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Abstract—The well-known problem of V.A. Steklov is closely related to the following extremal
problem. For a fixed n ∈ N, find Mn,δ = supσ∈Sδ

‖φn‖L∞(T), where φn(z) is an orthonormal
polynomial with respect to a measure σ ∈ Sδ and Sδ is the Steklov class of probability mea-
sures σ on the unit circle such that σ′(θ) ≥ δ/(2π) > 0 at every Lebesgue point of σ. There is
an elementary estimate Mn � √

n. E.A. Rakhmanov proved in 1981 that Mn � √
n/(lnn)3/2.

Our main result is that Mn � √
n, i.e., that the elementary estimate is sharp. The paper gives

a survey of the results on the solution of this extremal problem and on the general problem of
Steklov in the theory of orthogonal polynomials. The paper also analyzes the asymptotics of
some trigonometric polynomials defined by Fejér convolutions. These polynomials can be used
to construct asymptotic solutions to the extremal problem under consideration.

DOI: 10.1134/S0081543815040057

1. INTRODUCTION

The theory of orthogonal polynomials occupied an important place in the work of V.A. Steklov.
He published the total of 29 papers on this subject [11–39]. The first of them appeared in 1900, while
the last ones are dated 1926. In the 1940 survey on orthogonal polynomials [9], all these publications
were summarized and it was precisely indicated what new properties of orthogonal polynomials had
been obtained there. In the Russian literature, a detailed analysis of Steklov’s work was carried out
in 1977 by Suetin in his monographic survey [40]. The main attention in [40] was paid to Steklov’s
conjecture, which represented an open question at the time and attracted increased interest to this
field and related problems. First of all, interest was aroused by the problem of estimating orthogonal
polynomials on the support of the orthogonality weight, which was called Steklov’s problem in [40]:
find an estimate on (−1, 1) for a polynomial sequence {Pn(x)}∞n=0 that is orthonormal

1∫

−1

Pn(x)Pm(x) ρ(x) dx = δn,m, n,m = 0, 1, 2, . . . , (1.1)

with respect to a strictly positive weight ρ:

ρ(x) ≥ δ > 0, x ∈ [−1, 1]. (1.2)

In 1921, Steklov conjectured that the sequence {Pn(x)} is bounded at the points x ∈ (−1, 1), i.e.,

lim sup
n→∞

|Pn(x)| < ∞, (1.3)
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V.A. STEKLOV’S PROBLEM 73

if the weight ρ does not vanish on [−1, 1] (see [35, p. 321] or a citation in [40]). In the present study,
we mark the progress made after 1977 concerning the conjecture and problem of Steklov.

We will use the more convenient terminology of polynomials orthogonal on a circle. Let {φn}
be a sequence of polynomials in z = eiθ that are orthonormal on the unit circle,

2π∫

0

φnφm dσ(θ) = δn,m, n,m = 0, 1, 2, . . . , (1.4)

with respect to a measure σ. The Steklov class Sδ is a class of probability measures σ on the unit
circle that satisfy the condition

σ′ ≥ δ

2π
(1.5)

at every Lebesgue point. In these terms, Steklov’s conjecture states that the polynomials φn gen-
erated by a measure in the Steklov class should be uniformly bounded in n on the support of the
orthogonality measure.

Steklov’s conjecture was disproved in 1979 by Rakhmanov [7]. He constructed polynomials with
conditions (1.4) and (1.5) such that

lim sup
n→∞

‖φn(z;σ)‖L∞(T) = ∞. (1.6)

More precisely, in Rakhmanov’s construction (below we will dwell on it in more detail), polynomials
displayed logarithmic growth (along a subsequence) and their orthogonality measure (from the
Steklov class) contained a discrete component. The Rakhmanov counterexample was extended to
continuous measures (weights) in [2].

The following extremal problem played an important role in Rakhmanov’s construction and in
the subsequent research on Steklov’s problem: for a fixed n, find

Mn,δ = sup
σ∈Sδ

‖φn(z;σ)‖L∞(T). (1.7)

There is a trivial upper bound (see [41]):

Mn,δ ≤
√

n+ 1

δ
, n ∈ N. (1.8)

Indeed, (1.8) follows from the normalization condition (1.4) and the Cauchy–Schwarz inequality:

1 ≥ δ

2π

∫

T

|φn|2 dθ = δ

n∑
j=0

|cj |2 ≥ δ
‖φn(z;σ)‖2L∞(T)

n+ 1
, φn(z;σ) =:

n∑
j=0

cjz
j .

In 1981, Rakhmanov proved [8] the inequality

C

√
n+ 1

δ ln3 n
≤ Mn,δ, C > 0, δ � 1, (1.9)

which allowed him to significantly improve his previous result (1.6) from [7]. Namely, he proved
that for any sequence {βn} : βn → 0, there exists a σ ∈ Sδ, δ � 1, such that

‖φkn(z;σ)‖L∞(T) > βkn

√
kn

ln3 kn
(1.10)
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74 A.I. APTEKAREV et al.

for some sequence {kn} ⊂ N. This estimate is almost sharp in view of the following result by
Geronimus [5, Theorem 3.5] and its refinement due to Nevai [6]. For σ ∈ Sδ, we have

‖φn(z;σ)‖L∞(T) = ō(
√
n). (1.11)

Thus, Rakhmanov’s result left a very narrow interval to which the quantity Mn,δ and the growth
rate of the norms of subsequences of orthonormal polynomials can belong.

Recently, we have succeeded in proving that the well-known upper bounds (1.8) and (1.11) are
asymptotically sharp with respect to the growth order. The main result of our study [3] is

Theorem 1.1. Let δ ∈ (0, 1). Then
(1) for sufficiently large n > n0 > 0, there exists a constant C(δ) > 0 such that

Mn,δ > C(δ)
√
n; (1.12)

(2) for an arbitrary sequence {βn} : βn → 0, there exists an absolutely continuous probability
measure σ∗ : dσ∗ = σ∗′dθ, σ∗ ∈ Sδ, such that

‖φkn(z;σ
∗)‖L∞(T) > βkn

√
kn, βkn(δ) > 0, (1.13)

for some sequence {kn} ⊂ N.

Notice that δ in the theorem is not necessarily small and may be arbitrarily close to unity. Of
course, this is possible at the cost of the value of the constant in (1.12), which in this case tends
to zero.

The structure of the paper. In Section 2, we present preliminary results concerning extremal
problems of the form (1.7). These results allow us to describe the structure of the extremal measure
in problem (1.7) and solve problem (1.7) for δ small compared with 1/n. Then we discuss approaches
to the design of orthonormal polynomials with large norm as well as the constructions of such
polynomials (Section 3). In the concluding Section 4, for one of such constructions (that was not
used in [3]) we present estimates for a polynomial close to the extremal one and for its derivatives.

