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Abstract—Hyperbolic Ginzburg–Landau equations arise in gauge field theory as the Euler–
Lagrange equations for the (2 + 1)-dimensional Abelian Higgs model. The moduli space of
their static solutions, called vortices, was described by Taubes; however, little is known about
the moduli space of dynamic solutions. Manton proposed to study dynamic solutions with
small kinetic energy with the help of the adiabatic limit by introducing the “slow time” on
solution trajectories. In this limit the dynamic solutions converge to geodesics in the space of
vortices with respect to the metric generated by the kinetic energy functional. So, the original
equations reduce to Euler geodesic equations, and by solving them one can describe the behavior
of slowly moving dynamic solutions. It turns out that this procedure has a 4-dimensional analog.
Namely, for the Seiberg–Witten equations on 4-dimensional symplectic manifolds it is possible
to introduce an analog of the adiabatic limit. In this limit, solutions of the Seiberg–Witten
equations reduce to families of vortices in normal planes to pseudoholomorphic curves, which
can be considered as complex analogs of geodesics parameterized by “complex time.” The study
of the adiabatic limit for the equations indicated in the title is the main content of this paper.
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FOREWORD

In their papers [19, 20], Seiberg and Witten proposed a new kind of invariants of symplectic
4-dimensional manifolds. The invariants are constructed by using the equations which are now
called the Seiberg–Witten equations. In contrast with the well-known Yang–Mills duality equations,
the Seiberg–Witten equations are Abelian but, just as the duality equations, they can be obtained
from the supersymmetric Yang–Mills theory in a certain limit. (Namely, the duality equations
correspond to the ultraviolet limit, while the Seiberg–Witten equations arise in the infrared limit
of this theory.) So one can expect that any information obtained from the duality equations can be
also extracted from the Seiberg–Witten equations with less effort.

Moreover, it turned out that the new invariants of symplectic 4-dimensional manifolds introduced
by Seiberg and Witten are closely related to their Gromov invariant, which counts the number of
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pseudoholomorphic curves in a given homology class. Taubes has even proposed the following
mnemonic “equation”:

Gr = SW,

which expresses a simple relation between the Seiberg–Witten and Gromov invariants of a sym-
plectic 4-dimensional manifold. This Taubes “equation” is based on a remarkable construction
that associates a pseudoholomorphic curve with a solution of the Seiberg–Witten equations. This
pseudoholomorphic curve arises in the so-called adiabatic limit of the Seiberg–Witten equations.

It turns out that the construction has a nontrivial 3-dimensional analog related to the adiabatic
limit in the hyperbolic Ginzburg–Landau equations arising in the Abelian (2 + 1)-dimensional Higgs
model. Moreover, we show that the adiabatic limit in the Seiberg–Witten equations can be regarded
as a complex version of the adiabatic limit in the hyperbolic Ginzburg–Landau equations.

The study of the adiabatic limit is the main subject of this paper.
We start our analysis from the two-dimensional case considered in Section 1. The section begins

with the physical introduction, in which we explain the relation between the vortex equations and
superconductivity theory.

Then we turn to the vortex equations on the complex plane. The main result of this part is
the Taubes theorem that gives a complete description of the moduli space of solutions of vortex
equations on the complex plane. The proof of this theorem is based on a reduction to the case of a
Liouville-type equation whose solvability was studied by Kazdan and Warner [8].

In the second part of Section 1 (Subsections 1.4 and 1.5) we extend the results to vortex equations
on compact Riemann surfaces. In contrast to the case of the complex plane, these equations can
be solved only under an additional condition analogous to the stability condition for holomorphic
bundles. The description of the moduli space of solutions of vortex equations in this case is given
by the Bradlow theorem.

In Section 2 we turn to dimension 3, where the third variable is treated either as another space
variable (this variant of the theory describes the so-called Abrikosov strings) or as the time variable
(in this version we obtain a description of the vortex dynamics).

We mainly pay attention to the second case, in which the central place is occupied by the
construction of the adiabatic limit. The vortex dynamics is described by the hyperbolic Ginzburg–
Landau equations, which are not invariant under changes of scale unlike the conformally invariant
Yang–Mills equations. For this reason, in order to extract useful information from these equations,
one should consider the limit of these equations as the scale parameter tends to infinity. Taking
this limit, one should simultaneously change the time scaling by introducing the so-called slow time.
Such a limit is called adiabatic.

The Ginzburg–Landau equations in this limit turn into the adiabatic equations. Their solutions,
called adiabatic trajectories, are given by the geodesics on the moduli space of vortex solutions with
respect to the metric generated by the kinetic energy functional. Solving the Euler equation for these
geodesics, we can approximately describe solutions of the original Ginzburg–Landau equations with
small kinetic energy. In Subsection 2.2 we give some particular examples of dynamic solutions: scat-
tering of vortices after a head-on collision, system of two periodic vortices on the sphere, and so on.

However, there are situations in which the adiabatic limit cannot be used. This applies, in par-
ticular, to the “vortex–antivortex” system. In the static case, according to the Taubes theorem, any
solution of the Ginzburg–Landau equations consists either only of vortices or only of antivortices.
Hence, a static solution of the vortex–antivortex type does not exist. However, can a dynamic
solution of this type exist (such a solution occurs, for example, in hydrodynamics)? Unfortunately,
an answer to this question, which still remains open, cannot be given in the framework of the adi-
abatic approach (such a solution, if it exists, should have the velocity exceeding a certain nonzero
threshold).
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Section 3 is a digression on Clifford algebras and spinor geometry. This subject is considered in
detail in the book by Lawson and Michelsohn [12]. In this section, in particular, we introduce the
notion of Spinc-structure, which plays an important role in the next section devoted to the theory
of Seiberg–Witten equations.

We conclude our paper with Section 4 dealing with dimension 4, in which we study the Seiberg–
Witten equations on compact 4-dimensional Riemannian manifolds. A model example is given by
the Seiberg–Witten equations on a compact Kähler surface. In this case it is possible to obtain
a complete description of the moduli space of solutions of these equations with the help of the
already mentioned Kazdan–Warner theorem. As in the Bradlow theorem, the solvability of these
equations takes place under an additional condition similar to that in the Bradlow theorem. Under
this condition the moduli space of Seiberg–Witten solutions coincides with the space of holomorphic
curves on the surface under consideration that lie in a given topological class.

However, the main content of Section 4 is the study of the Seiberg–Witten equations on a com-
pact 4-dimensional symplectic manifold. A key point is Taubes’s construction of the adiabatic limit
(note, however, that he did not use this term). Namely, with a sequence of solutions of the Seiberg–
Witten equations depending on a scale parameter, Taubes associated a pseudoholomorphic curve
(replacing the holomorphic curve in the Kähler case), which can be regarded as a complex analog of
the adiabatic trajectory in the (2 + 1)-dimensional case. A parameter along this limiting curve plays
the role of the “complex time.” The Seiberg–Witten equations in this limit reduce to a family of
vortex equations defined in the normal planes to the limiting pseudoholomorphic curve. The limiting
curve and a family of vortex solutions along this curve must satisfy the adiabatic equation, which
is deduced in Subsection 4.5 from arguments similar to those in the (2 + 1)-dimensional case. Note
that Taubes obtained a similar equation from other considerations (discussed in Subsection 4.6.1).

Conversely, if we have a pseudoholomorphic curve and a family of vortex equations in the normal
planes that satisfy the adiabatic equation, then from these data we can reconstruct a solution of
the Seiberg–Witten equations that tends in the adiabatic limit to the original pseudoholomorphic
curve and given family of vortex solutions. This is the converse Taubes construction, which is briefly
presented in Subsection 4.6.

It turns out that even the one-dimensional variant of the adiabatic limit makes sense. This
variant, proposed by Andrei Domrin, is presented in the supplement.

A few words on how this text has appeared. In 2002, in Nagoya University, I delivered a lecture
course entitled “Vortices and Seiberg–Witten Equations” (see [21]). This course was written down
by Yuuji Tanaka and published in the Nagoya University Lecture Series.

While preparing this text, I first intended to simply translate the Nagoya lectures into Russian
and publish them at the Steklov Mathematical Institute. However, during the preparation work
I have realized that the original text needs to be substantially revised. The necessity of such a
revision has arisen for two reasons. First of all, since the first publication, several new important
results have appeared that are directly related to the topic in question (such as the justification of
the adiabatic principle for the hyperbolic Ginzburg–Landau equations) but are not mentioned in
the Nagoya lectures. Second, it has become clear that some parts of the original text (especially
those related to the adiabatic limit in the 4-dimensional case) should be presented in a completely
different way. In particular, a central place in the new text is occupied by the notion of the adiabatic
limit (which is reflected in the new title).

1. DIMENSION TWO: VORTEX EQUATIONS

In this section we study the vortex equations arising in superconductivity theory. In Subsec-
tion 1.1 we give necessary information from this theory (book [11] can serve as a general reference
here). In Subsection 1.2 we introduce the vortex equations on the complex plane. A full description
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of the moduli space of their solutions is given by the Taubes theorems presented in Subsection 1.3.
In Subsection 1.4 we extend the constructed theory to compact Riemann surfaces; in particular, we
discuss obstructions to the solvability of the vortex equations on such surfaces. The moduli space
of solutions of vortex equations is described by the Bradlow theorem proved in Subsection 1.5.

1.1. Physical introduction: Superconductivity and Ginzburg–Landau Lagrangian.
1.1.1. Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes

while he was studying the variation of the mercury resistance under low temperatures. It was
known that the resistance of metals should decrease when they are cooled down. However, to
Kamerlingh Onnes’s surprise, this resistance has completely disappeared at temperature 4.15 K.
This phenomenon was called superconductivity, and, as it turned out during subsequent investiga-
tions, many metals and alloys have the same property under temperatures close to the absolute zero.

According to the modern superconductivity theory proposed by Bardeen, Cooper, and Schriffer,
the superconductivity phenomenon is explained by the fact that under very low temperatures it be-
comes more energetically profitable for free electrons to unite in pairs and form a new kind of quasi-
particles, called Cooper pairs. Unlike fermionic electrons, Cooper pairs are bosons with charge equal
to the double charge of the electron and with zero spin. Precisely their current is superconducting.

1.1.2. Flux tubes and Abrikosov strings. Let us place a superconductor in an external magnetic
field �H. Another remarkable property of superconductors was discovered in 1933 by Meissner and
was called the Meissner effect. According to it, the magnetic field �H is pushed away from the
superconductor; i.e., �H vanishes inside the superconductor. (This effect is used as a practical tool
for detecting superconductivity.)

If we increase the level of the external magnetic field, then at some critical value H1
cr the

superconductivity will start to break down and the magnetic field will start to penetrate into the
body of the superconductor. More precisely, certain tube-like zones of intermediate conductivity
will start to appear inside the superconductor, which are called flux tubes. They are oriented
along the direction of the external magnetic field, and along their axes, called Abrikosov strings,
the conductivity is already normal. In the other part of the tubes, i.e., away from the axes, the
conductivity has an intermediate character, while outside the tubes the superconductivity still
persists. If we increase the level of the magnetic field further on, then the number of the tubes and
their diameters will also increase until, at the second critical value H2

cr, these tubes fill up the whole
body of the superconductor, thus making it into a normal conductor.

1.1.3. Ginzburg–Landau Lagrangian. In order to describe mathematically the intermediate
state of the superconductor that arises inside the flux tubes, consider the following idealized model
in which the superconductor coincides with the whole space R

3
(x1,x2,x3)

with coordinates (x1, x2, x3)
and is in the intermediate state everywhere outside a finite number of Abrikosov strings, while the
pure superconductivity persists only at infinity.

Consider the horizontal section of our superconductor by the plane R
2
(x1,x2)

, assuming that the
external magnetic field �H is directed along the axis (x3).

The Ginzburg–Landau Lagrangian defined on this plane is given by the formula

L(A,Φ) = |FA|2 + |dAΦ|2 +
λ

4
(1− |Φ|2)2. (1.1)

From the physical point of view, the variable A represents the electromagnetic vector potential, while
mathematically it is a U(1)-connection on R

2
(x1,x2)

given by the 1-form

A = A1 dx1 +A2 dx2

whose coefficients are smooth pure imaginary functions on R
2
(x1,x2)

.
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The curvature FA of this connection is given by the 2-form

FA = dA =

2∑

i,j=1

Fij dxi ∧ dxj = F̃12 dx1 ∧ dx2

with Fij = ∂iAj − ∂jAi and ∂i := ∂/∂xi. Physically, it is interpreted as the stress tensor of the
electromagnetic field (or simply as the electromagnetic field), so the term |FA|2 is nothing else but
the Maxwell Lagrangian.

The second variable Φ is called the Higgs field or order parameter and is a smooth complex-
valued function Φ = Φ1 + iΦ2 on R

2
(x1,x2)

. From the physical point of view, it can be considered as
a scalar field interacting with the electromagnetic field defined by the potential A and is interpreted
as the wave function of Cooper pairs.

The exterior covariant derivative in the second term of the Ginzburg–Landau Lagrangian is
defined by the formula

dAΦ = dΦ+AΦ =

2∑

i=1

(∂i +Ai)Φ dxi,

and the term |dAΦ|2 is responsible for the interaction of the electromagnetic field generated by the
potential A with the Higgs field Φ.

The most important term in (1.1) is

λ

4
(1− |Φ|2)2

with a parameter λ > 0. From the physical point of view, it describes the nonlinear “self-action” of
the field Φ.

We define the potential energy of our model as the integral

U(A,Φ) :=
1

2

∫

R2

L(A,Φ) d2x. (1.2)

By the solutions of our model we mean the pairs (A,Φ) minimizing the potential energy.

1.1.4. Vortices. Superconductors of the first and second kind. Consider the behavior of the
function Φ in more detail. The zeros of this function correspond to the points of intersection of
the Abrikosov strings with the plane R

2
(x1,x2)

. We require that |Φ| → 1 as
√

x21 + x22 → ∞, which
means physically that the pure superconductivity is preserved at infinity. In a neighborhood of a
zero of Φ = ρeiθ, the vector field �v := ∇θ behaves like a hydrodynamical vortex. For this reason the
solutions of our model, which minimize the potential energy (1.2), are called vortices.

The only parameter λ entering the Ginzburg–Landau Lagrangian has the following physical
meaning. For λ < 1 the solutions of our model, i.e., vortices, are attracted to each other. Supercon-
ductors with such values of λ are called superconductors of the first kind. On the contrary, for λ > 1
the vortices are repelled from each other, and such values of λ are characteristic for superconductors
of the second kind.

In the critical case of λ = 1, the vortices do not interact with each other, so we can expect that
for this value of λ any configuration of vortices, i.e., zeros of Φ, is possible. For that reason the
critical case is most interesting from the mathematical point of view, and we mainly deal with this
case in our paper.
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1.2. Vortices.
1.2.1. Vortex number. Recall that the potential energy of our model is defined by the formula

U(A,Φ) =
1

2

∫
L(A,Φ) d2x,

where L(A,Φ) is the Ginzburg–Landau Lagrangian (1.1).
The Euler–Lagrange equations δU(A,Φ) = 0 for the potential energy functional are otherwise

called the static Ginzburg–Landau equations and have the form
⎧
⎨

⎩

∂iFij = 0, j = 1, 2,

∇2
AΦ =

λ

2
Φ(|Φ|2 − 1).

To satisfy the condition U(A,Φ) < ∞, we will require that Φ → 1 as |x| → ∞. It follows
from this asymptotic condition that our model has a topological invariant defined as the rotation
number d of the map

Φ: S1
R → {|Φ| ≈ 1} ∼= S1

for sufficiently large R. This invariant takes integer values and is called the vortex number.
If |dAΦ| decreases at infinity faster than 1/|x|1+δ , then the following relation holds:

d =
i

2π

∫
FA,

so d can be interpreted as the full magnetic flux through the plane (x1, x2).
1.2.2. Vortex equations. Now we can define the vortices in a more formal way. Namely, by

d-vortices we will call the local minima of the potential energy functional U(A,Φ) < ∞ with a
given vortex number d.

Let us deduce the equations for these solutions, assuming here and in the sequel that λ = 1.
Consider first the case d ≥ 0.

Introduce the complex coordinate z = x1 + ix2 and derivations

∂̄ =
∂1 + i∂2

2
, ∂̄A := ∂̄ +A0,1,

where A = A1,0 +A0,1 is the representation of A in the complex form, i.e., as the sum of a form A1,0

of type (1, 0) and a form A0,1 of type (0, 1), with A0,1 = −A1,0.
We transform the potential energy functional U(A,Φ) by using the following Bogomolny formula:

U(A,Φ) =
1

2

∫ {
2|∂̄AΦ|2 +

∣∣∣∣iF12 +
1

2
(|Φ|2 − 1)

∣∣∣∣
2}

+
i

2

∫
FA.

In other words, we represent the potential energy U(A,Φ) as a sum of nonnegative terms and the
topological term (i/2)

∫
FA (equal to πd).

The Bogomolny formula implies the following lower estimate for the energy:

U(A,Φ) ≥ πd

for the fixed vortex number d. The equality in this estimate is attained only on solutions of the
system of equations ⎧

⎨

⎩

∂̄AΦ = 0,

iF12 =
1

2
(1− |Φ|2),

(1.3)
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which are called the vortex equations. Note that the second of them is equivalent to the equation

iFA = ∗1
2
(1− |Φ|2),

where ∗ denotes the Hodge operator on R
2.

One of the most important features of this system is its invariance under the gauge transforma-
tions of the form

A �→ A+ idχ, Φ �→ e−iχΦ,

where χ is an arbitrary smooth real-valued function on C. The potential energy functional U(A,Φ)
is also invariant under these transformations.

For d < 0 there is an analogous Bogomolny transform, which implies the inequality

U(A,Φ) ≥ −πd,

in which the equality is attained only on solutions of the system of equations
⎧
⎨

⎩

∂AΦ = 0,

iF12 =
1

2
(|Φ|2 − 1),

called the antivortex equations. These equations are also invariant under the gauge transformations.

1.3. Theorems of Taubes.
1.3.1. Formulation of the theorems. The Taubes theorems give a description of the moduli

space of solutions of the static Ginzburg–Landau equations, i.e., the space of all solutions of these
equations modulo gauge transformations.

In [24] (see also [7]) Taubes proved the following theorem.
Theorem 1 (Taubes). For any positive integer d and an arbitrary collection {z1, z2, . . . , zk} of

different points in the complex plane C taken with multiplicities d1, d2, . . . , dk such that
∑k

j=1 dj = d,
there exists a unique (up to gauge transformations) d-vortex solution (A,Φ) with U(A,Φ) < ∞ such
that the divisor of zeros of the function Φ coincides with

∑k
j=1 djzj .

An analogous theorem is true for d < 0 because the complex conjugation sends solutions of the
antivortex equations to vortex solutions. The solution of the antivortex equations that is obtained
in this way from a |d|-vortex is called a |d|-antivortex.

Note that for d = 0 any solution is gauge equivalent to the trivial one with A ≡ 0 and Φ ≡ 1.
In addition to the first theorem Taubes proved the following result in [25].
Theorem 2 (Taubes). Any critical point (A,Φ) of the potential energy functional U(A,Φ)

with U(A,Φ)<∞ (or, equivalently, any solution of the Euler–Lagrange equations with U(A,Φ)<∞)
and vortex number d > 0 is gauge equivalent to some d-vortex solution.

Remark 1. It follows that under the hypothesis of Theorem 2 any solution of the Euler–
Lagrange equations is either a d-vortex or a |d|-antivortex. In particular, there exists no solution
of these equations of the vortex–antivortex type. Physically this means that all solutions of these
equations are stable and have minimal energy in a given topological class.

