + hj

(hj−1

4
+ x − xj +

(x − xj)2hj−1

h2
j

)

.

It follows from (2.2) that

|˜S3(x)| ≤ max
j−1≤s≤j+1

|ys|
{

|r1(x)| + |r2(x)| + |r3(x)|
}

. (2.3)

Let us show that the polynomials r1(x), r2(x), and r3(x) are nonnegative for x ∈ [xj;xj+1/2].
Indeed, r1(xj) > 0, r1(xj+1/2) = 0, and r′1(xj+1/2) = 0; hence, r1(x) ≥ 0 for x ∈ [xj ;xj+1/2]. The
coefficient at x2 in the quadratic polynomial r2(x) is negative, r2(xj) = 3/4, and r2(xj+1/2) = 1/2;
then, r2(x) > 0 for x ∈ [xj ;xj+1/2]. Further, r3(xj) > 0 and r′3(x) > 0 for x > xj . Consequently,
r3(x) > 0 for x ∈ [xj ;xj+1/2]. From inequality (2.3), we derive the estimate

|˜S3(x)| ≤ max
j−1≤s≤j+1

|ys|
{

r1(x) + r2(x) + r3(x)
}

. (2.4)

After simple transformations, we find that

r1(x) + r2(x) + r3(x) = 1.

Since |yj | ≤ 1 for all j ∈ Z, we derive the following estimate from (2.4) for x ∈ [xj ;xj+1/2]:

|˜S3(x)| ≤ 1;

the equality here is realized for yj = 1 (j = s− 1, s, s + 1). Since formula (2.1) for the spline ˜S3(x)
on the interval [xj;xj+1] is symmetric with respect to the middle of this interval (i.e., the point
x = xj+1/2), we have the inequality |˜S3(x)| ≤ 1 for x ∈ [xj+1/2;xj+1]. Theorem 2 is proved.
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