2. EXTREMAL MEASURE AND SMALL δ

In this section, we consider extremal problems of the form (1.7), but on other classes of orthogo-
nality measures. Namely, we consider the problem in the class of measures with derivative bounded
below (by a parameter δ) and above (by a parameter Δ):

sup
σ∈SΔ

δ

‖φn(z;σ)‖L∞(T) =: MΔ
n,δ, (2.1)

where SΔ
δ is the class of probability measures σ such that Δ ≥ σ′(θ) ≥ δ > 0. We also consider the

problem in the class of nonnormalized measures:

sup
σ′(θ)≥δ>0

‖φn(z;σ)‖ =: M̃n,δ. (2.2)

2.1. Structure of an extremal measure. We begin with characterizing the extremal mea-
sures in (2.1) and (1.7).

Theorem 2.1. The following assertions are valid :
(1) there exists an extremal measure σΔ

δ for the extremal problem (2.1); its density dσΔ
δ (θ)/dθ

takes only two values Δ and δ and has at most 2n switches;
(2) there exists an extremal measure σ∗

δ for the extremal problem (1.7); it can be expressed as

dσ∗
δ = δ dθ +

n∑
k=1

mk δ(θ − θk). (2.3)
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V.A. STEKLOV’S PROBLEM 75

Proof. A detailed proof of the theorem is given in [3]. Here we demonstrate the main idea of
the proof of assertion (1) of Theorem 2.1.

Our extremal problems (1.7) and (2.1) are variational problems for a functional F (s0, s1, . . . , sn)
defined on a finite number of moments {s0, s1, . . . , sn} of a measure in the class Sδ or SΔ

δ , respec-
tively. We can set

F (s0, s1, . . . , sn) = |φn(1)|.
The functional F is differentiable with respect to the moments. The set Sδ is the weak closure of
the sets SΔ

δ :

Sδ =
⋃
Δ>δ

SΔ
δ .

Thus, we can consider the extremal problems (1.7) and (2.1) as optimal control problems (see [1])

F (s0, s1, . . . , sn) → sup (2.4)

with constraints
2π∫

0

eikθ dσ(θ) = sk, k = 0, . . . , n, σ ∈ Sδ. (2.5)

Since F is continuous and the moments are continuous in the weak topology, it follows that

sup
Sδ

F = lim
Δ→∞

sup
SΔ
δ

F.

In turn, the problem

F → sup,

2π∫

0

eikθ dσ(θ) = sk, k = 0, . . . , n, σ ∈ SΔ
δ , (2.6)

always has a solution because it is considered on the compact set⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2π∫

0

cos kθ dσ(θ) = Re sk, k = 0, . . . , n,

2π∫

0

sin kθ dσ(θ) = Im sk, k = 1, . . . , n,

σ ∈ SΔ
δ , s0 ≤ C.

Let us write the Lagrangian for this case:

λ0F (s0, s1, . . . , sn) +

n∑
k=0

⎛
⎝λ2k+1

2π∫

0

cos kθ dσ(θ)− Re sk

⎞
⎠

+

n∑
k=1

⎛
⎝λ2k

2π∫

0

sin kθ dσ(θ)− Im sk

⎞
⎠+ L(s0 − C)

= λ0F (s0, s1, . . . , sn)−
n∑

k=0

(Re sk + Im sk) + L(s0 − C)

+

2π∫

0

(
n∑

k=0

λ2k+1 cos kθ +

n∑
k=1

λ2k sin kθ

)
dσ(θ).
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76 A.I. APTEKAREV et al.

The optimality condition for σ ∈ SΔ
δ in the variational problem (2.6) yields

σ′(θ) =
Δ+ δ

2
+

Δ− δ

2
sign

(
n∑

k=0

λ2k+1 cos kθ +
n∑

k=1

λ2k sin kθ

)
; (2.7)

i.e., σ′(θ) takes only two values Δ and δ and has at most 2n switches (since the degree of the control
trigonometric polynomial is at most n). �

2.2. Exact solution to the extremal problem with unconstrained mass of the mea-
sure. Now we pass to the extremal problem (2.2).

Theorem 2.2. The following assertions are valid :
(1) it holds that

M̃n,δ =

√
n+ 1

δ
; (2.8)

(2) a maximizing sequence {σl} for the extremal problem (2.2) is given by

dσl = δ dθ +
n∑

k=1

m
(l)
k δ(θ − θk), θk =

k

n+ 1
2π, k = 1, . . . , n, (2.9)

and {
m

(l)
k

}
: lim

l→∞
min
k

m
(l)
k = ∞. (2.10)

Remark. We stress that in the class of measures Sδ,M , M > 0 (i.e., without constraint on
the total mass M), the elementary upper bound (1.8) is sharp and a maximizing sequence is given
by (2.3).

Proof of Theorem 2.2. Introduce the notation

Πn(z) =

n∏
k=1

(z − εk), εk := eiθk , (2.11)

and let Φn(z) = zn + . . . be a monic orthogonal polynomial on T,

1

2π

2π∫

0

Φn(e
iθ)e−iνθ dσ(θ) = 0, ν = 0, . . . , n− 1, (2.12)

where the orthogonality measure has the form

dσl = δ dθ +
n∑

k=1

mk δ(θ − θk).

The polynomial Φn(z) can be represented as

Φn(z) = Πn(z)

(
1 +

n∑
j=1

Cj

z − εj

)
. (2.13)

Notice that the orthogonality relations are equivalent to the following:

0 =

〈
Φn(z),

Πn(z)

z − εk

〉
=

1

2π

2π∫

0

Φn(z)

(
Πn(z)

z − εk

)
dσ(θ) = 0, k = 1, . . . , n, z = eiθ.
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V.A. STEKLOV’S PROBLEM 77

Using (2.13) and the equality
Πn(z)

z − εk
=

Π∗
n(z)

zn−1(1− zεk)
,

we further have

0 =
δ

2π

2π∫

0

Πn(z)Π
∗
n(z) dθ

zn−1(1− zεk)
+

n∑
j=1

Cjδ

2π

2π∫

0

Πn(z)Π
∗
n(z) dθ

zn−1(z − εj)(1− zεk)
+mkCk|Π′

k(εk)|2 (2.14)

for k = 1, . . . , n. Now, suppose that (2.10) is valid. In view of (2.14), this implies

‖−→C ‖ � 1

mink mk
,

−→
C = (C1, . . . , Cn). (2.15)

Then we calculate the norm

‖Φn‖2σ =
1

2π

2π∫

0

(
1 +

n∑
j=1

Cj

z − εj

)(
1 +

n∑
j=1

Cj

z − εj

)
Πn(z)Πn(z) dσ(z)

= ‖Πn‖2δ dθ +
n∑

j=1

Cj

2π∫

0

(. . .) dθ +

n∑
j=1

Cj

2π∫

0

(. . .) dθ +

m∑
k=1

mk|Ck|2 |Π′
n(εk)|2.