Remark 2. The Euler–Lagrange equations for critical points of the functional U(A,Φ) are
of the second order in the variables (A,Φ); however, under the condition U(A,Φ) < ∞ they have
the same solutions as the vortex equations for local minima of U(A,Φ), which have the first order
in (A,Φ). This is a rare phenomenon in gauge field theories; more often such theories admit
nonminimal (or physically unstable) solutions. This holds, for example, for the Bogomolny–Prasad–
Sommerfield monopole equations on R

3 and Yang–Mills equations on R
4.
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Recall that the moduli space of d-vortices is the quotient

Md =
{d-vortices (A,Φ)}

{gauge transformations} .

Everywhere below we restrict ourselves to the case d > 0.
Theorem 1 implies that the moduli space of d-vortices coincides with the set of unordered

collections of d points in the complex plane C, i.e., with the dth symmetric power of C:

Md = Symd
C.

Note that the symmetric power Symd
C can be identified with the space C

d in the following way:
a collection of d points in the complex plane C is assigned the monic polynomial with zeros at the
given points.

1.3.2. Proof of the first Taubes theorem. Let us explain the strategy of the proof of this theo-
rem. We start from an approximate solution satisfying the first vortex equation together with the
condition on zeros and correct asymptotics at infinity. Substituting this approximate solution into
the second vortex equation, we obtain a nonlinear elliptic equation for the remainder term and solve
it by the implicit function theorem.

To construct the approximate solution, we use the fact that the vortex equations linearize for
|Φ| → 1. So, as such an approximation, we can take the solution of these linear equations given by
the superposition of radial solutions with one zero.

More precisely, we consider the ansatz of the form

Φ = e(u+iθ)/2

where u and θ are real-valued functions. Since the function Φ has zeros at the points z1, . . . , zk,
the function u(z) should tend to −∞ as z → zj , while θ(z) should be a multivalued function with
ramification points zj of order dj .

The first vortex equation (1.3) implies that outside the zeros of Φ the condition A0,1 = −∂̄ log Φ
holds. Since the function A0,1 is smooth, this equality should also hold at the zeros of Φ. Taking
into account that A1,0 = −Ā0,1 = ∂ log Φ̄, we have

A0,1 = −∂̄(u+ iθ), A1,0 = ∂(u− iθ).

Now we fix the gauge by setting

θ(z) = 2
k∑

j=1

dj Arg(z − zj).

Plugging this function into the second vortex equation (1.3), we get

Δu = eu − 1 + 4π

k∑

j=1

δ(z − zj),

where δ(z) is the Dirac delta function.
In order to solve this equation, we introduce the function

u0(z) = −2

k∑

j=1

log

(
1 +

μ

|z − zj|2

)dj
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with μ > 4d. Note that the function u0 satisfies the equation

Δu0 = 4π
k∑

j=1

djδ(z − zj)− 4
k∑

j=1

μdj
(μ+ |z − zj|2)2

.

Hence, defining v := u− u0, we obtain the following Liouville-type equation for the function v:

Δv(z) = −1 + g(z)f1 + h(z)evf2

with the boundary condition v(z) → 0 as |z| → ∞. Here

h(z) = eu0(z), g(z) = 4

k∑

j=1

μdj
(μ+ |z − zj |2)2

,

where 0 < g(z) < 1 due to the inequality μ > 4d.
According to the Kazdan–Warner theorem (see Subsection 1.5.3), the equation

Δv = f1 + f2e
v

with f1 < 0, f2 > 0, and v(z) → 0 as |z| → ∞ has a unique real-analytic solution. This solution
determines the desired d-vortex solution (A,Φ) of the original vortex equations.

Remark 3. Note that the above Liouville-type equation arises in differential geometry in the
solution of the following problem: Given a Riemannian metric g with Gaussian curvature k, find a
conformally equivalent Riemannian metric G with given Gaussian curvature K. Setting G := ge2v ,
we get the following Liouville-type equation for v:

−Δgv = k −Ke2v ,

where Δg is the Laplace–Beltrami operator associated with g.

1.4. Vortex equations on compact Riemann surfaces. Here we generalize the results of
Subsection 1.3 to compact Riemann surfaces.

1.4.1. Preliminary considerations. Let X be a compact Riemann surface equipped with a Rie-
mannian metric g and a Kähler form ω. We fix a complex Hermitian line bundle L → X with
Hermitian metric h and define the energy functional by analogy with the complex plane case:

U(A,Φ) =
1

2

∫

X

{
|FA|2 + |dAΦ|2 +

1

4
(1− |Φ|2)2

}
ω.

Here, A is a U(1)-connection on L, FA = dA is its curvature, dA is the covariant exterior derivative
generated by A, and Φ is a section of the bundle L → X, with its norm |Φ| computed with respect to
the metric h. As in the complex plane case, this functional is invariant under gauge transformations
given by the maps u ∈ C∞(X,U(1)).

To the functional U(A,Φ) we apply the Bogomolny transform to get

U(A,Φ) =

∫

X

{
|∂̄AΦ|2 +

1

2
|iFω

A |+
1

2
(1− |Φ|2)2

}
ω +

i

2

∫

X

FA,

where Fω
A = ω � FA is the (1, 1)-component of FA parallel to ω.
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The above Bogomolny formula follows from the relation
∫

X

iFAΦ = −
∫

X

|∂̄AΦ|2ω +

∫

X

|∂AΦ|2ω

and the identities
iω � ∂̄Aα = −∂∗

Aα, iω � ∂Aβ = ∂̄∗
Aβ,

which hold for arbitrary (1, 0)-form α and (0, 1)-form β. According to the Gauss–Bonnet formula,
the last term in the Bogomolny formula can be rewritten as

i

2π

∫

X

FA = c1(L).

Hence, assuming that c1(L) > 0, we arrive at a lower estimate for the energy:

U(A,Φ) ≥ πc1(L),

where the equality is attained only on solutions of the equations
⎧
⎨

⎩

∂̄AΦ = 0,

iFω
A =

1

2
(1− |Φ|2).

The obtained equations look like the vortex equations on the complex plane. However, in the
case of a compact Riemann surface we have an evident obstruction to their solvability. Namely,
integrating the second equation over X, we get

i

2π

∫

X

FA =
1

4π

∫

X

ω − 1

4π

∫

X

|Φ|2ω,

which can be rewritten in the form

c1(L) =
1

4π
Volg(X)− 1

4π
‖Φ‖2L2 .

So we arrive at a necessary condition for the solvability of the above equations:

c1(L) ≤
1

4π
Volg(X).

As we will see below, this condition arises because the energy is not invariant with respect to the
scale transformation.

1.4.2. Vortex equations. The scale transformation increases the linear scales by a factor of
t > 0 and converts the metric g into the metric gt := t2g. Simultaneously, the Kähler form and
volume change to

ωt = t2ω, Volgt(X) = t2 Volg(X).

The necessary solvability condition for the rescaled metric gt reads as follows:

c1(L) ≤
t2

4π
Volg(X).

This condition is evidently satisfied for sufficiently large t. So we can always guarantee the fulfillment
of the necessary solvability condition of the above equations by rescaling the original metric g.
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It is, however, more convenient to fix the metric and introduce the scaling into the definition of
the functional U(A,Φ). Namely, we replace the energy functional U(A,Φ) by its rescaled version

Uτ (A,Φ) =
1

2

∫

X

{
|FA|2 + |dAΦ|2 +

1

2
(τ − |Φ|2)2

}
,

where τ > 0 is the scaling parameter.
Applying the Bogomolny transform to the rescaled energy functional, we obtain the following

lower estimate for the energy:
Uτ (A,Φ) ≥ πc1(L),

in which the equality is attained only on solutions of the equations
⎧
⎨

⎩

∂̄AΦ = 0,

iFω
A =

1

2
(τ − |Φ|2).

(1.4)

These are the correct vortex equations on a compact Riemann surface. The necessary solvability
condition for them takes the form

c1(L) ≤
τ

4π
Volg(X).

1.5. Bradlow theorem.
1.5.1. Formulation. In [2] Bradlow proved the following theorem:
Theorem 3 (Bradlow). Let d := c1(L) > 0 and D be an effective divisor on X of degree d,

i.e., D =
∑k

j=1 djzj with
∑k

j=1 dj = d. Then the condition

c1(L) <
τ

4π
Vol(X)

is necessary and sufficient for the existence of a unique (up to gauge equivalence) d-vortex solution
(A,Φ) such that the zero divisor of Φ coincides with D.

Moreover, the holomorphic line bundle L equipped with the complex structure determined by the
operator ∂̄A is isomorphic to the holomorphic line bundle [D] defined by the divisor D.

Note that the first vortex equation ∂̄AΦ = 0 means, in other words, that Φ is a holomor-
phic section of the Hermitian line bundle (L, ∂̄A), where A is a holomorphic Hermitian connection
on (L, ∂̄A). Recall that such a connection is uniquely determined by the Hermitian metric.

1.5.2. Reformulation of the original problem. We now change our original point of view and,
instead of the Hermitian metric, fix the holomorphic structure on L determined by the ∂̄-operator ∂̄L.
Given a holomorphic section Φ of the bundle (L, ∂̄L), we want to construct a Hermitian metric H
on L such that the holomorphic connection A associated with this metric satisfies the second vortex
equation.

In other words, the original problem is formulated as follows:
Problem 1. Given a Hermitian line bundle (L, h), find a Hermitian connection A on L and a

holomorphic section Φ of the bundle (L, ∂̄A) that satisfy the second vortex equation.
Instead of this problem, we consider the following
Problem 2. Given a Hermitian holomorphic line bundle (L, h, ∂̄L) and a holomorphic section Φ

of the bundle (L, ∂̄L), find a Hermitian metric H on L that is conformally equivalent to the metric h
and is such that the connection AH compatible with H and ∂̄L satisfies the second vortex equation.
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There is an action of the group G = C∞(X,U(1)) of gauge transformations on solutions of
Problem 1. On the other hand, there is a natural action of the complexified group GC = C∞(X,C∗)
of gauge transformations on solutions of Problem 2. The latter action is given by the gauge trans-
formations of the form

∂̄L �→ g(∂̄L) = g ◦ ∂̄L ◦ g−1, Φ �→ gΦ, H �→ |g−1|2H,

where g ∈ GC.
Proposition 1. There exists a bijective correspondence between the sets

{solutions (A,Φ) of Problem 1}/G and {solutions (∂̄L,H,Φ) of Problem 2}/GC.

In order to construct a solution of Problem 1 from a solution of Problem 2, we write H in the
form H = he2v = hg2 and equip the bundle L with the new holomorphic structure

g(∂̄L) := g ◦ ∂̄L ◦ g−1.

Denote by Ag the connection on L compatible with h and g(∂̄L) and put Φg := gΦ. Then the pair
(Ag,Φg) will give a solution of Problem 1.

1.5.3. Solution of Problem 2. Suppose that (L, h, ∂̄L) is a holomorphic Hermitian line bundle
together with a given holomorphic section Φ. We want to find a Hermitian metric H = he2u with
u ∈ C∞(X,R) such that

iFω
AH

=
1

2
(τ − |Φ|2H)

for the holomorphic connection AH compatible with H. This equation is equivalent to the following
Liouville-type equation for the conformal factor u:

−Δu = iFω
Ah

− τ

2
+

1

2
|Φ|2he2u,

where Ah is the connection compatible with ∂̄L and h. If we define

f1 := iFω
A − τ

2
, f2 :=

1

2
|Φ|2h,

then the latter equation will be rewritten in the form

−Δu = f1 + f2e
2u.

In addition, we can get rid of one of the coefficients by setting

c := 2

∫

X

f1ω = 2i

∫

X

FA − τ

∫

X

ω = 4πc1(L)− τ Vol(X).

Denoting by v the unique (up to a constant) solution of the Laplace equation

−Δv = f1 − f̄1

with f̄1 =
∫
X f1ω, we will get the following Liouville-type equation for w := 2(u− v):

−Δw = c− few,

where f := −|Φ|2he2v is a smooth nonpositive function.
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Now we apply the Kazdan–Warner theorem from [8].
Theorem 4 (Kazdan–Warner). Let X be a compact Riemann surface. Suppose that a function

f ∈ C∞(X,R) does not vanish identically and c ∈ R. Consider the Liouville-type equation

−Δw = c− few (1.5)

with w ∈ C∞(X,R). Then

(1) if c = 0, then a solution of equation (1.5) exists if and only if f̄ :=
∫
X fω < 0 and f > 0

somewhere on X;

(2) if c < 0, then

(a) the condition f̄ < 0 is necessary for the solvability of equation (1.5);
(b) under the condition f̄ < 0 there exists a constant c−(f) satisfying the inequality −∞ ≤

c−(f) < 0 such that a solution of equation (1.5) exists if and only if c > c−(f);

(c) the equality c−(f) = −∞ holds if and only if f ≤ 0 everywhere on X; in this case the
solution of equation (1.5) is unique;

(3) if c > 0, then

(a) the condition that f > 0 somewhere on X is necessary for the solvability of equa-
tion (1.5);

(b) under this necessary condition there exists a constant c+(f) satisfying the inequality
0 < c+(f) ≤ +∞ such that a solution of equation (1.5) exists for c < c+(f).

In our case, f ≤ 0 everywhere, so the condition c < 0 is necessary and sufficient for the
existence of a solution. Moreover, this solution is unique according to the Kazdan–Warner theorem.
The inequality c < 0 is equivalent to the condition 4πc1(L) < τ Vol(X), which is satisfied by the
hypothesis of the Bradlow theorem.

1.5.4. End of the proof of the Bradlow theorem. To finish the proof of the Bradlow theorem, for
a given effective divisor D of degree d consider the associated holomorphic line bundle (L, ∂̄L) = [D]
and its canonical holomorphic section Φ such that the zero divisor of Φ coincides with D. Then the
Kazdan–Warner theorem will imply that there exists a unique Hermitian metric H giving a solution
of Problem 2, which is equivalent to the existence of a unique vortex solution.

Consider now the remaining critical case of the solvability condition, in which

c1(L) =
τ

4π
Vol(X).

Integrating the second vortex equation (1.4), we get

c1(L) =
τ

4π
Vol(X)− 1

4π
‖Φ‖2,

which implies that Φ ≡ 0.
Recall that the problem of solvability of vortex equations (up to the gauge action of the group G)

is equivalent to finding, on a given holomorphic line bundle (L, ∂̄L), a Hermitian metric H that is
conformally equivalent to the metric h and satisfies the second vortex equation (up to the gauge
action of the group GC).

Since τ = 4πc1(L)/Vol(X) and ‖Φ‖2 ≡ 0, the second vortex equation takes the form

iFω
AH

=
2πc1(L)

Vol(X)
.
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This is an equation of the Einstein–Hermite type. If we look for the metric H in the form H = he2u

with u ∈ C∞(X,R), then the function u must satisfy the Laplace equation

−Δu = iFω
Ah

− 2πc1(L)

Vol(X)
,

where Ah is compatible with ∂̄L and h. This equation has a unique solution (up to a constant).
Hence, in the critical case we have a bijective correspondence between the sets

{connections A = AH on (L, ∂̄L) satisfying the Einstein–Hermite equation}/G

and
{holomorphic line bundles (L, ∂̄L)}/GC =: Pic(X).

Remark 4. According to the Bradlow theorem, in the case

c1(L) <
τ

4π
Vol(X)

we have a bijective correspondence between the sets

{d-vortex solutions (A,Φ)}/G and {effective divisors D of degree d = c1(L)}.

So the moduli space of d-vortex solutions coincides with the symmetric power Symd X.
Remark 5. The inequality

τ >
4πc1(L)

Vol(X)

coincides with the stability condition for the pair (L,Φ) (see [2]). Accordingly, the semi-stability
condition for the pair (L,Φ) is equivalent to the inequality

τ ≥ 4πc1(L)

Vol(X)
.

Remark 6. There is another proof of the Bradlow theorem, due to Garćıa-Prada [5], based
on the use of the moment map.

2. DIMENSION THREE: ADIABATIC LIMIT
IN THE GINZBURG–LANDAU EQUATIONS

In this section we pass from the vortices in dimension 2, considered in Section 1, to the three-
dimensional case. We can add the third variable in two different ways. One of them is related to
the Euclidean setting and leads to the Euclidean Ginzburg–Landau equations in R

3, which describe
the Abrikosov strings. Another way is related to the Lorentz setting and leads to the hyperbolic
Ginzburg–Landau equations in R

1+2, which describe the vortex dynamics in R
2. In the main part

of this section we study the vortex dynamics, while the Euclidean model is considered in the last
Subsection 2.2.5.

2.1. Adiabatic limit.
2.1.1. Hyperbolic Ginzburg–Landau equations. We switch on the time in our model by adding

the variable x0 = t. In this case the Higgs field Φ = Φ(t, x1, x2) is given by a smooth complex-valued
function on the space R

1+2 with coordinates (t, x1, x2) and the form A is replaced by the form

A = A0 dt+A1 dx1 +A2 dx2
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whose coefficients Aμ = Aμ(t, x1, x2), μ = 0, 1, 2, are smooth functions with pure imaginary values
on the space R

1+2. Denote the time component of the form A by A0 := A0 dt and its space
component, as before, by A = A1 dx1 +A2 dx2.

Then the potential energy of the system is given by the same formula as before; in other words,
U(A,Φ) = U(A,Φ).

The kinetic energy is defined by

T (A,Φ) =
1

2

∫ {
|F01|2 + |F02|2 + |dA0Φ|2

}
dx1 dx2,

where F0j , j = 1, 2, are given, as before, by the formula

F0j = ∂0Aj − ∂jA0

and dA0Φ = dΦ + A0 dt. (Note that the formula for the kinetic energy contains terms similar to
those in the formula for the potential energy, but they involve the time derivative.)

Introduce the Ginzburg–Landau action functional

S(A,Φ) =

T0∫

0

(
T (A,Φ)− U(A,Φ)

)
dt.

The Euler–Lagrange equations for this functional, δS(A,Φ) = 0, also called the hyperbolic Ginzburg–
Landau equations, have the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂1F01 + ∂2F02 = i Im(Φ̄∇A,0Φ),

∂0F0j +

2∑

k=1

εjk∂kF12 = i Im(Φ̄∇A,jΦ), j = 1, 2,

(
∇2
A,0 −∇2

A,1 −∇2
A,2

)
Φ =

λ

2
Φ(1− |Φ|2),

where ∇A,μ = ∂μ +Aμ, μ = 0, 1, 2, ε12 = −ε21 = 1, and ε11 = ε22 = 0.
The first of these equations is of constraint type, which means that it holds for any t if it is

satisfied at the initial moment of time. The latter equation, containing the covariant D’Alembertian
on its left-hand side, is a nonlinear wave equation.

These equations are invariant under the gauge transformations of the form

A �→ A+ idχ, Φ �→ e−iχΦ,

where χ = χ(t, x1, x2) is a smooth real-valued function on R
1+2.

2.1.2. Temporal gauge. We can choose the gauge function χ so that A0 = 0; such a choice is
called the temporal gauge. (Note that after fixing the temporal gauge we still have the gauge freedom
with respect to static gauge transformations given by gauge functions χ that do not depend on the
time t.)