Hence, taking into account (2.14) and (2.15), we obtain

min
k

mk → ∞ ⇒
{
‖Φn‖2σ → ‖Πn‖2δ dθ,
Φn(1) → Πn(1).

Finally, set

Πn(z) =
zn+1 − 1

z − 1
=

n∑
j=0

zj ,

which yields
‖Πn‖2δ dθ = δ(n + 1), Πn(1) = n+ 1.

Thus,
Φn(1)

‖Φn‖σ
→

√
n+ 1

δ
if min

k
mk → ∞.

The theorem is proved. �
Remark. This theorem has the following corollary for our original problem (1.7). Consider

the class Sδ for δ small compared with 1/n. Then, choosing the scale φn(z;αμ) = α−1/2φn(z;μ) for
any α > 0, we obtain

Mn,δn =

√
n+ 1

δn
(1 + o(1)),

where

δn =
C

nmn
, mn → +∞ as n → ∞.

Thus, for small δ, the elementary upper bound (1.8) for Mn,δ is sharp. If we take mn = 1/n and
make the total mass in the proof finite, then the above-constructed polynomials φn will be bounded
with respect to n for δ ∼ 1.
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3. DESIGN OF ORTHONORMAL POLYNOMIALS WITH LARGE NORM

3.1. Orthogonal polynomials on a circle: The main properties. To describe approaches
and constructions related to the extremal problem (1.7), we need some concepts from the theory of
orthogonal polynomials on a circle (see [5, 10]).

For an arbitrary polynomial Pn(z) = pnz
n + . . . + p1z + p0, its nth inverse (or its ∗-transform)

is defined as

P ∗
n(z) = znPn

(
1

z

)
= p0z

n + p1z
n−1 + . . . + pn.

Notice that if z∗ �= 0 is a root of Pn(z), then (z∗)−1 will be a root of P ∗
n(z). We also note that the

definition of the nth inverse polynomial does not exclude the vanishing of the leading coefficients
of Pn(z); in this case the polynomial P ∗

n(z) has a zero (of the corresponding order) at the origin. It
is well known [5] that all zeros of φn are located inside D; thus, φ∗

n has no zeros in D.
For monic orthogonal polynomials, one uses the notation Φn:

Φn(z;μ) = zn + . . . : φn(z;μ) =
Φn(z;μ)

‖Φn‖2,μ
.

Using these polynomials, one can define circular parameters γn such that

Φn(0;μ) = −γn−1.

Then (see [10])
Φn(z;μ) = φn(z;μ)

(
ρ0 . . . ρn−1

)
, ρn =

√
1− |γn|2.

The circular parameters allow one to write recurrence relations for polynomials orthonormal
with respect to a probability measure and their nth inverses (see [5]):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φn+1 = ρ−1
n (zφn − γnφ

∗
n), φ0 =

√
1

|μ| = 1,

φ∗
n+1 = ρ−1

n (φ∗
n − γnzφn), φ∗

0 =

√
1

|μ| = 1.

Along with the polynomials φn and φ∗
n, we will need polynomials of the second kind ψn and ψ∗

n that
are defined by recurrence relations of the same form but with circular parameters −γn, i.e. (see [10,
p. 57]), {

ψn+1 = ρ−1
n (zψn + γnψ

∗
n), ψ0 =

√
|μ| = 1,

ψ∗
n+1 = ρ−1

n (ψ∗
n + γnzψn), ψ∗

0 =
√

|μ| = 1.
(3.1)

An important role in the theory of orthogonal polynomials on a circle is played by two analytic
functions in the disk whose boundary values are related to the orthogonality measure dμ. We mean
the Carathéodory function

F : ReF (z) > 0, z ∈ D, F (z) =

∫

T

C(z, eiθ) dμ(θ), C(z, ξ) =
ξ + z

ξ − z
, ξ ∈ T,

and the Szegő function

Π: Π(z) �= 0, z ∈ D, Π(z) = exp

⎛
⎝ 1

4π

2π∫

0

C(z, eiθ) log μ′(eiθ) dθ

⎞
⎠ .
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V.A. STEKLOV’S PROBLEM 79

The Szegő function is considered under Szegő’s condition on the absolutely continuous part of the
orthogonality measure:

exp

⎛
⎝ 1

4π

π∫

−π

ln(2πμ′(θ)) dθ

⎞
⎠ = ρ > 0 ⇔ {γn} ∈ �2,

since ρ =
∏

j≥0 ρj by the Szegő theorem (see [10]). The Carathéodory function is considered without
constraints on the measure; its Taylor coefficients are equal to the moments of the measure dμ. The
relationship between the boundary values and the absolutely continuous part of the measure is given
by the formulas

2πReF = μ′ and |Π|−2 = 2πμ′ on T.

A key place in the theory of orthogonal polynomials on a circle is occupied by the Bernstein–Szegő
approximations for the Carathéodory function and the orthogonality measure:

Fn(z) =
ψ∗
n(z)

φ∗
n(z)

=

∫

T

C(z, eiθ) dμn(θ), dμn(θ) =
dθ

2π|φn(eiθ)|2
=

dθ

2π|φ∗
n(e

iθ)|2 .

The first n Taylor coefficients of Fn and the first 2n moments of dμn coincide with the corresponding
coefficients of F and moments of the measure dμ. Finally, note three remarkable limit relations of
the theory of orthogonal polynomials on a circle

dμn → dμ, Fn(z) → F (z), and φ∗
n(z) → Π(z), z ∈ D,

where the first relation is satisfied in the sense of weak convergence of measures, and the second
and third hold uniformly in z ∈ D under additional conditions on dμ (for example, for μ in Sδ with
smooth μ′).

3.2. Construction of extremal polynomials: Rakhmanov’s approach. Consider the
Christoffel–Darboux kernel

Kn(ξ, z, μ) =

n∑
j=0

φj(ξ;μ)φj(z;μ).

The following important result is due to Geronimus [5]:
Lemma 3.1. Consider a measure μ(t) = (1 − t)μ + tδ0 with t ∈ (0, 1). Then one has the

identity

Φn(z;μ(t)) = Φn(z;μ)− t
Φn(1;μ)Kn−1(1, z, μ)

1− t+ tKn−1(1, 1, μ)
. (3.2)

In [7], Rakhmanov used the following generalization, in which point masses are added at several
specially chosen points rather than at a single point.

Lemma 3.2. Let μ be a measure on the circle T, Φn(z;μ) be monic orthogonal polynomials,
and Kn(ξ, z, μ) =

∑n
l=0 φj(ξ;μ)φj(z;μ) be the Christoffel–Darboux kernel. If points ξj ∈ T, j =

1, . . . ,m, m ≤ n, are chosen so that

Kn−1(ξj , ξl, μ) = 0, j �= l, (3.3)

then

Φn(z; η) = Φn(z;μ)−
m∑
k=1

mkΦn(ξk;μ)

1 +mkKn−1(ξk, ξk, μ)
Kn−1(ξk, zk, μ), (3.4)
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where

η = μ+
m∑
k=1

mkδθk , zk = eiθk , mk ≥ 0.

The application of this formula to dμ = dθ immediately yields the estimate

Mn,δ ≥ C(δ) ln n

for an appropriate choice of the weights {mj}. Moreover, it is easy to show that one cannot improve
the logarithmic growth by changing {mk}. When the measure dμ is different from dθ, the calculation
of the polynomials, the Christoffel–Darboux kernel, and its zeros appears to be problematic.

In the subsequent paper [8], Rakhmanov again used the idea of modifying the weight by a point
mass, but this time he defined the orthogonality measure implicitly.

3.3. Construction of extremal polynomials: An alternative approach. In [3], to es-
timate from below the solution of the extremal problem (2.5), i.e., to construct (for a fixed n) an
orthogonal polynomial φ∗

n(z;σ) for σ in the Steklov class Sδ,

φ∗
n(1;σ) > C(δ)

√
n, σ ∈ Sδ, (3.5)

we proposed a fundamentally different approach.
First, we rewrote the Steklov condition in the form of several relations that generally involve

an arbitrary polynomial and an arbitrary Carathéodory function. Then we presented all necessary
parameters in an explicit form, and the greater part of the proof consists in verifying that these
parameters satisfy the desired conditions. In this approach, the absolute value of the orthogonal
polynomial on the circle is given explicitly, and the orthogonality measure can easily be found from
available formulas. In particular, the measure can be thoroughly analyzed.

The following lemma from [3] provides a reformulation of problem (3.5).
Lemma 3.3. To prove (3.5), it suffices to find a polynomial φ∗

n and a Carathéodory function F̃
with the following properties :

(1) φ∗
n(z) has no roots in D;

(2) φ∗
n(z) is normalized as ∫

T

|φ∗
n(z)|−2 dθ = 2π, φ∗

n(0) > 0; (3.6)

(3) φ∗
n has a large uniform norm, i.e.,

|φ∗
n(1)| ∼

√
n;

(4) F̃ ∈ C∞(T), Re F̃ > 0 on T, and

1

2π

∫

T

Re F̃ (eiθ) dθ = 1; (3.7)

(5) in addition,

|φ∗
n(z)| +

∣∣F̃ (z)
(
φn(z)− φ∗

n(z)
)∣∣ < C1(δ)

(
Re F̃ (z)

)1/2 (3.8)

uniformly in z ∈ T.
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Proof. For a detailed proof of the lemma, see [3]; here we only outline this proof.
It is well known (we have already pointed this out) that polynomials orthonormal with respect

to a probability measure possess properties (1) and (2) indicated in the lemma. One can easily
show (and we do this in [3]) that the converse is also valid; i.e., any polynomial φn(z) possessing
properties (1) and (2) is orthonormal with respect to some probability measure and also defines the
first n circular parameters γ0, . . . , γn−1. Property (3) gives the necessary growth of the norm.

Now, let us show that properties (4) and (5) guarantee the existence of a measure σ in the
Steklov class Sδ for which φn is the nth orthonormal polynomial.

Note that F̃ defines (according to property (4) in the lemma) the corresponding probability
measure σ̃, which is absolutely continuous and has a positive smooth density σ̃′ defined by the
equality

σ̃′(θ) =
Re F̃ (eiθ)

2π
. (3.9)

Denote its circular parameters by {γ̃j}, j = 0, 1, . . . , and the corresponding orthonormal polyno-
mials of the first and second kind by {φ̃j} and {ψ̃j}, j = 0, 1, . . . , respectively. Notice that the
normalization of the measure σ̃ implies φ̃0 = ψ̃0 = 1. Baxter’s theorem (see [10]) implies that
γ̃j ∈ �1 (in fact, the decrease is much faster, but �1 is sufficient for our purposes). Then we form a
probability measure σ with the following circular parameters:

γ0, . . . , γn−1, γ̃0, γ̃1, . . . .

We will show that this measure is the sought measure in the Steklov class for which φn is the nth
orthonormal polynomial.

Let us prove that σ ∈ Sδ. Set

γn = γ̃0, γn+1 = γ̃1, . . . . (3.10)

Baxter’s theorem states that σ is absolutely continuous, σ′ belongs to the Wiener class W (T), and
σ′ is positive on T. The first n orthonormal polynomials corresponding to the measure σ are {φj},
j = 0, . . . , n− 1.

In [3], we obtained a fundamental identity that allows one to calculate the polynomials φj and ψj

(orthonormal with respect to σ) for indices j > n:

2φ∗
n+m = φn(φ̃

∗
m − ψ̃∗

m) + φ∗
n(φ̃

∗
m + ψ̃∗

m) = φ̃∗
m

(
φn + φ∗

n + F̃m(φ∗
n − φn)

)
, (3.11)

where

F̃m(z) =
ψ̃∗
m(z)

φ̃∗
m(z)

.

Since {γ̃n} ∈ �1 and {γn} ∈ �1, we have [10, p. 225]

F̃m → F̃ , m → ∞, φ∗
n → Π, φ̃∗

n → Π̃, n → ∞,

uniformly on D. The functions Π and Π̃ are the Szegő functions for σ and σ̃, respectively; i.e., they
are external functions in D, which yields the factorization

|Π|−2 = 2πσ′, |Π̃|−2 = 2πσ̃′. (3.12)

Now in (3.11) we let m → ∞ and obtain

2Π = Π̃
(
φn + φ∗

n + F̃ (φ∗
n − φn)

)
. (3.13)
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Thus, the first formula in (3.12) shows that in the class of sufficiently regular measures, the Steklov
condition σ′ > δ/(2π) is equivalent to

∣∣Π̃(φn + φ∗
n + F̃ (φ∗

n − φn)
)∣∣ ≤ 2√

δ
, z = eiθ ∈ T. (3.14)