In the temporal gauge the kinetic energy is written in the form

T (A,Φ) =
1

2
{‖Φ̇‖2 + ‖Ȧ‖2},

where the dot denotes the time derivative ∂/∂t = ∂/∂x0 and ‖·‖ = ‖·‖L2(R2) is the norm in the
space L2(R2).
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The Euler–Lagrange equations in the temporal gauge take the form
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂1Ȧ1 + ∂2Ȧ2 = i Im(Φ̄Φ̇),

Äj +
∑

εjk∂kF12 = i Im(Φ̄∇A,jΦ), j = 1, 2,

Φ̈−ΔAΦ =
λ

2
Φ(1− |Φ|2),

where ΔA = ∇2
A,1 +∇2

A,2.
2.1.3. Heuristic considerations. Our goal is to describe the space of solutions of the hyperbolic

Ginzburg–Landau equations modulo dynamic gauge transformations. For brevity, the solutions of
these equations will be called dynamic solutions, and the quotient of the space of dynamic solutions
modulo gauge transformations will be called the moduli space of dynamic solutions.

In contrast to the moduli space of static solutions, whose structure is completely described by
the Taubes theorems, we cannot expect to get anything similar in the dynamic case. However, we
can hope to obtain an approximate description of at least some classes of dynamic solutions. In this
subsection we will present Manton’s heuristic approach to the approximate description of “slowly
moving” dynamic solutions (see [13]).

In the temporal gauge the dynamic solutions of the hyperbolic Ginzburg–Landau equations are
given by smooth trajectories

γ : t �→ [A(t),Φ(t)]

in the static configuration space

Nd =
{smooth data (A,Φ) with U(A,Φ) < ∞ and vortex number d}

{static gauge transformations} ,

where [A(t),Φ(t)] denotes the gauge class of the pair (A(t),Φ(t)) modulo static gauge transforma-
tions. This space contains, in particular, the moduli space Md of d-vortex solutions.

In other words, we represent a dynamic solution by a family of vortex data (A,Φ) on R
2 that

depend on t as a parameter and are defined up to static gauge transformations.
The configuration space Nd can be thought of as a horizontal gutter with a small ball rolling

along the trajectory γ(t) inside it. The moduli space of d-vortex solutions Md, for which the
potential energy is minimal, corresponds to the bottom of this gutter. The lower the kinetic energy
of the ball, the closer its trajectory to the bottom of the gutter. The ball can even hit this bottom
but, having a nonzero kinetic energy, cannot stop there and is forced to climb the wall of the gutter.

Define the kinetic energy of the trajectory γ(t) = [A(t),Φ(t)] as

T (γ) :=
1

2
{‖Ȧ‖2 + ‖Φ̇‖2}.

Consider a family of trajectories γε(t) that depend on the parameter ε > 0 and have the kinetic
energy ‖T (γε)‖ proportional to ε, which is thus tending to zero as ε → 0. For small ε the trajectories
γε(t) will lie close to the static moduli space of vortices Md, and in the limit as ε → 0 they will
converge to a static solution, i.e., to a point on Md.

However, if we introduce the slow time τ := εt on the trajectory γε, then in the limit as ε → 0
the “rescaled” trajectories γε(τ) will converge not to a point but rather to some trajectory γ0 lying
in Md.

The indicated limit is called adiabatic, and the equations to which the original Ginzburg–Landau
equations reduce in this limit are called the adiabatic equations. We call their solutions the adiabatic
trajectories.
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The adiabatic trajectories admit the following intrinsic description in terms of the moduli
space Md.

Theorem 5. On the vortex space Md, the kinetic energy functional determines a Riemannian
metric, called the kinetic metric or T -metric. The geodesics of this metric coincide precisely with
the adiabatic trajectories.

Since any point of an adiabatic trajectory γ0 is a static solution, the trajectory itself cannot
be a dynamic solution. However, such trajectories describe approximately dynamic solutions with
small kinetic energy.

Manton also formulated the following adiabatic principle [13]:
For any adiabatic trajectory γ0 on the moduli space Md there should exist a se-
quence {γε} of dynamic trajectories (solutions of the hyperbolic Ginzburg–Landau equa-
tions) that converges as ε → 0 to γ0 in the adiabatic limit.

The justification of the above theorem and adiabatic principle will be given below after we
introduce some necessary notions.

2.1.4. Tangent structure of the moduli space Md. In order to study the structure of the tangent
bundle TMd to the moduli space of vortex solutions Md, it is necessary to introduce the Sobolev
version of the space Md.

Denote by Vs := Vs
d the space of d-vortex solutions of the vortex equations

{
∂̄AΦ = 0,

2idA = ∗(1− |Φ|2),

where A is a 1-form with coefficients in the Sobolev space Hs(C, iR), s ≥ 1, i.e.,

A ∈ Hs(C, iR)⊗ Ω1(C) = Ω1
s(C, iR) =: Ω1

s,

and Φ ∈ Hs(C,C) =: Hs so that (A,Φ) ∈ Ω1
s ×Hs. The group of Sobolev gauge transformations is

defined as
Gs := {gauge transformations generated by functions χ ∈ Hs(C,R)}.

The Sobolev version Ms
d of the space Md is defined as

Ms
d := Vs

d/Gs+1.

It can be shown that the space Ms
d coincides with Symd

C and so does not depend on s ≥ 1.
By varying the vortex equations in A and Φ at some fixed solution (A,Φ), we obtain the linearized

vortex equations {
∂̄Aϕ+ a0,1Φ = 0,

∗i(da) + Re(ϕΦ̄) = 0,

where (a, ϕ) ∈ Ω1
s ×Hs.

Introduce the linearized vortex operator

DA,Φ : Ω1
s ×Hs → Ω0,1

s−1 ×Hs−1(C,R)

given by the left-hand side of the linearized vortex equations:

DA,Φ : (a, ϕ) �→
(
∂̄Aϕ+ a0,1Φ, ∗i(da) + Re(ϕΦ̄)

)
.
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With the help of this operator we can define the tangent space to Vs
d at (A,Φ) as

T(A,Φ)Vs
d = KerD(A,Φ) =

{
(a, ϕ) ∈ Ω1

s ×Hs : D(A,Φ)(a, ϕ) = 0
}
.

The linearized vortex equations are invariant under the infinitesimal gauge transformations of
class Hs+1(C,R) given by the maps

a �→ a+ idχ, ϕ �→ ϕ− iΦχ

with χ ∈ Hs+1(C,R). The orbit passing through the origin consists of the pairs (idχ,−iΦχ). Taking
this into account, we introduce the tangent gauge operator

δ(A,Φ) : Hs+1(C,R) → Ω1
s ×Hs(C,C)

by the formula χ �→ (idχ,−iΦχ). The adjoint operator

δ∗(A,Φ) : Ω1
s ×Hs(C,C) → Hs−1(C,R)

is given by the map
(a, ϕ) �→ (d∗a+ Im(Φ̄ϕ)).

Since
Ω1
s ×Hs = T(A,Φ)(Gs+1(A,ϕ)) ⊕Ker δ∗(A,Φ),

we can fix the infinitesimal gauge by the following gauge-fixing condition :

δ∗(A,Φ)(a, ϕ) = 0. (2.1)

Then the tangent space to Ms
d will be given by

T(A,Φ)Ms
d = KerD(A,Φ) ∩Ker δ∗(A,Φ) =

{
(a, ϕ) ∈ Ω1

s ×Hs : D(A,Φ)(a, ϕ) = δ∗(A,Φ)(a, ϕ) = 0
}
.

2.1.5. Vortex trajectories. Consider again the trajectories in the moduli space Md = Ms
d for

some s ≥ 1. We can describe such vortex trajectories by using the Taubes theorem. Namely, by this
theorem any trajectory t �→ q(t) in the space Symd

C � C
d uniquely determines a vortex trajectory

γ : t �→ [A(q(t)),Φ(q(t))]

in the space Md. We can also consider it as a trajectory

γ : t �→ (A(q(t)),Φ(q(t)))

in Vd that satisfies the gauge-fixing condition

δ∗(A,Φ)(Ȧ, Φ̇) = 0

for any t, where the dot denotes, as before, the derivative with respect to t.
Consider a perturbation γ̃ of a vortex trajectory γ = [A(q),Φ(q)] in the configuration space Nd

of the form
γ̃(t) = [Ã(t), Φ̃(t)],

where
Ã(t) = A(q(t)) + a(t), Φ̃(t) = Φ(q(t)) + ϕ(t).
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We impose the following natural orthogonality condition on the pairs (a, ϕ) under consideration:

(a, ϕ) ⊥ T(A,Φ)Md, (2.2)

thus excluding the deformations in the directions tangent to T(A,Φ)Md.
The indicated orthogonality condition can also be obtained by the least squares method. Namely,

for a given trajectory γ̃ = [Ã, Φ̃] in Nd corresponding to a dynamic solution, we want to find a
trajectory t �→ q(t) in the space Symd

C such that the corresponding d-vortex trajectory γ : t �→
[A(q(t)),Φ(q(t))] is “closest” to γ̃. By the least squares method such a trajectory γ should minimize
the functional

1

2

∫ {
‖Ã(t)−A(q(t))‖2L2 + ‖ϕ̃(t)− Φ(q(t))‖2L2

}
dt.

The critical points of this functional satisfy the Euler–Lagrange equation of the form

〈a, δA〉 + 〈ϕ, δΦ〉 = 0,

where (δA, δΦ) is the variation of (A(q),Φ(q)) with respect to q. So, (δA, δΦ) ∈ T(A,Φ)Md and

(a, ϕ) ⊥ T(A,Φ)Md = KerD(A,Φ) ∩Ker δ∗(A,Φ).

Assuming that the gauge-fixing condition δ∗(A,Φ)(a, ϕ) = 0 is fulfilled, we can write the orthogo-
nality condition in the form

(a, ϕ) ⊥ KerD(A,Φ). (2.3)

If we choose an L2-basis {nμ} in the space KerD(A,Φ) or, in other words, a basis of solutions of the
equation

D(A,Φ)nμ = 0, μ = 0, 1, . . . , 2d,

then condition (2.3) can be rewritten in the form

〈(a, ϕ), nμ〉 = 0 (2.4)

for μ = 1, 2, . . . , 2d.
2.1.6. Adiabatic equations. Consider a sequence of dynamic solutions γε that depend on a small

parameter ε > 0 and are written in the form

γε : t �→ [Aε(t),Φε(t)],

where
Aε(t) = A(q(t)) + ε2a(t), Φε(t) = Φ(q(t)) + ε2ϕ(t). (2.5)

We assume that γε satisfies the gauge-fixing condition (2.1) and the orthogonality condition (2.2).
Now we introduce the slow time variable τ := εt and substitute (Aε,Φε) into the Ginzburg–

Landau equations. Dividing both sides of the obtained equation by ε2, we arrive at the equality

ε2∂2
τ (a, ϕ) +D∗

(A,Φ)D(A,Φ)(a, ϕ) = −∂2
τ (A,Φ) + j, (2.6)

where j is the sum of nonlinear current-type terms of order less than or equal to ε. (To obtain
this formula, we have used the fact that the pair (A(q(t)),Φ(q(t))) satisfies the vortex equations for
any t and, hence, the static Euler–Lagrange equations as well.)
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On the other hand, differentiating the orthogonality condition (2.4) twice with respect to τ ,
we get

〈∂2
τ (a, ϕ), nμ〉 = −〈(a, ϕ), ∂2

τnμ〉 − 2〈∂τ (a, ϕ), ∂τnμ〉, μ = 1, . . . , 2d. (2.7)

Note that the right-hand side of this equation, in which τ = εt, tends to zero as ε → 0 after the
multiplication by ε2. (This follows from the condition T (γε − γ0) → 0 as ε → 0.)

We take now the inner product of both sides of (2.6) with nμ and use the equation D(A,Φ)nμ = 0.
Replacing the inner product 〈∂2

t (a, ϕ), nμ〉 with the right-hand side of equation (2.7), we obtain the
relation

〈(∂2
τA, ∂

2
τΦ), nμ〉 = j1, μ = 1, . . . , 2d,

in which j1 denotes the sum of the term j from (2.6) and the terms containing the derivatives
of nμ with respect to τ . Note that j1 tends to zero as ε → 0. The latter relation implies that if
the trajectory γ is the adiabatic limit of dynamic solutions γε as ε → 0, then it should satisfy the
following adiabatic equations:

〈(∂2
τA, ∂

2
τΦ), nμ〉 = 0 for μ = 1, . . . , 2d. (2.8)

2.1.7. Geometric interpretation. Let us show that the adiabatic equations (2.8) coincide with
the Euler equations for the geodesics in the space Md equipped with the Riemannian T -metric
generated by the kinetic energy functional. This will justify Manton’s heuristic approach.

Recall that the geodesics γ in the metric defined by the kinetic energy T are extremals of the
functional ∫

γ

T (A,Φ) dτ =
1

2

∫

γ

{‖Ȧ‖2 + ‖Φ̇‖2} dτ

defined on the trajectories γ : τ → [A(τ),Φ(τ)] in the space Md. The Euler–Lagrange equation for
this functional has the form

∫
{〈Ȧ, δȦ〉+ 〈Φ̇, δΦ̇〉} dτ = −

∫
{〈Ä, δA〉 + 〈Φ̈, δΦ〉} dτ = 0.

This integral equality is equivalent to the adiabatic equation

〈∂2
τ (A,Φ), nμ〉 = 0, μ = 1, . . . , 2d,

because the pairs (δA, δΦ) satisfying the gauge-fixing condition generate the whole space KerD(A,Φ).
2.1.8. Rigorous formulation of the adiabatic principle.
Theorem 6 (Palvelev [16]). Suppose that a trajectory

γ0 = [A0,Φ0] : [0, τ0] → Md

is a geodesic of the space Md in the kinetic T -metric. Then it has a pull-back

(A0,Φ0) : [0, τ0] → Vd

defined by a smooth trajectory (A0,Φ0) in the space Vd of static d-vortex solutions, and there are pos-
itive constants τ1 ≤ τ0, ε0, and K such that for any ε < ε0 there exists a dynamic solution (Aε,Φε)
of the Ginzburg–Landau equations on the interval [0, τ1/ε] of the form

⎧
⎪⎪⎨

⎪⎪⎩

Aε
0 = ε3a0,

Aε(t) = A0(εt) + ε2a(t) ≡ A(εt) + ε2a(t),

Φε(t) = Φ0(εt) + ε2ϕ(t) ≡ Φ(εt) + ε2ϕ(t)

(2.9)
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that satisfies the estimate

max{‖a0(t)‖H3 , ‖a(t)‖H3 , ‖ϕ(t)‖H3} ≤ K (2.10)

for any t ∈ [0, τ1/ε]. The functions a(t) = (a1(t), a2(t)) and ϕ(t) = (ϕ1(t), ϕ2(t)) belong to the
class

C
(
[0, τ1/ε],H

3(R2)
)
∩C1

(
[0, τ1/ε],H

2(R2)
)
∩ C2

(
[0, τ1/ε],H

1(R2)
)
,

and the function a0(t) belongs to the class C1([0, τ1/ε],H
3(R2)). The norm ‖·‖H3 in (2.10) denotes

the Sobolev H3-norm on the space R
2.

A detailed proof of this theorem is given in [16], and its idea is also presented in [17].
2.1.9. Adiabatic equations in the case λ �= 1. Up to this moment we have supposed in our

arguments that λ = 1. Let us see which of them can be extended to the general case λ �= 1. We
again want to obtain the adiabatic equations from the extremality condition for the action functional
restricted to the trajectories in Md.

So we say that a vortex trajectory τ → [A(τ),Φ(τ)] in the space Md is adiabatic if it is extremal
for the action S(A,Φ) restricted to the trajectories γ lying in Md.

The action functional in this case has the form

S(γ) = S(A,Φ) =

∫

γ

{T (A,Φ) − U(A,Φ)} dτ,

where

T (A,Φ) = T (γ) =
1

2
{‖Ȧ‖2 + ‖Φ̇‖2},

U(A,Φ) = U(γ) =
1

2

{
‖dA‖2 + ‖dAΦ‖2 +

λ

4
‖1− |Φ|2‖2

}
.

The first variation of the functionals T and U is given by the formulas
⎧
⎪⎨

⎪⎩

δT (A,Φ) = −〈Ä, δA〉 − 〈Φ̈, δΦ〉,

δU(A,Φ) = −〈d∗dA+ i Im(Φ̄dAΦ), δA〉 −
〈
d∗AdAΦ− λ

2
Φ(1− |Φ|2), δΦ

〉
.

Since the pair (A,Φ) satisfies the vortex equations for any τ , it also satisfies the Ginzburg–Landau
equations for λ = 1. So the equation δS(A,Φ) = 0 is equivalent to the condition

(
−Ä,−Φ̈ +

λ− 1

2
Φ(1− |Φ|2)

)
⊥ T(A,Φ)Md.

This relation (provided that the gauge-fixing condition is satisfied) is equivalent to the following
system of equations written in terms of an L2-basis {nμ} of the space KerD(A,Φ):

〈(
−Ä,−Φ̈ +

λ− 1

2
Φ(1− |Φ|2)

)
, nμ

〉
= 0, μ = 1, . . . , 2d.

These are precisely the adiabatic equations for λ �= 1.
The adiabatic equations

〈∂2
t (A,Φ), nμ〉 =

λ− 1

2
〈Φ(1− |Φ|2), nμ〉, μ = 1, 2, . . . , 2d,
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have the Newtonian form; in other words, the left-hand side of these equations can be interpreted
as the “acceleration multiplied by mass,” while the right-hand side can be considered as the “force.”
This observation indicates that the above equations are, in fact, Hamiltonian equations on T ∗Md

governed by some adiabatic Hamiltonian

Had = Tad + Uad.

We will obtain an explicit expression for the Hamiltonian Had in local coordinates on T ∗Md.
Let {qμ} be the local coordinates on the space Md in a neighborhood of a point q = [A,Φ] ∈ Md,

and let {q̇μ} be the local coordinates on TqMd. Denote, as above, by {nμ} the basis of solutions of
the equation D(A,Φ)nμ = 0. Then the T -metric on TqMd will be given by the formula

Tq(q̇, q̇) :=

2d∑

μ,ν=1

〈nμ, nν〉q̇μq̇ν .

Denote by {pμ} the momenta, i.e., the coordinates in the fiber of the bundle T ∗
q Md that are given

by the Legendre transform

pμ :=

2d∑

μ=1

〈nμ, nν〉q̇μ.

We equip T ∗
q Md with the dual metric

Tq(p, p) := Tq(q̇, q̇).

Then the adiabatic Hamiltonian is given by the formula

Had :=
1

2
Tq(p, p) + Uad(q),

where

Uad(q) :=
|λ− 1|

8

∫
(1− |Φ|2)2 d2x.

The corresponding Hamiltonian equations have the form
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dpμ
dτ

= −∂Had

∂qμ
(Newton law),

dqμ
dτ

=
∂Had

∂pμ
(definition of momentum).

In this case the adiabatic principle states that any solution of the adiabatic Hamiltonian equations
can be approximated with any prescribed accuracy by solutions of the dynamic Ginzburg–Landau
equations.

2.2. Vortex dynamics. Here we show how one can apply the adiabatic principle from the
previous subsection to the description of vortex dynamics.

2.2.1. Scattering of two vortices. Consider first the scattering problem for two vortices on the
complex plane C in the critical case λ = 1, following paper [22]. In the adiabatic limit this problem
is reduced to the description of the moduli space of two-vortex solutions M2 = Sym2

C equipped
with the T -metric.

The natural coordinates on Sym2
C are provided by the following identification of Sym2

C

with C
2:

Sym2
C � (z1, z2) �→ (z1 + z2, z1z2) ∈ C

2.
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At the center of mass we have the relations

z1 + z2 = 0, z1z2 = a2

satisfied for some a ∈ C. Consider the geodesic [A(t),Φ(t)] on M2 written in the form

Φ(z) = (z − a)(z + a)f(z),

where a and f depend on t and, in addition, f satisfies the following conditions:

(1) f > 0 everywhere on C (gauge-fixing condition);
(2) |f(z)| ∼ 1/|z|2 as |z| → ∞ (asymptotic condition).