Since |φn| = |φ∗
n| on T, we have

∣∣Π̃(φn + φ∗
n + F̃ (φ∗

n − φn)
)∣∣ ≤ 2|Π̃|

(
|φ∗

n|+ |F̃ (φ∗
n − φn)|

)
< 2C1(δ)|Π̃|(Re F̃ )1/2 = 2C1(δ)

owing to (3.8) and (3.9) and the second formula in (3.12). Thus, for (3.14) to hold, we must set
C1(δ) := δ−1/2 in (3.8). Since we assume that δ is fixed, explicit formulas for C(δ) and C1(δ) do
not matter. �

3.4. Constructions of an extremal polynomial. As a polynomial asymptotically close to
an extremal one, in [3] we proposed the following construction. The polynomial φ∗

n was taken in
the form

φ∗
n(z) = Cnfn(z), fn(z) = Pm(z) +Qm(z) +Q∗

m(z), (3.15)

where Pm and Qm are some polynomials of degree 2m− 1 and m− 1, respectively, m = [δ1n] with
a sufficiently small δ1 > 0, and the zeros of the polynomial Qm lie outside the disk D. Note that
here Q∗

m is defined by the application of the operation ∗ of order n. The constant Cn is chosen
so that

π∫

−π

|φ∗
n|−2 dθ = 2π

(i.e., the orthogonality measure of the polynomial φn is a probability measure, see (3.6)). Note
that one of the main technical difficulties in applying Lemma 3.3 in [3] was the verification of the
fact that

Cn =

⎛
⎝

π∫

−π

|fn|−2 dθ

⎞
⎠
1/2

∼ 1 (3.16)

uniformly in n. Then, to prove the desired lower bound (3.5), it suffices to show that fn possesses
the other properties indicated in the lemma.

Let us explain the purpose of the terms constituting the polynomial φ∗
n in (3.15). Since Qm

is chosen with zeros outside D, all n zeros of Qm + Q∗
m are located on the unit circle T. Since

the polynomial φ∗
n defined in (3.15) is expected to be orthogonal on T, the zeros of Qm + Q∗

m

in (3.15) must be “pushed out” of D by an appropriately chosen polynomial Pm. This “pushing”
polynomial Pm serves no other purpose and has a small absolute value. Thus, the main contribution
to the polynomial φ∗

n on the unit circle is made by Qm +Q∗
m (the corresponding proposition is proved

in [3]). Let us give an appropriate representation for this term. We have

Qm +Q∗
m = |Qm| exp(iArg(Qm)) + |Qm| exp(inθ − iArg(Qm))

= 2|Qm| exp
(
inθ

2

)
cos

(
nθ

2
−Arg(Qm)

)

= 2exp

(
inθ

2

)√
A(θ) cos

((n
2
−m+ 1

)
θ +Φ(θ)

)
.
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Here we have used the notation

A(θ) := |Q(eiθ)|2, Φ(θ) := Arg(Q∗
m(eiθ)), θ ∈ (0, 2π),

where the operation ∗ is of degree m− 1. It is clear that when verifying condition (3.16), one must
control the argument of Qm and its derivative. We have

Φ(θ) =
1

2π

2π∫

0

A′(ϕ)

A(ϕ)
ln

∣∣∣∣sin ϕ− θ

2

∣∣∣∣dϕ, (3.17)

Φ′(θ) =
1

2π

2π∫

0

(
A′(ϕ)

A(ϕ)

)′
ln

∣∣∣∣sin ϕ− θ

2

∣∣∣∣dϕ. (3.18)

These representations show that we need the asymptotics for |Qm|2 and estimates for its two deriva-
tives in order to control Qm +Q∗

m on the unit circle.
In [3], we defined the polynomial Qm(z) as an algebraic polynomial (in powers of z) without

zeros in D that is obtained by the Riesz–Fejér factorization of a positive trigonometric polynomial:

|Qm(z)|2 := Gm(θ) +
∣∣R(m,α/2)(e

iθ)
∣∣2, (3.19)

which consists of

Gm(θ) = Fm(θ) +
1

2
Fm

(
θ − π

m

)
+

1

2
Fm

(
θ +

π

m

)
, (3.20)

where Fm is the Fejér kernel,

Fm(ϕ) =
sin2 mϕ

2

m sin2 ϕ
2

, Fm(0) = m,

2π∫

0

Fm(ϕ) dϕ = 2π, (3.21)

and of the Taylor approximation R(k,α) of the function (1− z)−α,

R(k,α)(z) = c0 +
k∑

j=1

cjz
j , (3.22)

with a parameter α ∈ (1/2, 1).
In [3], the polynomial Pm (from the definition of the polynomial φ∗

n in (3.15)), which pushes the
zeros out of the unit circle, is defined as

Pm(z) = Qm(z)(1 − z)
(
1− 0.1R(m,−(1−α))(z)

)
. (3.23)

Its degree degPm = 2m+ 1 is less than n in view of the choice of a small δ1.
Finally, as the Carathéodory function F̃ (from property (4) in Lemma 3.3) that guarantees the

Steklov condition (by property (5) in Lemma 3.3) for the orthogonality measure of the polyno-
mial φn, in [3] we proposed the following function:

F̃ (z) = C̃n

(
ρ(1 + εn − z)−1 + (1 + εn − z)−α

)
, (3.24)

where εn = n−1, ρ ∈ (0, ρ0), ρ0 is sufficiently small, and C̃n is a positive constant that we specify
when verifying the properties indicated in Lemma 3.3. It is clear that F̃ is a smooth function with
positive real part in D.
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Thus, as proved in [3], formulas (3.15), (3.19), (3.20), and (3.22)–(3.24) give an explicit expression
for the orthogonal polynomial φn and the Carathéodory function F̃ that satisfy Lemma 3.3 and thus
solve problem (3.5). Note that the explicit expressions given here solve problem (3.5) for small δ.
To prove assertions (1) and (2) of Theorem 1.1 for δ ∈ (0, 1) (i.e., to solve problem (1.12) and
construct a subsequence of maximum possible growth), we successively complicated these explicit
constructions of φn and F̃ . Nevertheless, the main idea of the new method proposed in [3] is given
by the explicit constructions presented here for small δ.

Now, let us explain the purpose of both terms constituting the positive trigonometric polynomial
|Qm(z)|2 in (3.19). We can see that the first term Gm in (3.19) (“hat”) guarantees the desired growth
of the orthogonal polynomial:

|φn(1)| ∼
√
n.