The kinetic energy

T (A,Φ) =

∫ {
|Ȧ1|2 + |Ȧ2|2 + |Φ̇|2

}
|dz ∧ dz̄|

can be rewritten in the form

T =
1

2

(
ρ̇2m‖ + ρ2θ̇m⊥

)
,

where a = ρeiθ and

m‖ = m‖(ρ, θ) =

∫ {
4ρ2f2 +

1

4

∂f2

∂ρ

∂g2

∂ρ

}
|dz ∧ dz̄|,

m⊥ = m⊥(ρ, θ) =

∫ {
4ρ2f2 +

1

4ρ2
∂f2

∂θ

∂g2

∂θ

}
|dz ∧ dz̄|

with g2(z) = (z − a)2(z + a)2.
Since the kinetic energy does not depend explicitly on t, we should have two integrals for the

Euler–Lagrange equations for T . If we write z in polar coordinates z = reiϕ, then these integrals
will correspond to the conservation laws for the energy and angular momentum:

T =: cT = const, M = ρ2θ̇m⊥ =: cM = const.

From these conservation laws, for the geodesic ρ = ρ(θ) we get an equation depending on two given
constants cT and cM :

θ =

ρ(θ)∫

∞

√
m‖/m⊥ dρ

ρ
√

2cTm⊥c
−2
M ρ2 − 1

with the asymptotic condition ρ(θ) → ∞ as θ → 0.
From this equation we can determine, in particular, the main parameters characterizing the

trajectory ρ = ρ(θ), namely, the minimal distance to the origin ρmin and the scattering angle Δθ.
For the computation of ρmin we have the equation

dρ

dθ
(ρmin) = 0 ⇔ 2cT

c2M
m⊥(ρmin) =

1

ρ2min
.

The scattering angle is given by the formula

Δθ = 2

ρmin∫

∞

√
m‖/m⊥ dρ

ρ
√

2cTm⊥c
−2
M ρ2 − 1

.
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The most interesting limiting case corresponds to ρmin → 0. In this limit the main contribution
to the integral defining the scattering angle is made by its part near ρ ∼ 0. For small ρ one can use
the power series expansion of f2 with respect to ρ2:

f2 = f2
0 (1 + ρ2f1 + ρ4f2 + . . .),

where f0 is the radial function corresponding to the vortex solution Φ0(z) = z2f0 (for a = 0). In
this case

m⊥ = μρ2 +O(ρ6), m‖ = m⊥ +O(ρ6),

so for small ρ we have

θ(ρ) ∼
λ(θ)∫

0

dλ√
4cTμc

−2
M λ−2 − λ2

1

2
arcsin

c2Mλ2(θ)√
2cTμ

,

where λ(θ) = 1/ρ(θ). This implies the equation

ρ2 sin 2θ =
cM√
2cTμ

= ρ2min,

where the second equality follows from the equation defining ρmin. Hence, the graph of a = a(t) is
the hyperbola defined by the equation

Re a · Im a =
ρ2min
2

,

and the scattering angle coincides with Δθ = π/2.
In a similar way we can study another limiting case corresponding to ρmin → ∞ and show that

in this limit Δθ → π. This means, in other words, that there is no long-distance action in our
model.

Note that our conclusion that two vortices after a head-on collision scatter at a right angle also
remains true for λ �= 1. This is an experimental fact, although it is clear from general considerations
that this phenomenon should persist for λ sufficiently close to the critical value λ = 1. This implies,
in particular, that for λ < 1 sufficiently close to the critical value, there should exist an interesting
dynamic solution called the breather. It has the following behavior. During the first movement
two vortices collide with each other and after the collision scatter at a right angle. However, for
λ < 1 the vortices are attracted to each other, so they cannot fly far away and after some time have
to collide once again. After the collision they fly away again at a right angle, and so on. Such a
solution is observed in real experiments where the breather can survive several movements until it
exhausts its energy resource.

2.2.2. The “vortex–antivortex” system. As we have pointed out before, the adiabatic principle
allows one to construct approximate dynamic solutions close to static ones (in other words, slowly
moving systems of vortices). Now we formulate an important problem that cannot be solved in the
framework of the adiabatic approach.

Recall that one of the corollaries of the Taubes theorem states that the static solutions of the
Ginzburg–Landau equations are either vortices or antivortices. In other words, in the static case
the system under study cannot contain vortices and antivortices simultaneously; such bound states
must “annihilate” before the system transforms into the static state.

It is natural to ask whether a stable bound state of the vortex–antivortex type can be realized
in the dynamic case. Such a solution exists, for example, in hydrodynamics. Indeed, one can
remember the “smoke rings” well known to all smokers. If we cut such a “ring,” which is a torus,
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by the plane along the meridian, then in the section we will have precisely a stable state of the
vortex–antivortex type. However, it is still unknown whether such a state can be realized in the
case of the Ginzburg–Landau system. Such a solution, if it exists, must move with velocity greater
than a certain threshold value, so it cannot be constructed by using the adiabatic limit.

General considerations imply that the vortex and antivortex in such a system must move parallel
to each other, so it seems that this solution cannot be realized on the plane (since due to the imposed
asymptotic conditions the zeros of the function Φ cannot go to infinity). However, a solution of the
vortex–antivortex type may exist on the torus.

2.2.3. Centrally symmetric scattering of a system of d vortices. Unfortunately, for the kinetic
energy of a system of d > 2 vortices, we have no explicit formulas similar to those in the case d = 2.
However, using only general properties of the kinetic metric, it is possible to obtain an extension of
the result of Subsection 2.2.1 on the right angle scattering of two vortices under a head-on collision
to the case of centrally symmetric scattering of a system of d vortices. This generalization, obtained
by Palvelev [15], is presented in this subsection.

As we observed in Subsection 1.3.1, the moduli space of d-vortices Md can be identified, accord-
ing to the Taubes theorem, with the dth symmetric power Symd

C of the complex plane C; namely,
an arbitrary collection {z1, . . . , zd} of d points on the complex plane (counted with multiplicities)
can be assigned the monic polynomial p(z) with zeros precisely at the points z1, . . . , zd:

p(z) = (z − z1)(z − z2) . . . (z − zd) = zd + s1z
d−1 + . . .+ sd−1z + sd.

With a given collection of points {z1, . . . , zd} ∈ Md we associate a particular d-vortex solution
(A1, A2,Φ) corresponding to the collection {z1, . . . , zd} by virtue of the Taubes theorem: we fix the
gauge by taking Φ in the form

Φ(z) = (z − z1)(z − z2) . . . (z − zd)f(z) with f(z) > 0. (2.11)

Now we choose the symmetric functions s1, . . . , sd of the zeros of Φ (which coincide with the coef-
ficients of the polynomial with zeros at the points {z1, . . . , zd}) as the coordinates on the space Md.
Fixing the gauge by taking Φ in the form (2.11), we can consider the components of Φ, A1, and A2

of the vortex solution as functions of the complex parameters s1, . . . , sd. Differentiating them with
respect to these parameters, we obtain solutions of the linearized vortex equations. Note that Φ, A1,
and A2 depend smoothly on s1, . . . , sd in the sense that for any fixed z0 the function Φ(z0; s1, . . . , sd)
is a smooth function of s1, . . . , sd and the same is true for A1 and A2.

We write the complex-valued function sα, α = 1, . . . , d, in the form sα = sα,1 + isα,2. We would
like to write the kinetic metric on Md in terms of the L2-norms of the derivatives of the functions
(A1, A2,Φ1,Φ2) with respect to the variables sα,j, where α = 1, . . . , d and j = 1, 2. Unfortunately,
these derivatives may turn out to be not square integrable; however, we can always replace the
collection of functions (A1, A2,Φ1,Φ2) by a gauge equivalent collection (Ã1, Ã2, Φ̃1, Φ̃2) so that the
obtained functions are L2-integrable.

In more detail, we can find gauge factors χα,j such that the functions

nα,j =

(
∂Φ1

∂sα,j
− χα,jΦ2,

∂Φ2

∂sα,j
+ χα,jΦ1,

∂A1

∂sα,j
+ ∂1χα,j ,

∂A2

∂sα,j
+ ∂2χα,j

)
(2.12)

belong to (H1)4 and satisfy the orthogonality condition. At the same time the map

(s1, . . . , sd) �→ nα,j(s1, . . . , sd),

acting from C
d to (L2)4, is smooth. The vectors nα,j, α = 1, . . . , n, j = 1, 2, belong to the subspace

KerD(A,Φ) and are linearly independent. So they form a basis of the subspace KerD(A,Φ). Using
this basis, we can identify T(A,Φ)Md with KerD(A,Φ).
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Now we define the kinetic metric g on Md by setting

g(v1, v2) := (v1, v2)(L2)4

for arbitrary v1, v2 ∈ T(A,Φ)Md = KerD(A,Φ) ⊂ (H1)4. Since the basis vectors nα,j depend smoothly
on s1, . . . , sd, the coefficients of the metric, which are equal to gα,j;β,k = (nα,j, nβ,k)(L2)4 , are smooth
functions of s1, . . . , sd.

Although we have no explicit formulas for this metric, we can describe the qualitative picture of
vortex scattering by using its symmetry properties, namely, its invariance with respect to rotations
and the complex conjugation. From these properties we can deduce the following assertion: Under a
centrally symmetric head-on collision the trajectories of the interacting vortices after collision rotate
through the angle π/d.

Let us describe the geodesic corresponding to this scattering process in the symmetric coordi-
nates s1, . . . , sd. Consider the geodesic passing through the origin s1 = . . . = sd = 0 and having the
tangent vector �v = (0, 0, . . . , 0, (−1)d+1) at this point. (The sign in this formula appears because
of the relation sd = (−z1)(−z2) . . . (−zd) = (−1)dz1z2 . . . zd.) This geodesic is written down in
the form

s1 = . . . = sd−1 = 0, sd(t) = λ(t),

where λ(t) is a real-valued function with λ(0) = 0. Indeed, suppose that our geodesic is parameter-
ized by s1 = s1(t), . . . , sd = sd(t). The rotation of the zeros of Φ through the angle ϕ, as defined
by the map z′k = eiϕzk, corresponds in the symmetric coordinates to the transformation

s′1 = eiϕs1, s′2 = e2iϕs2, . . . , s′d = eidϕsd.

This implies that the rotation through the angle 2π/d does not influence the vector �v, because it is
tangent to the trajectory s1 = . . . = sd−1 = 0, (−1)dsd = −t invariant under this rotation. So the
rotation through the angle 2π/d transforms our geodesic into a geodesic that also passes through the
origin and has the same tangent vector �v at this point. By the uniqueness property the two geodesics
must coincide, which implies that our geodesic must be invariant under this transformation: s1(t) =
e2π/ds1(t), . . . , sd−1(t) = e2π(d−1)/dsd−1(t). Hence s1(t) = . . . = sd−1(t) = 0.

Now we use the complex conjugation. In the symmetric coordinates s1, . . . , sd this operation
corresponds to the transformation

s1 �→ s′1 = s̄1, s2 �→ s′2 = s̄2, . . . , sd �→ s′d = s̄d.

This transformation does not influence the vector �v and so again leaves our geodesic invariant. It
follows that the function (−1)dsd(t) = λ(t) is real-valued. Moreover, λ(0) = 0, λ(t) decreases when
t increases, and λ(t) changes its sign from the positive to negative one when t passes through zero.

In terms of the original coordinates (z1, . . . , zd) the geodesic in question (which is smooth in the
symmetric coordinates) describes the following motion of the system of d vortices. For λ(t) > 0
(i.e., for t < 0) we have d trajectories given by the formula

t �→
(

d
√

λ(t), d
√

λ(t)e2πi/d, . . . , d
√

λ(t)e2πi(d−1)/d
)
,

while for λ(t) < 0 (i.e., for t > 0) we have d trajectories rotated with respect to the original ones
through the angle π/d:

t �→
(

d
√

|λ(t)|eπi/d, d
√

|λ(t)|e3πi/d, . . . , d
√

|λ(t)|e(2d−1)πi/d
)
.

In other words, this geodesic describes the scattering process of the following type. Up until
the collision d vortices move towards the origin along the rays arg z = 0, arg z = 2π/d, . . . ,
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arg z = 2(d − 1)π/d. They collide at the origin and then run away along the rays arg z = π/d, . . . ,
arg z = (2(d − 1) + 1)π/d.

In particular, for d = 2 we have a system of two vortices that move towards each other along the
real axis, collide, and fly away along the imaginary axis. Hence, in this case we have the scattering
at a right angle.

A detailed proof of these assertions is contained in [15]. (It is also worth comparing the considered
problem on the scattering of vortices with a close problem on the scattering of monopoles that was
studied in [1].)

2.2.4. Periodic vortices. As another application of the adiabatic principle, we will describe a
periodic two-vortex solution on the Riemann sphere S2 = CP1 (it was found by Stuart; see [23]).

Consider the Abelian (2 + 1)-dimensional Higgs model on the manifold

X = Rt × S2

equipped with the Lorentz metric ds2 = dt2 − g, where g is the standard Riemannian metric on the
sphere S2

R of radius R in R
3. The action in this model is given by the formula

Sλ,τ (A,Φ) =

∫
{T (A,Φ)− Uλ,τ (A,Φ)} dt,

where

T (A,Φ) =
1

2

∫

S2

{
|Ȧ− dA0|2 + |Φ̇−A0Φ|2

}
dvol,

Uλ,τ (A,Φ) =
1

2

∫

S2

{
|dA|2 + |dAΦ|2 +

λ

4
(τ − |Φ|2)2

}
dvol.

Here, A is a U(1)-connection in a Hermitian line bundle L → S2 equipped with the Hermitian
metric h, dA is the associated covariant exterior derivative, and dvol is the volume form on the
sphere S2

R.
We suppose that L is extended to a Hermitian line bundle L → X = R× S2 equipped with the

U(1)-connection
A = A0 dt+A = A0 dt+A1 dx1 +A2 dx2,

and Φ is a section of the bundle L → X. Assume also that the necessary solvability condition for
the vortex equations on S2 is satisfied, namely,

τ > 4π
d

Vol(S2)
.

Consider dynamic solutions for τ close to the critical value

τcr =
4πd

Vol(S2)
.

Introduce the affine coordinates x = (x1, x2) on S2
R \ ∞ by using the stereographic projection

S2
R \ ∞ → R

2
(x1,x2)

and identify R
2
(x1,x2)

with the complex plane Cz equipped with the complex
coordinate z = x1 + ix2. Suppose that the Hermitian metric h on L, transported to Cz with the
help of the stereographic projection, is determined by a function h(z) such that |Φ(z)|2h = h(z)|Φ|2.
The stereographic metric on R

2
(x1,x2)

has the form

dvol = Λ2 dx1 dx2 with Λ =
4R2

(1 + |x|2)2 .
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The dynamic Euler–Lagrange equations for our action have the form
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂2
t,A0

Φ− 1

hΛ2

2∑

j=1

∂j,Aj(h∂j,AjΦ)−
λ

2
Φ(τ − |Φ|2) = 0,

Äj + ∂jȦ0 + εjk∂k

(
F12

Λ2

)
= i Im(Φ̄∂j,AjΦ), j = 1, 2,

∂jȦj −ΔA0 = iΛ2 Im(Φ̄∂t,A0Φ).

In the adiabatic limit these equations reduce to the Hamiltonian equations governed by the
adiabatic Hamiltonian

Had = Tad + Uad

on the moduli space of 2-vortices
M2 = Sym2 S2 ∼= CP2.

In order to describe this Hamiltonian more explicitly, consider the affine part C
2 of M2 with

coordinates (z1, z2), assuming that the zeros of Φ are contained in C
2, and introduce the coordinates

of the center of mass
z1 + z2 = 0, z1z2 = a2,

where a ∈ C is written in the polar form as −a2 = ρeiθ. We use the small parameter δ > 0 given by

δ2 = 4π(τR2 − d),

where d = 2.
In these coordinates

Tad =
1

2
F (ρ)(ρ̇2 + ρ2θ̇2)

with

F (ρ) = 2δ2
ρ2 + 4ρ+ 1

(1 + ρ)2(1 + ρ2)2
+O(δ4).

The potential energy is defined by the formula

Uad =
|λ− 1|

8

∫

S2

(τ − |Φ|2)2 dvol

and depends only on ρ (i.e., on the distance between the vortices). It admits the following power
series expansion with respect to the small parameter δ:

Uad =
|λ− 1|

8

(
4πτd− τδ2 +

3δ4

20πR2
+ . . .

)
.

Denote by r(θ) the rotation of the complex plane C through the angle θ: z �→ eiθz, and
by r∗(θ) the induced action on pairs (A,Φ). (Note that the pull-back of r(θ) to L is defined up to
gauge transformations, so we should also fix some pull-back of r(θ) to L.) By a periodic trajectory
(of frequency ω) in the space Vd consisting of d-vortex solutions, we will mean any trajectory
t �→ (Ã(t), Φ̃(t)) in Vd of the form

Ã(t) = r∗(ωt)A+ idχ, Φ̃(t) = r∗(ωt)Φe
iχ,
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where χ = χ(t, x) is obtained from the real-valued function χ0(x) by averaging with respect to the
circle action:

χ(t, x) =

ωt∫

0

χ0(e
iωsx) ds,

and the pair (Ã(t), Φ̃(t)) satisfies the gauge-fixing condition

δ∗
( ˜A,˜Φ)

(∂tÃ, ∂tΦ̃) = 0.

Stuart showed in [23] that for sufficiently small τ − τcr and |λ − 1| the adiabatic equations
governed by the Hamiltonian Had have a periodic solution satisfying the conditions

{zeros of Φ} = ±√
ρ, {zeros of Φ̃(t)} = ±√

ρeiω0t

for some ω0. Moreover, he proved that for λ = 1− ε2 with sufficiently small ε the dynamic equations
have a periodic solution close to an adiabatic one, with frequency of order ε and period of order 1/ε.
This proves the validity of the adiabatic principle for λ �= 1 in this particular case.

2.2.5. Abrikosov strings. The method of the adiabatic limit can also be applied to the Euclidean
model governed by the Ginzburg–Landau action functional in the space R

3 with coordinates x =
(x1, x2, x3), which describes the Abrikosov strings in R

3. This functional has the form

E(A,Φ) =
1

2

∫ {
|dA|2 + |dAΦ|2 +

λ

4
(1− |Φ|2)2

}
d3x,

where A is a U(1)-connection on R
3 given by the 1-form A =

∑3
i=1Ai dxi with smooth pure

imaginary coefficients Ai = Ai(x), and Φ = Φ(x) is a smooth complex-valued function on R
3. We

will assume below that the gauge is chosen so that A3 = 0.
The Euler–Lagrange equations for the functional E(A,Φ), which are otherwise called the Eu-

clidean Ginzburg–Landau equations, have the same form as in the two-dimensional case:
⎧
⎨

⎩

d∗FA = i Im(Φ̄dAΦ),

d∗AdAΦ =
λ

2
Φ(1− |Φ|2).

A trajectory ξ �→ [A(ξ),Φ(ξ)] in Md is called adiabatic if it is extremal for the functional E(A,Φ)
restricted to the trajectories lying in Md. The gauge-fixing condition has the same form as in the
dynamic (2 + 1)-dimensional case:

δ∗(A,Φ)(∂3A, ∂3Φ) = 0.

As in the (2 + 1)-dimensional case, from the Euler–Lagrange equations for E(A,Φ) one can
deduce the adiabatic condition of the form

(
−∂2

3A,−∂2
3Φ+

1− λ

2
Φ(1− |Φ|2)

)
⊥ T(A,Φ)Md

(the only difference with the (2 + 1)-dimensional case is the change of the sign before the term
Φ(1− |Φ|2)). It is equivalent (under the gauge-fixing condition) to the relation

(
−∂2

3A,−∂2
3Φ+

1− λ

2
Φ(1− |Φ|2)

)
⊥ KerD(A,Φ).
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It is a Hamiltonian equation on T ∗Md with Hamiltonian Had of the form

Had(A,Φ) =
1

2

{
‖∂3A‖2L2 + ‖∂3Φ‖2L2 +

|1− λ|
4

‖1− ‖Φ|2‖2L2

}
.

Using an L2-basis {nμ} of solutions of the linearized vortex equations

D(A,Φ)nμ = 0, μ = 1, . . . , 2d,

we can rewrite the adiabatic equation in the form
〈
∂2
ξ (A,Φ) +

λ− 1

2
Φ(1− |Φ|2), nμ

〉
= 0, μ = 1, . . . , 2d.

Solutions of this equation approximately describe the Abrikosov strings close to the axis (x3).

3. CLIFFORD ALGEBRAS AND SPINOR GEOMETRY

This section is a digression in which we have collected basic notions from the theory of Clifford
algebras and spinor geometry that will be used in the next section in the theory of Seiberg–Witten
equations. A detailed exposition of spinor geometry can be found in book [12].

3.1. Clifford algebras and spinor groups.
3.1.1. Clifford algebras. Let V be an n-dimensional Euclidean vector space and {ei}ni=1 be an

orthonormal basis of V . The Clifford algebra Cl(V ) is defined as an R-algebra with unit 1 generated
by the elements 1, e1, e2, . . . , en that satisfy the following relations:

e2i = −1, eiej + ejei = 0 for i �= j.

Note that V ⊂ Cl(V ) and
uv + vu = −2(u, v) for u, v ∈ V.

As a real vector space, Cl(V ) is 2n-dimensional and has a basis consisting of elements of the form 1
and eI := ei1ei2 . . . eik , where I = {i1, i2, . . . , ik} is a subset of {1, 2, . . . , n} composed of strictly
increasing indices i1 < i2 < . . . < ik and |I| := k.

Denote by Clk(V ) the subset consisting of elements of degree k, and consider the subsets

Clev(V ) :=
⊕

k even

Clk(V ), Clod(V ) :=
⊕

k odd

Clk(V ).

Then Clev(V ) is a subalgebra of Cl(V ) and

Cl(V ) = Clev(V )⊕ Clod(V ),

which equips Cl(V ) with the structure of a superalgebra.
The Clifford algebra Cl(V ) can be equipped with the inner product extending the inner product

on V and with conjugation defined by the formula

x =
∑

|I|=k

xIeI �→ x∗ =
∑

|I|=k

εIxIeI ,

where εI = (−1)k(k+1)/2 on elements of degree k.
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3.1.2. Universal property. The definition of the Clifford algebra Cl(V ) does not in fact depend
on the choice of the orthonormal basis because of the following universal property, which can be
taken as the definition of the Clifford algebra. Namely, Cl(V ) is a unique associative R-algebra
with unit and conjugation that contains V and has the following property: for any associative
R-algebra A with unit 1A and conjugation a �→ a∗ and for an arbitrary linear map f : V → A
satisfying the conditions

f∗(v) + f(v) = 0, f∗(v)f(v) = |v|2 1A,

there exists a unique extension of f to an algebra homomorphism f̃ : Cl(V ) → A preserving the
conjugations:

V

i

f
A

Cl(V )
˜f

Example 1. Here are some standard examples of Clifford algebras:
(1) Cl(R) = C with e1 = i;
(2) Cl(R2) = H with e1 = i, e2 = j, and e1e2 = k;
(3) Cl(R4) = H[2× 2] (2× 2 matrices)

where H denotes the algebra of quaternions.
3.1.3. Multiplicative group. Let Cl∗(V ) denote the group of invertible elements of the Clifford

algebra Cl(V ). Note that the set V \ {0} is contained in Cl∗(V ) because v−1 := −v/|v|2 for v ∈ V ∗.
The group Cl∗(V ) acts on Cl(V ) by the adjoint representation

g �→ Adg(x) := gxg−1,

where g ∈ Cl∗(V ). For any u ∈ V \ {0} and v ∈ V , the map

−Adu(v) = v − 2(u, v)

|u|2 u

is the reflection with respect to the hyperplane u⊥ orthogonal to u.
In order to get rid of the minus sign on the left-hand side of the last formula, we introduce

another action of the group Cl∗(V ) on Cl(V ) given by the twisted adjoint representation

g �→ πg(x) := α(g)xg−1,

where g ∈ Cl∗(V ), x ∈ Cl(V ), and α(g) := (−1)deg gg is the grading map (deg g is the degree of g).
Then for u ∈ V \ {0} the map πu : V → V is the reflection with respect to u⊥. Moreover, for u ∈ V
with |u| = 1 we have the equality

πu(v) = uvu∗.

3.1.4. The group Pin. The group Pin(V ) is defined as the subgroup of Cl∗(V ) generated by
the unit vectors v ∈ V , i.e., by the vectors v with |v| = 1. Since any such vector v generates the
reflection πv, i.e., an orthogonal transformation of the space V , we have a homomorphism

π : Pin(V ) → O(V ).

On the other hand, since any orthogonal transformation is a composition of reflections, this map is
an epimorphism. Moreover, there is an exact sequence

0 → Z2 → Pin(V )
π−→ O(V ) → 0.
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3.1.5. The group Spin. The group Spin(V ) is by definition the identity connected component
in the group Pin(V ). It can be also defined as

Spin(V ) = Pin(V ) ∩ Clev(V ).

As in the case of the group Pin(V ), there is an exact sequence

0 → Z2 → Spin(V )
π−→ SO(V ) → 0.

The above definition of the group Spin(V ) is equivalent to the following one:

Spin(V ) = {x : x∗x = 1, xV x∗ = V }.

Example 2. Here are examples of Spin-groups:
(1) Spin(R) = 1;
(2) Spin(R2) = U(1);
(3) Spin(R4) = SU(2)× SU(2).

3.1.6. The group Spinc. Denote by Clc(V ) := Cl(V )⊗R C the complexified Clifford algebra and
equip it with the Hermitian inner product and conjugation that extend the corresponding operations
on Cl(V ). Define the group Spinc(V ) as

Spinc(V ) :=
{
z ∈ Clcev(V ) : z∗z = 1, zV z∗ = V

}
.

For this group the formula πz(v) = zvz∗ for v ∈ V defines a map

π : Spinc(V ) → SO(V ),

and we have the exact sequence

0 → U(1) → Spinc(V )
π−→ SO(V ) → 0.

Note that the group Spinc(V ) is the circle extension of the group Spin(V ), i.e.,

Spinc(V ) =
{
z = eiθx : x ∈ Spin(V ), θ ∈ R

}
.

Hence we have the exact sequence

0 → Spin(V ) → Spinc(V )
δ−→ U(1) → 0,

where δ : xeiθ �→ e2iθ. So
Spinc(V ) = Spin(V )×Z2 U(1).

Combining the two exact sequences given above, we arrive at

0 → Z2 → Spinc(V )
(π,δ)−−−→ SO(V )×U(1) → 0.

Note that the Lie algebra of the group Spinc(V ) coincides with

spinc(V ) = cl2(V )⊕ iR,

where cl2(V ) is the component Cl2(V ) of the Clifford algebra equipped with the natural Lie algebra
structure given by the commutator of elements.

Example 3. Here are examples of Spinc-groups:
(1) Clc(R) = C ⊕ C, and Spinc(R) coincides with the group U(1) embedded in C ⊕ C by the

diagonal map;
(2) Clc(R2) = C[2 × 2], and Spinc(R2) = U(1) × U(1), i.e., it consists of unitary diagonal

matrices in C[2× 2].
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3.1.7. Spin representation. The spin representation is defined as the linear map

Γ: V → EndW

from the 2n-dimensional Euclidean vector space V into the endomorphism group of a 2n-dimensional
Hermitian complex vector space W provided that the following conditions hold:

Γ∗(v) + Γ(v) = 0, Γ∗(v)Γ(v) = |v|2 id.

By the universal property, it extends to an algebra isomorphism

Γ: Clc(V ) → EndW.

The action of Clc(V ) on W is called the Clifford multiplication, and the elements of W are called
spinors.

Define the Clifford volume element ω by setting

ω := e1e2 . . . e2n ∈ Cl2n(V ).

Then
ω2 = (−1)2n, ωv + vω = 0 for all v ∈ V.

Hence we can introduce the semi-spinor spaces

W± := {w ∈ W : Γ(ω)w = ±inw}.

Then we obtain
W = W+ ⊕W−

and
Γ(v) : W± → W∓ for all v ∈ V.

Note that the subspaces W± are invariant under the Clifford multiplication by the elements of even
degree.

Example 4. Here are examples of spin representations:

(1) Γ: Clc(R2) → C[2× 2] is the complexified Pauli map γc, where

γ : H � x = (x0, x1, x2, x3) �→
(

x0 + ix1 x2 + ix3
−x2 + ix3 x0 − ix1

)
∈ C[2× 2];

(2) the map Γ: Clc(R4) = Clc(H) → C[4 × 4] is generated by the complexified Dirac map Γc,
where

Γ: H � x �→
(

0 γ(x)
−γ∗(x) 0

)

and γ is the Pauli map. Under this map the group Spinc(H) = Spinc(R4) is realized as

Spinc(R4) = {(U, V ) ∈ U(W+)×U(W−) : detU = detV }

= {(U, V ) ∈ U(2) ×U(2): detU = detV },

which implies that

Spinc(R4) = (SU(2) × SU(2) ×U(1))/Z2 = Spin(R4)×Z2 U(1).
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3.1.8. Exterior algebra. Consider the exterior algebra Λ∗(V ) of the space V and introduce
the map

Altk : V × . . . × V → Clk(V )

given by the formula

(v1, . . . , vk) �→ Altk(v1, . . . , vk) =
1

k!

∑

σ∈Sk

sgn(σ)vσ(1) . . . vσ(k).

It generates the linear isomorphism

Alt: Λ∗(V )
∼=−→ Cl(V ).

By duality, we also have the isomorphism

Alt∗ : Λ∗(V ∗) → Cl(V ∗) ∼= Cl(V ).

Using the spin representation Γ: Cl(V ) → EndW , we can define

ρ := Γ ◦Alt∗ : Λ∗(V ∗) → EndW.

The introduced map ρ determines the Clifford multiplication by forms from Λ∗(V ∗) in the space W .
In particular, the Clifford multiplication by 2-forms leaves the subspaces W± invariant. More
precisely, the map ρ sends real-valued 2-forms to skew-symmetric traceless endomorphisms of the
subspaces W± and imaginary-valued 2-forms to Hermitian traceless endomorphisms of these sub-
spaces.

If dimV = 4, then the subspace Λ2(V ∗) decomposes into the direct sum

Λ2(V ∗) = Λ2
+ ⊕ Λ2

−

of the subspaces of self-dual and anti-self-dual forms with respect to Hodge ∗-operator. In this case
the map ρ induces the isomorphisms: Λ2

± → su(W±) and

ρ± : Λ2
± ⊗ iR → Herm0(W

±).

The isomorphisms inverse to ρ± are denoted by

σ± = (ρ±)
−1 : Herm0(W

±) → Λ2
± ⊗ iR.

3.1.9. Kähler vector spaces. Let V be an n-dimensional complex vector space equipped with a
Hermitian metric. Then there exists a canonical spin representation (Wcan,Γcan) with

Wcan = Λ0,∗(V ∗) :=
n⊕

q=0

Λ0,q(V ∗).

Note that in this case V ∗
C
= V ∗ ⊗R C = V 1,0 ⊕ V 0,1. So, given a v ∈ V , we also have the following

representation for the dual covector v∗ ∈ V ∗:

v∗ = v1,0 + v0,1.

The canonical spin representation in these notations is given by the map

Γcan : V → EndWcan, Γcan(v)w
0,q := v0,1 � w0,q − v0,1 ∧w0,q,

where v ∈ V and w0,q ∈ Λ0,q(V ∗). Hence,

W+
can = Λ0,ev(V ∗), W−

can = Λ0,od(V ∗).
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3.2. Spinc-structures.
3.2.1. Spinc-structures on a principal bundle. Let X be an oriented n-dimensional Riemannian

manifold and PSO(n) → X be a principal SO(n)-bundle of orthonormal bases on X. The Spinc-
structure on PSO(n) is an extension of this bundle to a principal Spinc(n)-bundle PSpinc(n) → X
together with a Spinc-invariant bundle epimorphism:

PSpinc(n) PSO(n)

X X

where Spinc(n) acts on PSO(n) by the homomorphism π : Spinc(n) → SO(n).
With the bundle PSpinc(n) we can associate the principal U(1)-bundle PU(1) → X so that the

following diagram is commutative:

PSpinc(n)
δ

PU(1)

X X

where Spinc(n) acts on PU(1) by the homomorphism δ : Spinc(n) → U(1). The complex line bundle
L → X associated with PU(1) → X is called the characteristic bundle of the given Spinc-structure,
and its first Chern class c1(L) is called the characteristic class of the Spinc-structure.

3.2.2. Spinc-structures on vector bundles. In a similar way we can define the Spinc-structure on
a rank n oriented Riemannian vector bundle V → X associated with a principal bundle PSO(n) → X
and isomorphic to V ∼= PSO(n) ×SO(n) R

n. The Spinc-structure on V → X is the extension of its
structure group from SO(n) to Spinc(n). In other words, the bundle V → X admits a Spinc-
structure if it is associated with a principal Spinc(n)-bundle PSpinc(n) → X, i.e., if there exists a
bundle isomorphism

PSpinc(n) ×Spinc(n) R
n → V,

where Spinc(n) acts on R
n by the homomorphism π : Spinc(n) → SO(n).

In particular, as V one can take the tangent bundle TX. In this case the Spinc-structure on TX
is called the Spinc-structure on the manifold X.

In the case when the rank of V is equal to 2n, we can give an equivalent definition of the Spinc-
structure on V in terms of the spin representation. Namely, using this representation, in such a case
we can construct a complex Hermitian vector bundle W of rank 2n associated with the principal
Spinc(2n)-bundle PSpinc(2n) → X:

W := PSpinc(2n) ×Spinc(2n) C
2n → X,

where the action of the group Spinc(2n) on C
2n is given by the spin representation Γ: Spinc(2n) →

EndC2n . This representation determines the linear homomorphism (denoted by the same letter)

Γ: V → EndW,

which has the indicated characteristic property of spin representations. We call W the spinor bundle.
Hence, the definition of the Spinc-structure on V in this case is equivalent to the following one.

A Spinc-structure on the bundle V of rank 2n is a pair (W,Γ) consisting of a complex Hermitian
vector bundle W → X of rank 2n and a bundle homomorphism Γ: V → EndW that has the
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property of spin representations

Γ∗(v) + Γ(v) = 0, Γ∗(v)Γ(v) = |v|2 id.

The bundle homomorphism Γ: V → EndW can be extended to a bundle homomorphism

Γ: Clc(V ) → EndW,

where Clc(V ) is the bundle of complexified Clifford algebras associated with the oriented Riemannian
vector bundle V . In particular, W can be decomposed into the direct sum of Γ(ω)-eigenbundles

W = W+ ⊕W−,

called the semi-spinor bundles. The characteristic line bundle of the Spinc-structure (W,Γ) can be
defined as

LΓ := PSpinc(2n) ×Spinc(2n) C → X

where the action of the group Spinc(2n) on C is given by the homomorphism δ : Spinc(2n) → U(1).
3.2.3. Existence of Spinc-structures. The space of Spinc-structures. It can be shown that a

bundle PSO(n) admits the Spinc-structure if and only if there exists a class c ∈ H2(X,Z) such that

w2(PSO(n)) ≡ c mod 2,

where w2 is the second Stiefel–Whitney class. This fact is proved using the following exact sequence:

0 → Z2 → Spinc(n) → SO(n)×U(1) → 0.

It is worthwhile to compare this criterion with the necessary and sufficient condition of existence
of a Spin-structure on a principal bundle PSO(n) → X. This condition has the form

w2(PSO(n)) = 0.

It follows, in particular, that the Spinc-structure exists on any spin manifold and any almost complex
manifold X (in the latter case it is sufficient to put c = c1(X)).

In fact it can be shown that the Spinc-structure exists on any oriented compact 4-dimensional
manifold X. (To prove this assertion, one can use the fact that in this case w2(X) · α ≡ α · α mod 2
for all α ∈ H2(X,Z).)

Assume that an oriented Riemannian vector bundle V → X of rank 2n has a Spinc-struc-
ture (W,Γ). Then for any complex line bundle E → X we can introduce a new Spinc-structure
(WE ,ΓE) by setting

WE := W ⊗ E, ΓE := Γ⊗ id.

This new Spinc-structure (WE ,ΓE) corresponds to the principal Spinc(2n)-bundle

PΓE
= PΓ ⊗U(1) PE ,

where PΓ is the principal Spinc(2n)-bundle associated with (W,Γ) and PE is the principal U(1)-
bundle associated with E. The characteristic bundle of the Spinc-structure (WE ,ΓE) coincides with

LΓE
:= LΓ ⊗ E⊗2.

Thus the group H2(X,Z), which parameterizes the equivalence classes of complex linear bundles
on X, acts on the space of Spinc-structures on V → X. If the latter space is not empty, then its
quotient by the indicated action can be identified with H1(X,Z2), although not in the canonical
way. However, in the almost complex case this identification becomes canonical due to the existence
of the canonical Spinc-structure (Wcan,Γcan) on such manifolds.
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3.2.4. Spinc-structures on almost complex vector bundles. Suppose that V → X is an almost
complex vector bundle of (complex) rank n equipped with an almost complex structure J com-
patible with the Riemannian metric and orientation of V . Then V has a canonical Spinc-struc-
ture (Wcan,Γcan) that can be defined by

Wcan := Λ0,∗(V ∗),

where V ∗ is equipped with the dual almost complex structure J∗. The Clifford multiplication
map Γcan is given by the same formula as in the case of Kähler vector spaces. The characteristic
bundle Lcan coincides with the anticanonical bundle K∗ of V :

K∗ = Λ0,n(V ∗).

We can construct new Spinc-structures on V by taking the tensor product of V with Hermitian
line bundles E → X so that

WE = Wcan ⊗ E, LΓE
= K∗ ⊗E2.

3.3. Spinc-connections and Dirac operators.
3.3.1. Spinc-connections in terms of principal bundles. Let X be an oriented Riemannian man-

ifold of dimension 2n equipped with a Spinc-structure (W,Γ). Denote by ∇ the Levi-Civita con-
nection defined on the tangent bundle TX and generated by the Riemannian metric on X. Then
the Spinc-connection on X is the extension of the connection ∇ to W . In more detail, it is the
connection ∇ on W satisfying the condition

∇u(Γ(v)Φ) = Γ(v)∇uΦ+ Γ(∇uv)Φ

for all u, v ∈ Vect(X) and Φ ∈ C∞(X,W ). Such a connection preserves the semi-spinor bundles W±,
and any two connections of this form differ by a 1-form on X with pure imaginary values.