In our construction, the trigonometric polynomial Qm must preserve a large absolute value on an
interval of length ∼ 1/m. We need this in order to keep the bounded derivatives of the polynomial
and, hence, to have sufficiently smooth Szegő functions that guarantee the Steklov condition for the
orthogonality measure. Since the Fejér kernel decays very rapidly, we take the sum of three kernels
(see (3.20)) to meet these requirements. We also require that outside this interval of order 1/m, the
polynomial should have a controlled decay, which should not be so fast as that of the Fejér kernel.
In (3.19), the polynomial R(m,α/2) (“wings”) serves this purpose.

The asymptotics for the norm of the trigonometric polynomial Qm (defined in (3.19)–(3.22))
and upper bounds for its first and second derivatives were obtained in [3, Appendices A, B] (see [3,
Lemmas 5.2, 5.3 and the proof of Lemma 6.1]). These rather delicate technical estimates lead to the
key lemma [3, Lemma 6.1] (needed to prove (3.16)), which controls the phase of Qm(eiθ) (denote it
by Φ) for |θ| < υ, where υ is a small fixed number:

|Φ′(θ)| � m. (3.25)

In the present paper, to diversify approaches and constructions for verifying technically difficult
places in the proof of Theorem 1.1, we represent the polynomials Qm from (3.15) in another explicit
form, different from that used in [3] (see (3.20) and (3.22)), and prove estimates for |Qm| and
its derivatives that are necessary to verify (3.16) (see Section 4). Preserving the above-described
general requirements for the polynomial Qm, we build Qm of terms different from those in (3.20)
and (3.22). Set (see [4])

A(θ) := |Q(eiθ)|2 := (q ⊗Fm)(θ), (3.26)

where q ⊗Fm is the convolution with the Fejér kernel Fm (3.21) of the function

q(θ) = me−m2 sin2(θ/2) +

(
m−2 + sin2

θ

2

)−α/2

=: q1 + q2, (3.27)

which is split into two terms (in accordance with (3.19)), i.e., into the hat q1 and wings q2.

4. ESTIMATES FOR FEJÉR CONVOLUTIONS IN THE CONSTRUCTION
OF THE POLYNOMIAL Qm

The aim of this section is to obtain estimates matching the results from [3, Appendices], which
are needed to prove (3.25); this finally leads to the verification of (3.16) for the new input data (3.26)
and (3.27).
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4.1. Formulation of the results. In this subsection, we formulate the estimates to be proved
(see [4]). We begin with the hat

A1(x) := (q1 ⊗Fm)(x) :=

π∫

−π

q1(t)Fm(x− t) dt, q1(t) = me−m2 sin2(t/2).

Prior to formulating the result on the asymptotics of A1(x) and its derivatives A′
1(x) and A′′

1(x)
as m → ∞, we introduce a sequence of entire functions {El}:

E0(r) := (r − 1)e−r2 , E1(r) := r(r − 1)e−r2 , E2(r) := (r − 1)(2r2 − 1)e−r2 .

Denote by
{
c
(l)
j

}
the coefficients of the power series expansion of El(r) about r = 1:

El(r) =

∞∑
j=1

c
(l)
j (1− r)j.

This allows us to form two other sets of entire functions

C̃l(t) :=
∞∑
ν=0

(−1)ν c̃ (l)ν t2ν , S̃l(t) :=
∞∑
ν=0

(−1)ν s̃ (l)
ν t2ν+1

with coefficients

c̃ (l)ν :=
∑ c

(l)
j j!

(j + 2ν + 1)!
, s̃ (l)

ν :=
∑ c

(l)
j j!

(j + 2ν + 2)!
.

Lemma 4.1. For any ε > 0, as m → ∞, we have

A1(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m

√
πx2

sin2 x
2

C̃0(mx) +O(mx), |x|m ≤ 1

ε
,

1

m

√
π
(
1− cosmx

e

)
sin2 x

2

+O

(
1

m2x2

)
, |x|m ≥ 1

ε
,

and, for the derivatives,

A′
1(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m2−
√
πx2

sin2 x
2

S̃1(mx) +O(m), |x|m ≤ 1

ε
,

√
π

e

sinmx

sin2 x
2

+O

(
1

mx2

)
, |x|m ≥ 1

ε
,

A′′
1(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m3−
√
πx2

2 sin2 x
2

(
C̃0(mx) + C̃2(mx)

)
+O(m7/3), |x|m ≤ 1

ε
,

m

√
π

e

cosmx

sin2 x
2

+O

(
1

mx3

)
, |x|m ≥ 1

ε
.

Here the function C̃0(ξ) is even and

C̃0(ξ) > 0 ∀ξ ∈ R. (4.1)

Now we pass to the wings

A2(θ) := (q2 ⊗Fm)(θ) :=

π∫

−π

q2(t)Fm(θ − t) dt.
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Lemma 4.2.

A2(θ) � max

(
1

m
, |θ|

)−α

, θ ∈ [−π, π]. (4.2)

For the derivatives A′
2 = q′2 ⊗ Fm and A′′

2 = q′′2 ⊗ Fm, we obtained the following upper bound
(cf. [3, Lemma 5.2]).

Lemma 4.3.

|A′
2(θ)| � mα+1 min

(
1,

1

mθ

)α+1

, |A′′
2(θ)| � mα+2min

(
1,

1

mθ

)2
.

4.2. Asymptotics of the hat and its derivatives. Here we prove Lemma 4.1 on the asymp-
totics of

A(p)
1 (x) :=

π∫

−π

q
(p)
1 (t)Fm(x− t) dt, p = 0, 1, 2, (4.3)

where, recall,

q1(t) = me−m2 sin2(t/2), Fm(ϕ) =
sin2 mϕ

2

m sin2 ϕ
2

.

Proof of Lemma 4.1. We begin with a general approach to the estimate (4.3) for an arbi-
trary p. Then we specify the general result for p = 0, 1, 2. The general approach consists of the
following steps:

1. We split the integral (4.3) into two parts

A(p)
1 =

m−2/3∫

−m−2/3

. . . +

∫

[−π,π]\[−m−2/3,m−2/3]

. . . =: Ã1p +
˜̃A1p,

where the second integral is estimated as
˜̃A1p = O

(
m2+2pe−

m2/3

4

)
. (4.4)

2. Introduce the notation

Sm(x, t) := e−
m2t2

4
sin2 m

2 (x− t)(
x−t
2

)2 , fp(x, t) :=
q
(p)
1 (t)

(
x−t
2

)2
me−

m2t2

4 sin2 x−t
2

.