In terms of principal bundles, denote by PSO(2n) → X the bundle of orthonormal bases of the
manifold X, and let PΓ := PSpinc(2n) → X be its extension to a principal Spinc(2n)-bundle over X
associated with the Spinc-structure (W,Γ). Then we have

W = PSpinc(2n) ×Spinc(2n) W0,

where W0 = C
2n and the group Spinc(2n) acts on W0 by the standard spin representation Γ0.

Moreover,
TX = PSpinc(2n) ×Spinc(2n) V0,

where V0 = R
2n = C

n and the group Spinc(2n) acts on V0 by the homomorphism π : Spinc(2n) →
SO(2n), and

LΓ = PSpinc(2n) ×Spinc(2n) C,

where the group Spinc(2n) acts on C by the homomorphism δ : Spinc(2n) → U(1).
Consider the standard spin representation

Γ0 : Clc(V0) → EndW0

and denote by G the subgroup in AutW0 that coincides with the image of the group Spinc(2n)
under the action of the map Γ0: G = Γ0(Spin

c(2n)). Its Lie algebra is equal to

g := LieG = Γ0(cl2(V0)⊕ iR) = Γ0(cl2(V0))⊕ iR = g0 ⊕ iR,

where g0 := Γ0(cl2(V0)).
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Then the Spinc-connection on W is generated by the 1-form of the connection A ∈ Ω1(PΓ, g).
We can write

A = A0 ⊕A,

where A0 ∈ Ω1(PΓ, g0) is the traceless part of the form A and A ∈ Ω1(PΓ, iR) is its trace part equal
to A = TrA/2n.

The traceless part A0 generates a connection on TX, because g0 = so(2n), and, by the definition
of the Spinc-connection, it must coincide with the Levi-Civita connection. Hence, A is completely
determined by its trace part A ∈ Ω1(PΓ, iR). Since δ(eiθ · 1) = e2iθ, the trace part A ∈ Ω1(PΓ, iR)
generates the connection 2A on the characteristic bundle LΓ(= L). If L has a square root L1/2 → X
(this condition is satisfied, for example, in the case when X is a spin manifold), then A also generates
a connection on L1/2. In the general case A can be considered as a virtual connection on the virtual
line bundle L1/2. Denote by A(Γ) the space of all such virtual connections A in the virtual line
bundle L1/2.

3.3.2. Dirac operator. Denote by ∇A the covariant derivative of sections of W that is generated
by the connection A = A0 +A. The Dirac operator

DA : C∞(X,W+) → C∞(X,W−)

associated with the virtual connection A is defined by the formula

DAΦ =
2n∑

ν=1

Γ(eν)∇A,eνΦ,

where Φ ∈ C∞(X,W+) and {eν} is a local orthonormal basis of the bundle TX. This definition
is in fact independent of the choice of the local orthonormal basis {eν} (due to the existence of an
equivalent invariant definition of this operator).

The adjoint Dirac operator is defined by duality as

D∗
A : C∞(X,W−) → C∞(X,W+).

3.3.3. Spinc-connections and the Dirac operator on an almost complex manifold. Let (X,J) be
a 2n-dimensional (over R) almost complex manifold with an almost complex structure J compatible
with the orientation and Riemannian metric g. Denote by (Wcan,Γcan) the canonical Spinc-structure
on X.

If the structure J is integrable and parallel with respect to g, i.e., X is Kähler, then the Levi-
Civita connection ∇ = ∇g preserves the spaces Ω0,q(X) and can be extended to a canonical Spinc-
connection ∇can on Wcan. In particular, 2Acan is the canonical connection on the canonical bundle

Lcan = K∗(X) = Λ0,n(T ∗X).

If the structure J is not integrable, then the Levi-Civita connection does not preserve the
spaces Ω0,q; however, the canonical Spinc-connection ∇can on the bundle Wcan can be defined by
adding the term containing the Nijenhuis tensor of the structure J to the Levi-Civita connection.

Other Spinc-structures on (X,J) can be constructed by setting

WE = Wcan ⊗ E,

where E is a Hermitian line bundle E → X. The corresponding Spinc-connection on WE will have
the form

A = Acan ⊗ id + id⊗B,
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where B is a Hermitian connection on E → X. The corresponding Dirac operator

DA : C∞(X,W+
E ) → C∞(X,W−

E ),

where W+
E = Λ0,ev(X,E) and W−

E = Λ0,od(X,E), coincides with

DA = ∂̄B + ∂̄∗
B .

3.3.4. Weizenböck formulas. Let X be an oriented 2n-dimensional Riemannian manifold and

∇∗
A : C∞(X,W ) → C∞(X,W )

be the L2-adjoint operator of ∇A. Then the following Weizenböck formulas hold:
⎧
⎪⎨

⎪⎩

D∗
ADAΦ = ∇∗

A∇AΦ+
1

4
sΦ+ ρ+(FA)Φ,

DAD
∗
AΨ = ∇A∇∗

AΨ+
1

4
sΨ+ ρ−(FA)Ψ,

where Φ ∈ C∞(X,W+), Ψ ∈ C∞(X,W−), s is the scalar curvature of (X, g), and

ρ± : Λ2
±(T

∗X)⊗ iR → Herm0(W
±)

are the maps introduced in Subsection 3.1.8. (Here, Herm0(W
±) denotes the space of Hermitian

traceless endomorphisms of the bundle W±.)

4. DIMENSION FOUR: SEIBERG–WITTEN EQUATIONS

In this section we consider the Seiberg–Witten equations on compact oriented Riemannian mani-
folds of dimension 4 and study their solutions. In Subsection 4.1 we present some general properties
of these equations and of the moduli spaces of their solutions. Subsection 4.2 is devoted to the
special case of Kähler surfaces. Here we give a description of the moduli spaces in terms of complex
curves that is analogous to the Bradlow theorem for vortex equations on compact Riemann surfaces.
In the next subsections we study the Seiberg–Witten equations on symplectic 4-manifolds. (The
topology of symplectic 4-manifolds and pseudoholomorphic curves on such manifolds were studied
in [4, 6, 10, 32].) In Subsection 4.3 we discuss general properties of these equations and in Subsec-
tion 4.4 give a direct construction of the adiabatic (scale) limit that associates a pseudoholomorphic
curve with a solution of the Seiberg–Witten equations. Subsection 4.5 is devoted to the derivation
of the adiabatic equations that must hold for the sections of the vortex bundle over the limiting
pseudoholomorphic curve. In the last Subsection 4.6 we consider the inverse construction that
associates an approximate solution of the Seiberg–Witten equations with a section of the vortex
bundle over a pseudoholomorphic curve. General references for this section are the original papers
of Taubes [26–31] and review papers [14, 18].

4.1. Seiberg–Witten equations on Riemannian 4-manifolds.
4.1.1. Seiberg–Witten equations. Let X be a compact oriented Riemannian manifold of di-

mension 4. Suppose that it is equipped with a Spinc-structure (W,Γ) and a Spinc-connection ∇A

generated by a virtual connection A ∈ A(Γ) on LΓ.
Consider the following Seiberg–Witten equations:

{
DAΦ = 0,

F+
A = σ+(Φ⊗ Φ∗)0,

(4.1)
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where

σ+(Φ ⊗ Φ∗)0 := σ+

(
Φ⊗ Φ∗ − 1

2
|Φ|2 id

)
.

Here, Φ ⊗ Φ∗ − 1/2|Φ|2 id is the traceless Hermitian endomorphism of the bundle W+ associated
with Φ and

σ+ := (ρ+)−1 : Herm0(W
+) → Ω2

+(X, iR),

where Ω2
±(X, iR) is the space of sections of the bundle Λ2

±(T
∗X) ⊗ iR over X, i.e., the space

of self-dual (respectively, anti-self-dual) 2-forms on X with pure imaginary values. Similarly,
F+
A ∈ Ω2

+(X, iR) (respectively, F−
A ∈ Ω2

−(X, iR)) denotes the self-dual (respectively, anti-self-dual)
component of the form FA ∈ Ω2(X, iR).

4.1.2. Seiberg–Witten functional. Introduce the following Seiberg–Witten functional :

E(A,Φ) =
1

2

∫

X

{
|FA|2 + |∇AΦ|2 +

|Φ|2
4

(s + |Φ|2)
}
dvol, (4.2)

where s := s(g) denotes the scalar curvature of (X, g) and dvol is the volume element on (X, g).
Note that E(A,Φ) can take negative values if the curvature s is negative.

Using the Weizenböck formula, one can deduce the Bogomolny formula

E(A,Φ) =
1

2

∫

X

{
|DAΦ|2 + 2|F+

A − σ+(Φ⊗ Φ∗)0|2
}
dvol− π2

2
〈c1(LΓ)

2, [X]〉.

To prove it, we use the following formula of the Chern–Weil type:

π2〈c1(LΓ)
2, [X]〉 = −

∫

X

FA ∧ FA = ‖F+
A ‖2 − ‖F−

A ‖2.

On the other hand,

|F+
A − σ+(Φ⊗ Φ∗)0|2 = |F+

A |2 + |σ+(Φ⊗ Φ∗)0|2 − 2〈F+
A , σ+(Φ⊗ Φ∗)0〉

= |F+
A |2 + 1

8
|Φ|4 − 1

2
〈ρ+(FA)Φ,Φ〉

and by the Weizenböck formula

‖DAΦ‖2L2 = ‖∇AΦ‖2L2 +
1

4

∫

X

s|Φ|2 dvol + 〈ρ+(FA)Φ,Φ〉L2 .

Now the Bogomolny formula follows from the last three relations.
The Bogomolny formula implies a lower estimate for the Seiberg–Witten functional:

E(A,Φ) ≥ −π2

2
〈c1(LΓ)

2, [X]〉,

in which the equality is attained only on solutions of the Seiberg–Witten equations.
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4.1.3. Gauge transformations and perturbed Seiberg–Witten equations. The Seiberg–Witten
equations, as well as the Seiberg–Witten functional E(A,Φ), are invariant under the gauge trans-
formations given by the formula

A �→ A+ u−1 du, Φ �→ u−1Φ,

where u = eiχ and χ is a smooth real-valued function so that u ∈ G := C∞(X,U(1)). This action
is always free except for the case Φ ≡ 0.

In order to get rid of solutions of the form (A, 0), we consider the perturbed Seiberg–Witten
equations defined in the following way:

{
DAΦ = 0,

F+
A + η = σ+(Φ⊗ Φ∗)0,

(4.3)

where η ∈ Ω2
+(X, iR). We will call them the SWη-equations for brevity.

Note that if b2+ := dimH2
+(X,R) ≥ 1, then we can always choose η so that the SWη-equations do

not have solutions of the form (A, 0). (Recall that H2
+(X,R) denotes the positive definite subspace

of cohomology with respect to the intersection form.) This fact holds by virtue of the following
proposition, whose proof is left to the reader as an exercise.

Proposition 2. Define the Γ-wall by setting

Ω2
Γ(X, iR) :=

{
η ∈ Ω2

+(X, iR) : there exists A ∈ A(Γ) with F+
A + η = 0

}
.

Then Ω2
Γ(X, iR) is an affine vector subspace in Ω2

+(X, iR) of codimension b+2 .
4.1.4. Moduli space of solutions. The moduli space of solutions of the Seiberg–Witten equations

is defined as
Mη(X,Γ, g) := {SWη-solutions (A,Φ)}/G.

If b2+ ≥ 1, then the manifold Mη(X,Γ, g) is smooth for an appropriate choice of η. Moreover, the
following theorem is true.

Theorem 7. If b2+ > 1, then for a generic form η ∈ Ω2
+(X, iR) the moduli space Mη(X,Γ, g)

is an oriented compact smooth manifold of dimension

dimMη(X,Γ, g) =
〈c1(LΓ)

2, [X]〉 − 2χ(X)− 3σ(X)

4
,

where χ(X) is the Euler characteristic of X and σ(X) is the signature of H2(X,R).
According to this theorem, the homology class [Mη(X,Γ, g)] in the (infinite-dimensional) con-

figuration space {(A,Φ)}/G is well defined and does not depend on the choice of a generic form η
and a metric g. It depends only on the Spinc-structure Γ. (In the boundary case b2+ = 1, the moduli
space Mη will, generally speaking, depend on the choice of η, because the Γ-wall has codimension 1
and divides the space Ω2

+(X, iR) into two components.)
Assume, in particular, that dimMη(X,Γ, g) = 0, i.e.,

〈c1(LΓ)
2, [X]〉 = 2χ(X) + 3σ(X)

(note that this condition also arises in the Wu theorem on the existence of an almost complex
structure on a given Riemannian manifold). Then the moduli space Mη(X,Γ, g) consists of a finite
number of points with signs. In this case we can define the Seiberg–Witten invariant SW(X,Γ) by
the formula

SW(X,Γ) :=
∑

points of Mη

(sign of a point) ∈ Z.
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The introduced quantity is covariant with respect to orientation-preserving diffeomorphisms f of
the manifold X in the sense that

SW(X,Γ) = SW(f(X), f∗Γ).

4.1.5. Scale transformations. The SWη-equations are not invariant under the change g �→ λ2g
of the scale of the base Riemannian metric. More precisely, there exists a bijective correspondence
between the sets

{SWη-solutions (A,Φ) for the metric g} and
{

SWη-solutions
(
A,

1

λ
Φ

)
for the metric λ2g

}
,

where λ > 0 is a constant. Note that under a change of the scale the Seiberg–Witten functional
transforms as

Eg(A,Φ) = Eλ2g

(
A,

1

λ
Φ

)
.

4.2. Seiberg–Witten equations on a Kähler surface.
4.2.1. Seiberg–Witten equations. Let (X,ω, J) be a compact Kähler surface equipped with the

canonical Spinc-structure (Wcan,Γcan) and canonical Spinc-connection ∇can = ∇Acan , where 2Acan
is a connection on the anticanonical bundle K∗.

Let the Spinc-structure on X be associated with some Hermitian line bundle E → X so that
the semi-spinor bundles are given by

W+
E = W+

can ⊗ E = Λ0(E) ⊕ Λ0,2(E), W−
E = W−

can ⊗ E = Λ0,1(E).

The characteristic bundle coincides with

LΓE
= Lcan ⊗ E2 = K∗ ⊗ E2.

The Spinc-connection ∇A on WE can be written in the form ∇A = ∇can +B, where B is a Hermitian
connection on the bundle E → X. In this case the Dirac operator is written in the form

DA = ∂̄B + ∂̄∗
B

for Φ = (ϕ0, ϕ2) ∈ Ω0(X,E) ⊕ Ω0,2(X,E).
The right-hand side of the second Seiberg–Witten equation (4.1) for the curvature can be rewrit-

ten as

σ+(Φ ⊗Φ∗) = i
|ϕ0|2 − |ϕ2|2

4
ω +

ϕ0ϕ2 − ϕ0ϕ2

2
.

Recall that on Kähler surfaces we have the decomposition of the complexified bundle Λ2
+ ⊗ C of

self-dual 2-forms into the components of the type

Λ2
+ ⊗ C = Λ2,0 ⊕ C[ω]⊕ Λ0,2.

Accordingly, the Seiberg–Witten equation for the curvature splits into the sum of the component
parallel to ω, the (0, 2)-component, and the (2, 0)-component complex conjugate to the (0, 2)-com-
ponent.

So, the SWη-equations on a compact Kähler surface can be rewritten in the form
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂̄Bϕ0 + ∂̄∗
Bϕ2 = 0,

F 0,2
B + η0,2 =

ϕ0ϕ2

2
,

Fω
Acan + Fω

B =
i

4
(|ϕ0|2 − |ϕ2|2)− ηω.

(4.4)
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The first of these equations is the Dirac equation, the second one corresponds to the (0, 2)-component
of the equation for the curvature, and the third one corresponds to the curvature component parallel
to ω.

4.2.2. Solvability conditions. Suppose next that η is a form of type (1, 1) and apply the ∂̄B-op-
erator to the first Seiberg–Witten equation:

∂̄B ∂̄
∗
Bϕ2 = −∂̄B ∂̄Bϕ0 (first equation (4.4))

= −F 0,2
B ϕ0 (definition of F 0,2

B )

= −|ϕ0|2ϕ2

2
(second equation (4.4)).

Taking the inner product of the obtained equation

∂̄B∂̄
∗
Bϕ2 = −|ϕ0|2ϕ2

2

with ϕ2, we integrate it over X. As a result we get

‖∂̄∗
Bϕ2‖L2 +

‖ϕ0‖2L2‖ϕ2‖2L2

2
= 0.

Hence,

∂̄∗
Bϕ2 = ∂̄Bϕ0 = ϕ0ϕ2 ≡ 0,

which implies that either ϕ0 or ϕ2 should vanish identically.
In order to find out which of these quantities is identically equal to zero, we integrate the third

equation (4.4). As a result we get

∫

X

|ϕ0|2 − |ϕ2|2
4

ω ∧ ω = i

∫

X

(FAcan + FB + η) ∧ ω = π(−c1(K) + 2c1(E)) · [ω] + i

∫

X

η ∧ ω.

Note that
∫

X

|ϕ0|2 − |ϕ2|2
4

ω ∧ ω =
‖ϕ0‖2L2 − ‖ϕ2‖2L2

2
.

Consider first the case η = 0, which corresponds to the unperturbed Seiberg–Witten equations.
Then

‖ϕ2‖2 − ‖ϕ0‖2 = 2π
(
2c1(E) · [ω]− c1(K) · [ω]

)

and we obtain the following solvability conditions:

• if c1(E) · [ω] > c1(K) · [ω]/2, then ϕ0 ≡ 0 and ϕ2 �≡ 0;
• if c1(E) · [ω] < c1(K) · [ω]/2, then ϕ0 �≡ 0 and ϕ2 ≡ 0.

Note that for a Kähler surface with b+2 > 1 the inequality c1(K) · [ω] ≥ 0 holds, because the canonical
bundle K of such a surface admits a nontrivial holomorphic section. For the same reason,

• if (E, ∂̄B) has a nontrivial holomorphic section ϕ0, then c1(E) · [ω] ≥ 0;
• if K ⊗E∗ has a nontrivial holomorphic section ϕ2, then c1(K) · [ω] ≥ c1(E) · [ω].
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4.2.3. The case of the trivial bundle E. Consider next the SWη-equations in the case of the
trivial bundle E and set

η = −F+
Acan

+ iλω

with λ > 0. From the third equation (4.4) we find that

4i(dB)ω = 4λ+ |ϕ2|2 − |ϕ0|2.

Integrating this equation over X, we obtain

4λVol(X) + ‖ϕ2‖2 − ‖ϕ0‖2 = 0.

Hence, ϕ2 ≡ 0 and the SWη-equations take the form
⎧
⎪⎪⎨

⎪⎪⎩

∂̄Bϕ0 = 0,

F 0,2
B = 0,

4i(dB)ω = 4λ− |ϕ0|2.
Since the bundle E is trivial, the equations admit the trivial solution

B ≡ 0, ϕ0 ≡ 2
√
λ, ϕ2 ≡ 0.

Using the fact that these equations are of Liouville type, one can show that the above solution is
unique (up to gauge equivalence). So in this case

SW(X,Γcan) = 1.

4.2.4. Description of the moduli space in terms of effective divisors. We will show that for the
SWη-equations on a Kähler surface an analog of the Bradlow theorem for vortex equations on a
compact Riemann surface holds. Let E → X be a Hermitian line bundle over (X,ω, J). Suppose
that for some λ > 0 its first Chern class satisfies the inequality

0 ≤ c1(E) · [ω] < c1(K) · [ω]
2

+ λVol(X). (4.5)

This inequality plays the same role as the stability condition c1(L) < (τ/4π)Volg(X) in the Bradlow
theorem.

Under this condition the moduli space of SWη-solutions with the form η = πiλω and Spinc-
structure (WE ,ΓE) admits the following description: there exists a bijective correspondence between
the gauge classes of SWη-solutions (B,ϕ0) and effective divisors of degree c1(E) on X. The latter
space can be identified with the quotient of the space of holomorphic line bundles (E, ∂̄E) that
have a nontrivial holomorphic section ϕ0 modulo the action of the complexified group of gauge
transformations. Since ∂̄E = ∂̄B for some Hermitian connection B, this space coincides with the
space of solutions (B,ϕ0) of the equations

∂̄Bϕ0 = 0, F 0,2
B = 0

modulo gauge transformations.
To prove this equivalence, we need to show that for any solution (B,ϕ0) of the above equations

there exists a unique GC-equivalent solution (Bu, ϕu) satisfying the third Seiberg–Witten equa-
tion (4.4). Writing the gauge factor u in the form u = eθ for a real-valued function θ ∈ R, we obtain
the following Liouville type equation for θ:

8i(∂∂̄θ)ω + e−2θ|ϕ0|2 = 4πλ− 4i(Fω
B + Fω

Acan).

According to the Kazdan–Warner theorem, this equation has a unique solution if condition (4.5) is
satisfied.
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4.3. Seiberg–Witten equations on a 4-dimensional symplectic manifold.
4.3.1. Seiberg–Witten equations. Let (X,ω, J) be a 4-dimensional compact symplectic manifold

equipped with a compatible almost complex structure J . Let (WE,ΓE) be a Spinc-structure on X
associated with a Hermitian line bundle E → X equipped with a Hermitian connection B.

The corresponding SWη-equations have the form
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂̄Bϕ0 + ∂̄∗
Bϕ2 = 0,

F 0,2
Acan

+ F 0,2
B + η0,2 =

ϕ0ϕ2

2
,

Fω
Acan + Fω

B + ηω =
|ϕ2|2 − |ϕ0|2

4
,

(4.6)

where (ϕ0, ϕ2) ∈ Ω0(X,E) ⊕ Ω0,2(X,E). Note that the form FAcan is not necessarily of type (1, 1)
for a general almost complex structure J .

As in the Kähler case, consider the perturbation η of the form

η = −F+
Acan

+ πiλω,

where λ is a positive number, and introduce the normalized sections

α :=
ϕ0√
λ
, β :=

ϕ2√
λ
.

Then the SWη-equations can be rewritten in the form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂̄Bα+ ∂̄∗
Bβ = 0,

2

λ
F 0,2
B = ᾱβ,

4i

λ
Fω
B = 4π + |β|2 − |α|2.

(4.7)

We will call them the SWλ-equations for brevity.
4.3.2. Solvability conditions. We first study the solvability conditions for the SWλ-equations.

They look similar to the Kähler case; however, in contrast to the latter, we now have

∂̄B ∂̄
∗
Bβ = −∂̄B ∂̄Bα = −F 0,2

B α+
1

4
(∂Bα) ◦NJ ,

where NJ is the Nijenhuis tensor of the structure J . By some tedious though not complicated
estimates based on the Weizenböck formula (which are presented, for example, in the paper by
Kotschik [9]), one can prove that there exists a positive constant λ0 depending only on NJ such
that for all λ ≥ λ0 the following estimate holds:

ε‖dBα‖2 + λ‖ᾱβ‖2 + Cλ‖β‖2 + λ‖4π − |α|2‖2 ≤ 16π2c1(E) · [ω], (4.8)

where ‖·‖ := ‖·‖L2 and ε, C > 0 are some constants. This inequality implies the following solvability
condition:

c1(E) · [ω] ≥ 0. (4.9)

Note that in the Kähler case this condition is a corollary to the existence of a ∂̄B-holomorphic
section ϕ0 of the bundle E.
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Consider first the case when c1(E) · [ω] = 0. Then there exists a section α such that |α| ≡ 2
√
π;

hence the bundle E is necessarily trivial. In this case the SWλ-equations admit the trivial solution

B ≡ 0, α ≡ 2
√
π, β ≡ 0,

and it can be shown that this solution is unique (up to gauge equivalence; see [26]). So in the case
under consideration we have

SW(X,Γcan) = 1.

Consider next the case when c1(E) · [ω] > 0. If we suppose that SW(X,ΓE) �= 0, then, using (4.8),
one can show that the validity of the inequality

0 ≤ c1(E) · [ω] ≤ c1(K) · [ω]

is necessary and sufficient for the solvability of the SWλ-equations. Note that the equality in the
left sign ≤ is attained only for the trivial E, while in the right sign ≤ it is attained only for E = K.

4.4. From the Seiberg–Witten equations to pseudoholomorphic curves.
4.4.1. Seiberg–Witten equations. Let (X,ω) be a 4-dimensional compact symplectic manifold

with a generic compatible almost complex structure J satisfying the condition b+2 > 1. Let E be a
Hermitian line bundle over X with a Hermitian connection B. Assume that X is equipped with a
Spinc-structure (WE ,ΓE) associated with E and with a Spinc-connection generated by B. Consider
the SWη-equations corresponding to this Spinc-structure with the form

η = −F+
Acan

+
iλ

4
ω, λ > 0,

and normalized sections

α =
ϕ0√
λ

∈ Ω0(X,E), β =
ϕ2√
λ

∈ Ω0,2(X,E).

The arising equations (still called the SWλ-equations) have the form
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂̄Bα+ ∂̄∗
Bβ = 0,

2

λ
F 0,2
B = ᾱβ,

4i

λ
Fω
B = 1 + |β|2 − |α|2.

(4.10)

In this subsection we will describe the direct Taubes construction that assigns a pseudoholomor-
phic curve C in X to a λ-dependent family of solutions of the SWλ-equations for λ → ∞, and the
homology class [C] of C is Poincaré dual to the Chern class c1(E). This construction is a nontrivial
generalization to the case of 4-dimensional symplectic manifolds of the above description of the
moduli space of SWλ-solutions on compact Kähler surfaces in terms of effective divisors.

The following theorem is proved in [28].
Theorem 8 (Taubes). If SW(X,ΓE) �= 0 and c1(E) · [ω] > 0, then there exists a compact

pseudoholomorphic curve C embedded in X with the homology class [C] Poincaré dual to the Chern
class c1(E).

Remark 7. The pseudoholomorphic curve C mentioned in the theorem may be disconnected,
so that C =

∑k
j=1 djCj, where Cj are pairwise disjoint connected pseudoholomorphic curves. Below

we suppose for simplicity that k = 1.
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4.4.2. A priori estimates. In the case when SW(X,ΓE) �= 0, the SWλ-equations have solutions
(Bλ, (αλ, βλ)) for all λ > 0. The following a priori estimates of these solutions can be obtained with
the help of the Weizenböck formula and maximum principle:

|αλ| ≤ 1 +
C1

λ
, (4.11)

|βλ|2 ≤
C2

λ
(1− |α|2) + C3

λ3
, (4.12)

‖∂̄Bλ
αλ‖2 + ‖dBλ

βλ‖2 ≤ C4

λ
, (4.13)

2πc1(E) · [ω]− C5

λ
≤ λ

2

∫

X

|1− |αλ|2| dvol ≤ 2πc1(E) · [ω] + C5

λ
, (4.14)

|F±
Bλ

| ≤ C6λ(1− |αλ|2) + C7, (4.15)

where C1, . . . , C7 are some constants depending only on c1(E) and the Riemannian metric.
From these estimates we deduce that |αλ| → 1 as λ → ∞ almost everywhere on X (outside

the zeros of αλ). Moreover, ‖∂̄Bλ
αλ‖ → 0, i.e., αλ tends to become a ∂̄Bλ

-holomorphic section of
the bundle E. At the same time, βλ → 0 everywhere (together with the first derivatives). So, as
λ → ∞, the situation becomes more and more similar to that in the Kähler case.

4.4.3. Construction of the pseudoholomorphic curve. Denote by Cλ := α−1
λ (0) the zero set of

the section αλ. The weak limit of this zero set is precisely the desired pseudoholomorphic curve C.
In more detail, with the SWλ-solution (Bλ, (αλ, βλ)) we associate the current

Fλ(η) :=
i

2π

∫

X

FBλ
∧ η

on forms η ∈ Ω2(X,R). The norms

‖Fλ‖ = sup
0�=η∈Ω2

|Fλ(η)|
supx∈X |η(x)|

are bounded uniformly in λ, because relations (4.14) and (4.15) imply the estimate

‖Fλ‖ ≤ 1

2π
‖FBλ

‖L1 < C,

where C > 0 is a constant that does not depend on λ. So we can find a sequence λn → ∞ such that
the currents Fλn converge weakly to a functional F that is a closed positive integer (1, 1)-current
Poincaré dual to c1(E). The support of F is precisely the desired pseudoholomorphic curve C.

4.4.4. Seiberg–Witten equations on R
4. Consider now the SW1-equations (for λ = 1) on the

space X = R
4 with the standard Euclidean metric g0 and standard symplectic form ω0. They

will play the role of a local model for the SWλ-equations on (X,ω, J) for λ → ∞. We identify
(R4, ω0, J0) with C

2 and consider the trivial bundle E over C
2. In this case the SW1-equations are

written in the form ⎧
⎪⎪⎨

⎪⎪⎩

∂̄Bα = 0,

F 0,2
B = 0,

4iFω
B = 1− |α|2.
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Solutions of these equations satisfy the following a priori estimates:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

|α| ≤ 1, |∇Bα| ≤ C(1− |α|2),

|F−
B | ≤ |F+

B | = 1

4
(1− |α|2),

∫

BR

(1− |α|2) dvol ≤ CR2

(4.16)

in the ball BR = BR(0) of radius R and
∫

{|F+
B |2 − |F−

B |2} dvol ≤ C < ∞. (4.17)

These estimates imply the following properties of solutions :
1. Either |α| ≡ 1 or |α| < 1 everywhere on C

2:
(a) if |α| ≡ 1, then any solution is gauge equivalent to the trivial one, i.e., B ≡ 0 and α ≡ 1;
(b) if |α| < 1, then the zero set α−1(0) coincides with the zero set of some complex polynomial

on C
2 of degree controlled by the constant C from estimates (4.16) and (4.17).

2. Either |F−
B | ≡ |F+

B | or |F−
B | < |F+

B | everywhere on C
2. If |F−

B | ≡ |F+
B |, then there exists a

C-linear projection π : C2 → C such that the pair (B,α) is gauge equivalent to a pair π∗(B1, α1)
for a vortex solution (B1, α1) on C with finite energy.

3. The quantity
1

4π

∫
{|F+

B |2 − |F−
B |2} dvol(X)

is a nonnegative integer.
4. The quantities 1− |α|2 and |dBα|2 decrease exponentially as the distance to α−1(0) tends to

zero.
4.4.5. Reduction to the local model. Let (X,ω, J) be a compact symplectic 4-dimensional man-

ifold equipped with a compatible Riemannian metric g. For an arbitrary point x0 ∈ X we can define
the Gaussian coordinate chart at the point x0 by the embedding h : R4 ↪→ X sending the origin
to x0 so that

h∗g = g0 +O(|y|2), h∗ω = ω0 +O(|y|).

Here, (R4, g0, ω0) is the standard 4-dimensional Euclidean space with coordinates y = (y1, y2, y3, y4)
and h∗ is the tensor map induced by h.

Suppose that (B, (α, β)) := (Bλ, (αλ, βλ)) is an SWλ-solution on (X, g, ω). Then h∗(B, (α, β))
define the SWλ-data on R

4. Applying the dilatation

δλ : y �→ y√
λ

(which is equivalent to introducing the slow time variable), we obtain the data

(B, (α, β)) = δ∗λh
∗(B, (α, β))

on (R4, g, ω) with

|g − g0| ≤
C

λ
|y|2, |ω − ω0| ≤

C√
λ
|y|

on the “large” ball of radius
√
λ (i.e., for |y| ≤

√
λ).
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The data (B, (α, β)) satisfy the SW1-equations on (R4, g, ω) and are estimated on the “small”
ball of radius 1/

√
λ by the data h∗(B, (α, β)) on (R4, g, ω) with the help of the following inequalities:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

|α(y)| =
∣∣∣∣α
(

y√
λ

)∣∣∣∣ ≤ C, |dB α(y)| 1√
λ

∣∣∣∣dBα
(

y√
λ

)∣∣∣∣ ≤ C,

|β(y)| = 1

λ

∣∣∣∣β
(

y√
λ

)∣∣∣∣ ≤
C

(
√
λ)3

, |dB β(y)| =
(

1√
λ

)3∣∣∣∣dBβ
(

y√
λ

)∣∣∣∣ ≤
C

λ
,

|FB(y)| =
1

λ

∣∣∣∣FB

(
y√
λ

)∣∣∣∣ ≤ C.

(4.18)

4.4.6. Compactness lemma and existence of vortex-type solutions. The following lemma is
proved by Taubes in [28].

Lemma 1 (compactness lemma). Suppose that the sequence λn → ∞ as n → ∞. Denote
by (Bn, (αn, βn)) the sequence of SWλn-data on (X, g, ω). Let {xn} be an arbitrary sequence of
points in X and {hn} be the corresponding sequence of Gaussian charts at the points xn. De-
note by (Bn, (αn, βn)) the sequence of SW1-solutions on (R4, gn, ωn) constructed from the data
(Bn, (αn, βn)) with the help of the Gaussian charts {hn} at the points {xn} in the same way as in
Subsection 4.4.5. Then there exists a subsequence of [Bn, (αn, βn)] (where [Bn, (αn, βn)] denotes
the gauge equivalence class of the data (Bn, (αn, βn))) converging in the C∞-topology on compact
subsets of R

4 to some SW1-solution (B0, (α0, 0)) =: (B0, α0) on (R4, g0, ω0). This solution satisfies
estimates (4.16) and (4.17) on R

4.

Let us try to apply this lemma to the study of the pseudoholomorphic curve C introduced above.
Let x0 ∈ C ⊂ X. We apply Lemma 1 to the sequences λn → ∞ and xn ≡ x0. Then, according to the
lemma, the corresponding sequence [Bn, (αn, βn)] contains a subsequence converging (on compact
subsets of R4) to an SW1-solution (B0, α0) on R

4. By construction, this solution should not depend
on the radius in spherical coordinates on R

4. This means that |F+
B0

| ≡ |F−
B0

| for such a solution, so,
according to property 2 from Subsection 4.4.4, the pair (B0, α0) is a vortex-type solution.

Although this heuristic argument looks quite plausible, its justification is a hard problem. The
proof of the existence of vortex-type solutions is based on the following localization lemma due to
Taubes [28].

4.4.7. Localization lemma.

Lemma 2 (localization lemma). Fix ε > 0, δ > 0, R ≥ 1, and k ∈ N. Then there exists
λ0 > 0 such that for all λ ≥ λ0 and any SWλ-solution (B, (α, β)) on (X, g, ω) the following
assertions are true:

1. For any fixed x ∈ X

(a) and any Gaussian chart h at the point x we can construct, as above, an SW1-solution
(B, (α, β)) on (R4, g, ω). Then there exists an SW1-solution (B0, α0) on (R4, g0, ω0) such
that the distance between [B, (α, β)] and [B0, α0] measured on the ball BR ⊂ R

4 in the
Ck-norm does not exceed ε;

(b) the pair (B0, α0) satisfies estimates (4.16) and (4.17) with a constant C depending only
on g and c1(E) (but not on λ or (B, (α, β)));

(c) the pair (B0, α0) ≡ (Bx
0 , α

x
0) depends only on x, and α0 �≡ const if |α(x)| < 1.
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2. For varying x ∈ X there exists a constant C depending only on g and c1(E) such that the set

Ωδ :=

⎧
⎨

⎩x ∈ X :

∫

BR

{∣∣F+
Bx

0

∣∣2 −
∣∣F−

Bx
0

∣∣2} dvol(g0) ≥ δ

⎫
⎬

⎭

can be covered by less than C/δ balls of radius R/
√
λ (in other words, the set Ωδ is thin).

Using this lemma, we can find a subsequence xn → x0 ∈ C and an associated subsequence
δn → 0 such that ∫

BR

{∣∣F+
Bn

∣∣2 −
∣∣F−

Bn

∣∣2} dvol(g0) < δn.

Then by the compactness lemma we can find a subsequence of [Bn, (αn, βn)] that converges on the
ball BR to an SW1-solution (B0, α0) on R

4 so that

‖F+
B0

‖L2(BR) = ‖F−
B0

‖L2(BR).

Since |F+
B0

| ≥ |F−
B0

|, we have |F+
B0

| ≡ |F−
B0

| on BR. Hence (B0, α0) is a vortex-type solution.
This argument shows that for a given point x0 ∈ C one can find a subsequence of SWλn-solutions

(Bn, (αn, βn)) converging to a vortex-type solution (B0, α0) with center at x0. In this sense, the
SWλ-equations on X for λ → ∞ reduce to a family of vortex equations on the normal bundle N → C.

4.5. Adiabatic limit in the Seiberg–Witten equations. This subsection is devoted to the
detailed study of the adiabatic limit in the Seiberg–Witten equations on a 4-dimensional compact
symplectic manifold.

4.5.1. Geometry in a neighborhood of a pseudoholomorphic curve. Let C be a compact pseudo-
holomorphic curve in a compact symplectic 4-dimensional manifold (X,ω, J, g). We will suppose
that the curve C is connected and smooth. Let

π : N → C

be the normal bundle to the curve C with the fiber Nx for x ∈ C identified with the orthogonal
complement to the space TxC in TxX. Since the operator of the almost complex structure J
preserves TxC, it also preserves Nx. Hence, π : N → C is a complex line bundle.

Introduce a fiberwise constant almost complex structure J0 on π : N → C by

J0 := π∗(J |TC).

We also fix a J0-holomorphic fiber coordinate s on N such that the curve C, identified with the zero
section of the bundle π : N → C, is given by the equation s = 0.

We equip N with the Riemannian metric induced by the Riemannian metric of the manifold X,
and consider the disk subbundle U → C in N → C formed by the disks of some (constant)
radius in fibers of the bundle N → C. If the chosen radius is sufficiently small, then, using the
exponential map exp: U → X, we can identify U with a tubular neighborhood u of the curve C
in the manifold X. With the help of this identification we can transport the almost complex
structure J from the neighborhood u to U by taking the inverse image of J |u under the exponential
map. Denote the almost complex structure on U obtained in this way by the same letter J . By
definition, it coincides with the almost complex structure J0 on the zero section of the bundle
π : U → C; however, in contrast to J0, it is not fiberwise constant on U .
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We define the fiber linearization DJ of the ∂̄J -operator with respect to the bundle π : U → C.
Note that

∂̄J = ∂̄J0 + νs+ μs̄+O(|s|2) (4.19)

on U , where μ and ν are (0, 1)-forms (with respect to the almost complex structure J0) on C. Then
by definition

DJ := ∂̄J0 + δ̄J = ∂̄J0 + νs+ μs̄ (4.20)

is the linear part of the operator ∂̄J in s.
4.5.2. Vortex bundle. Recall that the moduli space of d-vortices Md from Section 1 is identified

with the vector space C
d by the map assigning the pair (A,Φ) with A = i(∂̄ − ∂)u and Φ = Pwe

−u

to the collection w = (w1, w2, . . . , wd) ∈ C
d, where

Pw(z) = zd + w1z
d−1 + . . .+ wd

and u is a unique solution of the Liouville-type equation

4i∂∂̄u = ∗1
2
(1− |Pw|2e−2u)

that satisfies the asymptotic condition u(z) ∼ d log|z| as |z| → ∞.
In the moduli space Md there is a U(1)-action generated by the natural U(1)-action on C

d given
by the formula

(w1, . . . , wd) �→ (eiθw1, . . . , e
idθwd).