Thus,

Ã1p =

m−2/3∫

−m−2/3

fp(x, t)Sm(x, t) dt. (4.5)

Consider the expansion

fp(x, t) =

∞∑
j=0

F̃p,j(x,m)tj (4.6)

and notice that the coefficients F̃p,j are bounded for x ∈ (−π, π). Now we leave the first N terms in
the power series expansion and estimate the remainder of the series using the inequality |t| < m−2/3:

fp(x, t) =
∑
j≤N

F̃p,j(x,m)tj +
∑
j>N

O(mkj)tlj . (4.7)

The sharpness of the asymptotics will depend on N .
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3. Next, we substitute (4.7) into (4.5) and, using estimates similar to (4.4), extend the integration
interval in (4.5) from [−m−2/3,m−2/3] to [−∞,∞]:

A(p)
1 =

∑
j≤N

F̃p,j(x,m)Jj(x,m) +
∑
j>N

O(mkj ) J̃lj (x,m), (4.8)

where

Jj(x,m) :=

∞∫

−∞

tjSm(x, t) dt, J̃j(x,m) :=

∞∫

−∞

|t|jSm(x, t) dt.

This representation implies

J2k(x,m) = J̃2k(x,m) > 0, x ∈ R, k ∈ N. (4.9)

4. Then we consider the integrals Jj . We use the identity

sin2 m(x−t)
2(

x−t
2

)2 = 2m2

1∫

0

s∫

0

cos(rm(x− t)) dr ds = 2m2

1∫

0

1∫

r

cos(rm(x− t)) ds dr.

It yields

Jj(x,m) = 2m2

1∫

0

∞∫

−∞

tje−
m2t2

4

1∫

r

cos(rm(x− t)) ds dt dr.

We can explicitly integrate with respect to s and t:

J2k = 2k+2 (−1)k+1√π

m2k−1

1∫

0

cos(rmx)E2k(r) dr,

J2k+1 = 2k+3 (−1)k+1√π

m2k

1∫

0

sin(rmx)E2k+1(r) dr,

(4.10)

where El(r) are some entire functions:

E0 := (r − 1)e−r2 , E1 = r(r − 1)e−r2 , E2 := (r − 1)(2r2 − 1)e−r2 , . . . .

Thus, to complete the description of the general approach, we should explain how to obtain the
asymptotics of Jl(x,m) as m → ∞. We will find the asymptotics separately in two domains

|x|m ≤ 1

ε
and |x|m ≥ 1

ε
∀ε > 0.

5. For bounded |x|m, we take the power series expansions of the entire functions El(r) at the
point r = 1,

El(r) =

∞∑
j=1

c
(l)
j (1− r)j,
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and substitute them into (4.10). Expanding the resulting integrals in mx,

1∫

0

cos(rmx) (1− r)j dr =
∞∑
ν=0

(−1)νj! (mx)2ν

(j + 2ν + 1)!
,

1∫

0

sin(rmx) (1− r)j dr =
∞∑
ν=0

(−1)νj! (mx)2ν+1

(j + 2ν + 2)!
,

we form other entire functions

C̃l(t) :=
∞∑
ν=0

(−1)ν c̃ (l)ν t2ν , S̃l(t) :=
∞∑
ν=0

(−1)ν s̃ (l)
ν t2ν+1

with coefficients

c̃ (l)ν :=

∞∑
j=1

c
(l)
j j!

(j + 2ν + 1)!
, s̃ (l)

ν :=

∞∑
j=1

c
(l)
j j!

(j + 2ν + 2)!
.

Thus, for finite |x|m, we obtain the following representation for the integrals (4.10):

J2k(x,m) =
(−1)k+1√π · 2k+2

m2k−1
C̃2k(mx), J2k+1(x,m) =

(−1)k+1√π · 2k+3

m2k
S̃2k+1(mx). (4.11)

For k = 0, the first of these formulas together with (4.9) yields (4.1).

6. For growing |x|m, we integrate by parts in (4.10). We have

J0(x,m) = −4
√
πm

⎧⎨
⎩
( cosmx

e
− 1

)
(mx)−2 +

4

e
sinmx (mx)−3

+

⎡
⎣ 6

e
(1− cosmx) + 4

1∫

0

(cos rmx− 1)P5(r)e
−r2 dr

⎤
⎦(mx)−4

⎫⎬
⎭ ,

where P5(r) is a polynomial with degP5 = 5. Thus,

J0(x,m) = 4
√
πm

(
1− cosmx

e

) 1

(mx)2
+O

(
1

m2x3

)
. (4.12)

Similarly,

J1(x,m) = − 8
√
π

e
sinmx

1

(mx)2
+O

(
1

m3x3

)
, (4.13)

J2(x,m) =
8
√
π

m

( cosmx

e
+ 1

) 1

(mx)2
+O

(
1

m4x3

)
,

J3(x,m) =
16
√
π

m2

( sinmx−mx

e

) 1

(mx)2
+O

(
1

m5x3

)
,

and so on. Now we can analyze the special cases of A(p)
1 , p = 0, 1, 2. We will use the notation

a(x) :=

( x
2

sin x
2

)2
, b(x) :=

x2 cos x
2 − 2x sin x

2

4 sin3 x
2

.
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Case p = 0. We have

f0(x, t) = exp

{
m2t2

4
−m2 sin2

t

2

}
a(x− t)

= a(x) + b(x)t+O(1)t2 +O(1)t3 +

(
1

48
a(x)m2 +O(1)

)
t4 + . . . .

Notice that the exponents in this series have the following periodic structure:

O(m2k)t4k, O(m2k)t4k+1, O(m2k)t4k+2, O(m2k)t4k+3, k ∈ N.

Thus,

f0(x, t) = a(x) +O(1)t, t ∈
[
−m−2/3,m−2/3

]
.

This yields

A1 = a(x)J0(x,m) +O(1)J̃1(x,m),

where O(1) is bounded as a function of x and m. Hence, using (4.11) and (4.12), we arrive at the
assertion of Lemma 4.1 for p = 0.

Case p = 1. We have

f1(x, t) = −m2

2
exp

{
m2t2

4
−m2 sin2

t

2

}
sin t · a(x− t)

= −m2 a(x)

2
t−m2 b(x)

2
t2 +O(1)m2t3 +O(1)m2t4 −

(
m4a(x)

96
+O(1)m2

)
t5 + . . . .

Thus,

f1(x, t) = −m2 a(x)

2
t+O(m2)t2, t ∈

[
−m−2/3,m−2/3

]
.

This yields

A(1)
1 = −m2 a(x)

2
J1(x,m) +O(m2)J2(x,m).

Now, using (4.11) and (4.13), we obtain the assertion of Lemma 4.1 for p = 1.

Case p = 2. We have

f2(x, t) = −m2

4
exp

{
m2t2

4
−m2 sin2

t

2

}
(2 cos t−m2 sin2 t)a(x− t).