The induced U(1)-action on Md is given by

(A,Φ) �→ (δ∗θA, e
idθδ∗θΦ),

where δθ : z �→ eiθz is a rotation of the plane C.
There is also a scale transformation generated by the dilatation

ρr : z �→
√
rz

with r > 0. This dilatation induces the map

ρ∗r : (A,Φ) �→ (Ar,Φr),

which sends a vortex solution (A,Φ) to a solution (Ar,Φr) of the rescaled vortex equations
{
∂̄ArΦr = 0,

2i(dAr) = r(1− |Φr|2).

We return to the manifold (X,ω, J, g) and pseudoholomorphic curve C. Denote by L → C the
circle subbundle in the bundle π : N → C with the natural U(1)-action and introduce the d-vortex
bundle associated with the bundle π : N → C:

Ld := L×U(1) Md → C.

A section of the bundle Ld, called otherwise the d-vortex section, is given by a family τ = {τx}x∈C
of d-vortex solutions τx = [Ax,Φx] in the normal planes Nx, x ∈ C. In particular, the zero section τ0
corresponds to the family of radial d-vortex solutions. Note that the scale ρ∗r-transformation extends
naturally to the d-vortex sections.
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Consider again the sequence Cn → C. The curves Cn with sufficiently large n can be identified
with sections of π : U → C of degree d or, in other words, with sections of the bundle π : Ud → C.
In another way, the curve Cn can be considered as a d-vortex section, i.e., as a section of the bundle
Ld → C given by some family

γn : x ∈ Cn �→ γn = [An,Φn],

where the gauge class [An,Φn] is determined by the section Cn of the bundle π : Ud → C with the
help of the identification Md

∼= Symd
C.

Denote by γ0 the zero section of the bundle Ud → C, which is identified with the pseudoholo-
morphic divisor d[C]. We are going to show that γ0 is the adiabatic limit of γn for n → ∞ in the
same sense as in the Abelian Higgs model.

4.5.3. From d-vortex sections to the Seiberg–Witten equations. Our goal is to construct, start-
ing from a d-vortex section γ = [A,Φ], the data for the SWλ-equations on X that define the solution
of these equations converging to the original d-vortex section in the adiabatic limit. These data
are obtained by the smooth extension of the line bundle π∗Nd → U , connection A, and section Φ
from the set U identified with a tubular neighborhood u of the curve C in the manifold X to the
whole X.

Let Uδ → C be the disk subbundle (of radius δ < 1) of the bundle U → C. Let also τ = [A,Φ]
be a given d-vortex bundle. We will construct a bundle E → X by gluing together the trivial bundle
over X \ U1/2 and π∗Nd → U with the help of the gluing map

(U \ U1/2)× C → π∗Nd

sending (x, ζ) to (x, ζΦr/|Φr|), where the scale r is chosen so that the zeros of the section Φr are
contained in U1/2. Then the class c1(E) will coincide with the Poincaré dual of the class d[C].

To construct the data (B, (α, 0)), we will use the cut-off function χδ on X satisfying the condi-
tions χδ ≡ 1 on Uδ and χδ ≡ 0 outside U1/2. We construct α by gluing together αr ≡ 1 on X \ U1/2

and αr = Φr/(χδ + (1 − χδ)|Φr|). We also define B by gluing together the trivial connection
on X \ U1/2 and Br = χδAr + (1− χδ)α

−1
r ∇αr.

Plugging these data into the Seiberg–Witten equations, we obtain the following inequalities:
⎧
⎪⎨

⎪⎩

|DBr(αr, 0)| ≤ Ce−c
√
r·dist,

∣∣∣∣F
+
Br

+
ir

4
(1− |αr|2)ω

∣∣∣∣ ≤ C
√
re−c

√
r·dist,

where dist denotes the distance from C. The second of these estimates is unsatisfactory for large r,
because its right-hand side contains the factor

√
r, which increases with the growth of r. To

obtain correct estimates, we should use the adiabatic equations, which we will deduce in the next
subsection.

4.5.4. Seiberg–Witten equations in a neighborhood of the zero section. The Seiberg–Witten
equations corresponding to the data (E, (B,α)) in a small neighborhood Uδ of the zero section of
the bundle U → C (Uδ is assumed to be formed by the disks of sufficiently small radius δ) can be
written in the form ⎧

⎨

⎩

∂̄J,AΦ = 0,

d+J A+
i

4
(1− |Φ|2)ω = 0,

(4.21)

where the operator d+J is given by the composition of the exterior derivative d with the projection to
the self-dual 2-forms (note that the definition of these forms depends on the Riemannian metric g
and, hence, on the almost complex structure J).
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4.5.5. Perturbations of vortex sections. As in the (2 + 1)-dimensional case, consider perturba-
tions γε = [Aε,Φε] of the original d-vortex section γ = [A,Φ] of the form

Aε = A+ εa, Φε = Φ+ εϕ, (4.22)

where (a, ϕ) satisfy the orthogonality condition

(a, ϕ) ⊥ T(A,Φ)Md. (4.23)

Using an H2-basis {nμ} of solutions of the linearized vortex equations D(A,Φ)nμ = 0, we can rewrite
this condition in the form

〈(a, ϕ), nμ〉 = 0 for μ = 1, . . . , 2d. (4.24)

We suppose that, as in the (2 + 1)-dimensional case, nμ and (a, ϕ) satisfy the gauge-fixing condition

δ∗(A,Φ)nμ = 0, δ∗(A,Φ)(a, ϕ) = 0. (4.25)

Substituting the trajectories γε given by formula (4.22) into the Seiberg–Witten equations (4.21),
we get ⎧

⎪⎨

⎪⎩

∂̄J,AΦ+ ε∂̄J,Aϕ+ εa
(0,1)
J Φ ≈ 0,

d+J A+
i

4
(1− |Φ|2)ω + εd+J a−

iε

2
Re(ϕΦ̄)ω ≈ 0;

(4.26)

here and below the sign “≈” denotes an equality up to terms of order higher than 1 in ε, and a
(0,1)
J

is the (0, 1)-component of the 1-form a with respect to the almost complex structure J .
4.5.6. Vertical–horizontal decomposition. At this stage we encounter a new effect that does not

occur in the (2 + 1)-dimensional case. We decompose all differential operators d and their ∂̄- and
covariant analogs appearing in equations (4.26) into the vertical, i.e., normal to TC, and horizontal,
i.e., tangent to TC, components: d = dN + dC , ∂̄ = ∂̄N + ∂̄C , and so on.

We study the vertical and horizontal components of equations (4.26) in different ways. While
considering the normal derivations, we can suppose that the gauge class [Ax,Φx] at a point x ∈ C
is fixed (since the change of the gauge class means the change inside Md, i.e., along the base of the
bundle Ld → C). However, the almost complex structure Jx is not constant in the normal direction
(since it depends on the fiber parameter s on Nx). For the horizontal derivations (along C) we
can, on the contrary, suppose that the almost complex structure Jx coincides with the (fiberwise
constant) almost complex structure J0,x but remember that the gauge class [Ax,Φx] may change in
the horizontal direction.

4.5.7. Tangent component of the Seiberg–Witten equations. Consider first the horizontal, or
tangent, component of the Seiberg–Witten equations (4.26) at a point x ∈ C. Then we can suppose
that all ∂̄-derivatives are taken with respect to J0 and omit the subscript J0 in notations. The
tangent component of equations (4.26) has the form

⎧
⎨

⎩

∂̄C
AΦ+ ε

(
∂̄C
Aϕ+ a(0,1)Φ

)
≈ 0,

dC+A+ ε
(
dC+a−

i

2
Re(ϕΦ̄)ω

)
≈ 0.

This equation can be rewritten in terms of the linearized vortex operator in the following way:

(∂̄C
AΦ, d

C
+A) + εD(A,Φ)(a, ϕ) ≈ 0. (4.27)
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4.5.8. Normal component of the Seiberg–Witten equations. Consider next the vertical, or nor-
mal, component of the Seiberg–Witten equations (4.26). Here we should take into account the
dependence of J on the fiber parameter s. According to formulas (4.19) and (4.20),

∂̄J = DJ + . . . = ∂̄J0 + δ̄J + . . .

on C, where DJ is the linearized ∂̄J -operator and we denote by an ellipsis the terms of higher orders
in s and s̄. In a similar way,

{
d+J = d+ + δ+J ,

∂̄N
J,AΦ = ∂̄N

A + δ̄NJ,AΦ+ . . . ,

where we have again omitted the subscript J0. Using these notations, we can write down the normal
component of equations (4.26) in the form

⎧
⎨

⎩

∂̄N
A Φ+ δ̄NJ,AΦ+ ε∂̄N

J,Aϕ+ . . . ≈ 0,

dN+A+
i

4
(1− |Φ|2)ω + δ+,N

J A+ εd+,N
J a+ . . . ≈ 0.

Note that

∂̄N
A Φ = dN+A+

i

4
(1− |Φ|2)ω = 0,

because the pair (A,Φ) satisfies the vortex equations on Nx, x ∈ C (with respect to J0). So we can
rewrite the normal component of equations (4.26) in the following vector form:

(δ̄NJ,AΦ, δ
+,N
J A) + ε(∂̄N

J,Aϕ, d
+,N
J a) + . . . ≈ 0. (4.28)

Comparing expression (4.27) with (4.28), we finally arrive at

(∂̄C
AΦ, d

C
+A) + (δ̄NJ,AΦ, δ

+,N
J A) + εD(A,Φ)(a, ϕ) + ε(∂̄N

J,Aϕ, d
+,N
J a) + . . . ≈ 0. (4.29)

4.5.9. Using the orthogonality condition. As in the (2 + 1)-dimensional case, we should use the
orthogonality condition (4.23) in order to get rid of the terms containing (a, ϕ) in (4.29).

Since 〈(a, ϕ), nμ〉 = 0, there exists a unique H2-solution (b, ψ) of the equation

D∗
(A,Φ)(b, ψ) = (a, ϕ), (4.30)

where D∗
(A,Φ) is the adjoint operator of D(A,Φ).

Introduce the linearized vortex Laplacian

L(A,Φ) := D(A,Φ)D∗
(A,Φ) = D∗

(A,Φ)D(A,Φ)

and note that L(A,Φ)nμ = 0. This implies that

〈D(A,Φ)(a, ϕ), nμ〉 = 〈L(A,Φ)(b, ψ), nμ〉 = 〈(b, ψ), L(A,Φ)nμ〉 = 0.

Taking the inner product of both sides of equation (4.29) with nμ and using the preceding
equality, we obtain

〈(∂̄C
AΦ, d

C
+A), nμ〉+ 〈(δ̄NJ,AΦ, δ

+,N
J A), nμ〉+ ε〈(∂̄N

J,Aϕ, d
+,N
J a), nμ〉+ . . . ≈ 0. (4.31)
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4.5.10. Introducing the “slow” variable. Following the same scheme as in the (2 + 1)-dimen-
sional case, we introduce the “slow” variable ξ = εx and divide both sides by ε. Then we get

〈(∂̄C
AΦ, d

C
+A), nμ〉+ 〈(δ̄NJ,AΦ, δ

+,N
J A), nμ〉+ . . . ≈ 0,

where all derivatives are taken with respect to ξ. Setting here ε = 0 and s = 0, we obtain the
adiabatic equation in the form

〈(∂̄C
AΦ, d

C
+A), nμ〉+ 〈(δ̄NJ,AΦ, δ

+,N
J A), nμ〉 = 0, μ = 1, . . . , 2d. (4.32)

This equation coincides with the equation obtained in [25] from other considerations (see the dis-
cussion of this point in Subsection 4.6.1).

4.5.11. Particular cases. The adiabatic equation (4.32) has the form of a nonlinear ∂̄-equation
for sections γ = [A,Φ] of the d-vortex bundle Ld → C. We call the d-vortex sections γ satisfying
equation (4.32) adiabatic.

Equation (4.32) takes a simpler form for constant sections, i.e., for sections γ : x ∈ C �→ (Ax,Φx)
with the gauge class of (Ax,Φx) independent of x, for example, for the radial section. For such
sections the first term in (4.32) disappears and we obtain the equation

〈(δ̄NJ,AΦ, δ
+,N
J A), nμ〉 = 0, μ = 1, . . . , 2d.

Another particular case of equation (4.32) corresponds to d = 1. In this case formula (4.32)
simplifies (in the notation from (4.19)) to

∂̄σγ + νσγ + μσ̄γ = 0,

where σγ is a section of the bundle N → C given by Φ−1(0) for γ = [A,Φ]. In particular, if σγ
coincides with the zero section of the bundle N → C, then the latter ∂̄-equation reduces to the
pseudoholomorphicity condition for the curve C.

4.5.12. Description in terms of the action functional. As in the (2 + 1)-dimensional case, we
can introduce the action functional on d-vortex solutions. For a section γ = [A,Φ] of the bundle
Ld → C it is equal to

E(A,Φ) =
1

2

∫

C

{
‖∂̄AΦ‖2 + 2

∥∥∥d+A+
i

4
(|Φ|2 − 1)

∥∥∥
2}

dvol

and coincides (up to some topological term) with the restriction of the Seiberg–Witten action
functional to the d-vortex sections γ of the bundle Ld → C that are close to the zero section. It
can be shown (using the same arguments as in the derivation of the adiabatic equation (4.32)) that
the adiabatic sections are extremals of this action functional.

4.6. From pseudoholomorphic curves to the Seiberg–Witten equations.

4.6.1. Construction of Seiberg–Witten data from d-vortex sections. Now we consider the pro-
cedure for reconstructing a solution of the Seiberg–Witten equations from a pseudoholomorphic
curve C and a family of solutions of the vortex equations in the planes normal to C, or, which is the
same, from a section of the vortex bundle over C under the assumption that this section satisfies
the adiabatic equation (4.32).

We write the adiabatic equation for the section τ = [A,Φ] ∈ L in the form

〈p(A,Φ), nμ〉 = 0.
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Then, as in (4.30), there exists a unique H2-solution of the equation

D∗
(A,Φ)(b, ψ) = p(A,Φ).

The desired Seiberg–Witten equation on X is reconstructed from the Seiberg–Witten data con-
sisting of a Hermitian line bundle E → X, a Hermitian connection B on this bundle, and its
section (α, β). The bundle E → X over the manifold X was already defined in Subsection 4.5.3.
The other data, denoted by (B̃, (α̃, β̃)), are constructed from the data (Br, (αr, 0)) introduced in
Subsection 4.5.3. They are obtained by taking the data (Br, (αr, 0)) on X \ U1/2 and the data
(Br + χδbr, (αr, χδψr)) on U and gluing them over U \ U1/2. The new data satisfy the estimates

⎧
⎪⎪⎨

⎪⎪⎩

|D
˜Br
(α̃r, β̃r)| ≤

C√
r
e−c

√
r·dist,

∣∣∣F+
˜Br

+
ir

4
(1− |α̃r|2 + |β̃r|2)ω +

r

2
(α̃rβ̃r − α̃rβ̃r)

∣∣∣ ≤ Ce−c
√
r·dist.

Note that the right-hand sides of these inequalities, in contrast to the analogous estimates given in
Subsection 4.5.3, do not contain factors increasing with r. Taubes obtained equation (4.32) (in a
different form) precisely from the condition of vanishing of the terms growing in r on the right-hand
sides of the estimates from Subsection 4.5.3.

4.6.2. The space of adiabatic sections. Denote by Z the space of adiabatic sections, i.e., sections
of the bundle Ld → C satisfying the adiabatic equation.

This space is locally compact, and its smooth part Zreg consisting of the adiabatic sections for
which the adiabatic equation is satisfied transversally is an oriented manifold of dimension

2d(1 − g) + d(d+ 1)n,

where g is the genus of C and n is the degree of the map π : N → C.
Using the above estimates and the implicit function theorem, Taubes proved the following result

(see [30]).
Theorem 9 (Taubes). Let K be a relatively compact open subset in Zreg. Then for r ≥ r0

there exists a continuous map from the set K to the moduli space of solutions of the Seiberg–Witten
SWr-equations on X that is given by the formula

τ = [A,Φ] �→ ( �Br, (�αr, �βr)),

where �Br = B̃r +
√
rB′, �αr = α̃r + α′, �βr = β̃r + β′, and the remainder section γ′ = (B′, (α′, β′))

satisfies the estimates

‖∇γ′‖L2 +
√
r‖γ′‖L2 ≤ C√

r
, sup

X
|∇γ′|+

√
r sup

X
|γ′| ≤ C.

5. SUPPLEMENT: ADIABATIC LIMIT IN DIMENSION 1 + 1

In this supplement we consider the one-dimensional analogs of vortices that were introduced by
Domrin [3]. They arise in the scale limit of a system governed by the action functional representing
a one-dimensional analog of the static Ginzburg–Landau action functional.

Consider the action functional Sλ defined on the C2-smooth trajectories in the complex plane
of the form γ : I := [0, 1] → C by the formula

Sλ(γ) =

∫

I

{
|γ′(s)|2 + λ(1− |γ(s)|2)2

}
ds, (5.1)

where λ > 0 is the scale parameter.
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The Euler–Lagrange equation for this functional has the form

γ′′ = 2λγ(1 − |γ(s)|2). (5.2)

This equation can be considered as a one-dimensional analog of the static Ginzburg–Landau equation.
In order to formulate the Dirichlet problem for equation (5.2), we restrict the class of admissible

trajectories γ. Namely, we will consider only those trajectories that do not pass through the origin
and have endpoints lying on the unit circle. A trajectory γ of this type can be written in the form
γ(s) = ρ(s)eiθ(s), where ρ(s) = |γ(s)| and θ is a continuous real-valued function on I = [0, 1]. The
integer part d := [Δθ] of

Δθ :=
1

π
(θ(1)− θ(−1)),

equal to the number of full revolutions of the trajectory γ around the origin, plays the role of a
topological invariant of the problem.

The function θ(s)− θ(0) is odd and increases monotonically on the interval I, while the func-
tion ρ(s) is even and strictly increases on the interval (0, 1].

The Dirichlet problem in a given topological class can be stated in the following form. Fix a
number φ > 0 and consider the problem

{
γ′′ = 2λγ(1− |γ(s)|2),
|γ(±1)| = 1, θ(±1) = ±φ.

(5.3)

We are interested in the behavior of solutions of the Dirichlet problem (5.3) for λ → +∞. As
shown in [3], the limiting trajectories of solutions γλ, which can be considered as one-dimensional
analogs of the vortices, may be of two kinds: regular and singular ones.

In the regular case the limiting trajectory is given by an arc of the unit circle of the form
{
γ(s) = eiθ(s) : −φ ≤ θ(s) ≤ φ

}
,

which contains the whole circle passed around one or several times if φ ≥ π.
In the singular case (which may realize only for φ > π/2) the trajectory γ(s) behaves in the fol-

lowing way: in the beginning the point γ(s) moves along the unit circle till the value θ = −π/2, then
“jumps” to the opposite point θ = π/2, and continues the motion along the unit circle. (A rigorous
formulation and a proof of this assertion are given in [3].)

The behavior of the singular trajectory of this type reminds the “swinging” of the rolling spin
on the plane. When the speed of its rotation follows down to a critical one (determined by the
physical parameters of the spin), it suddenly bends almost to the plane over which it is rotating,
but then stands up again and continues to rotate. This process is continued until the spin finally
falls down to the plane.
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