Expanding in tν implies

f2(x, t) = −m2 a(x)

2

(
1− m2t2

2

)
−m2 b(x)

2

(
t− m2t3

2

)
+

m6a(x)

192
t6 +O(m4/3)

for t ∈ [−m−2/3,m−2/3]. This yields

A(2)
1 = −m2 a(x)

2

(
J0 −

m2

2
J2

)
−m2 b(x)

2

(
J1 −

m2

2
J3

)
+O(m4/3)J0.
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Integrating by parts, we get

J0 −
m2

2
J2 = −8

√
πm

1∫

0

cos(rmx) r2(r − 1)e−r2 dr = − 8
√
π

e
m cosmx

1

(mx)2
+O

(
1

m3x4

)
,

J1 −
m2

2
J3 = −16

√
πm

1∫

0

sin(rmx) r(r + 1)(r − 1)2e−r2 dr

=
32
√
π

e
(2 cosmx+ e)

1

(mx)3
+O

(
1

m4x4

)
.

Now, using (4.11), we obtain the assertion of Lemma 4.1 for p = 2.
Lemma 4.1 is proved. �

4.3. Asymptotics of the wings. Here we prove Lemma 4.2 on the asymptotics of the second
term in representation (3.26), (3.27) for A:

A2(θ) := (q2 ⊗Fm)(θ) :=

π∫

−π

q2(t)Fm(θ − t) dt.

Proof of Lemma 4.2. We begin with the lower bound. For the Fejér kernel, we have

Fn(t) ≥

⎧⎪⎨
⎪⎩

4n

π2
, |t| < π

n
,

0, |t| > π

n
.

Hence (since q2 is positive),

(q2 ⊗Fn)(θ) ≥
θ+ π

n∫

θ− π
n

4n

π2
q2(t) dt ≥

θ+ π
n∫

θ− π
n

4n

π2

(
1

n
+

|t|
2

)−α

dt,

where we used the fact that α > 0. There are two possibilities: either

|θ| < π

n
⇒ |t| � 1

n
⇒

(
1

n
+

|t|
2

)−α

� nα

or

|θ| ≥ π

n
⇒ 1

n
+

|t|
2

� 1

n
+

|θ|
2

� |θ|.

The lower bound in (4.2) is proved.

Now, let us proceed to the upper bound. For the Fejér kernel, we have

Fn(t) ≤

⎧⎪⎨
⎪⎩

n, |t| < π

n
,

π2

nt2
, |t| > π

n
.

(4.14)
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Hence,

(q2 ⊗Fn)(θ) ≤
θ+ π

n∫

θ− π
n

n

(
|t|
π

)−α

dt+

π∫

θ+ π
n

π2

n

(
|t|
π

)−α dt

(θ − t)2
+

θ− π
n∫

−π

π2

n

(
|t|
π

)−α dt

(θ − t)2
.

Denote the integrals on the right-hand side by I1, I2, and I3. Using the symmetry, we can assume
that θ ∈ (0, π/2). The case of θ ∈ (π/2, π) is similar. For I1, we have

|θ| ≤ π

n
⇒ h :=

n

π
|θ| ≤ 1 ⇒ I1 =

πnα

1− α

(
(1 + h)1−α + (1− h)1−α

)
� nα,

where we used the fact that α < 1, and

|θ| > π

n
⇒ h > 1 ⇒ I1 =

πnα

1− α

(
(h+ 1)1−α − (h− 1)1−α

)
� nαh−α = |θ|−α.

To consider I2, we make a change of variables:

u :
1

θ − t
=

−u

θ
.

Then

I2 =

nθ
π∫

θ
π−θ

(
π2

nθ

)(
θ

π

u+ 1

u

)−α

du =
π2

n
π−αθ−α−1

nθ
π∫

θ
π−θ

(
u+ 1

u

)−α

du.

Note that in the integrand
(
u+1
u

)−α ∈ (0, 1); hence, either

|θ| > π

n
⇒ I2 = O(n−1θ−α−1nθ) = O(θ−α)

or

|θ| ≤ π

n
⇒ I2 <

π2

n
π−αθ−α−1

nθ
π∫

0

uα du = O(nα).

To consider I3, we make another change of variables:

u :
1

θ − t
=

u

θ
.

We have

I3 =

nθ
π∫

θ
π+θ

π2

nθ

(
θ

π

∣∣∣∣ 1− u

u

∣∣∣∣
)−α

du =
π2+α

nθ1+α

nθ
π∫

θ
π+θ

uα|1− u|−α du.

We estimate this integral for three domains of values of the parameter θ. In the first case,

nθ

π
<

1

2
⇒ |1− u|−α < 2α ⇒ I3 <

2απ2+α

nθ1+α

nθ
π∫

0

uα du ∼ nα.

In the second case, we have

1

2
≤ nθ

π
< 1 ⇒ I3 < πnα

(
nθ

π

)−α−1
1∫

0

uα(1− u)−α du = 2α+1πnα πα

sin πα
∼ nα.
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Finally, in the third case 1 ≤ nθ/π, we split the integral into three parts:

I3 <
π2+α

nθ1+α

⎛
⎝

1∫

0

uα(1− u)−α du+

∞∫

1

[( u

u− 1

)α
− 1− α

u

]
du+

nθ
π∫

1

(
1− α

u

)
du

⎞
⎠

=
π2+α

nθ1+α

(
const(α) +

nθ

π
+ α ln

nθ

π

)
∼ θ−α.

Lemma 4.2 is proved. �
4.4. Wings: Estimates for the derivatives. Let us prove Lemma 4.3 on upper bounds for

the derivatives

A′
2 = q′2 ⊗Fm, A′′

2 = q′′2 ⊗Fm, where q2 =

(
1

m2
+ sin2

t

2

)− α
2

.

Proof of Lemma 4.3. We have

q′2 = −α

4
sin t

(
1

m2
+ sin2

t

2

)− α
2
−1

,

q′′2 =
α(α + 2)

16
sin2 t

(
1

m2
+ sin2

t

2

)− α
2
−2

− α

4
cos t

(
1

m2
+ sin2

t

2

)− α
2
−1

.

The inequality between the geometric and arithmetic means yields

a

(
1

m2
+ a2

)−β−1
2

=
a√

1
m2 + a2

(
1

m2β
1
m2 + a2

)β
2

(βm2)
β
2 ≤ (βm2)

β
2

⎛
⎝

a2
1

m2 +a2
+ β

1
m2β
1

m2 +a2

1 + β

⎞
⎠

β+1
2

= (βm2)
β
2 (β + 1)−

β+1
2 ;

this allows us to estimate q′2(t) and q′′2(t) from above on t ∈ [−π, π]:

|q′2| ≤
α

2
sin

t

2

(
1

m2
+ sin2

t

2

)− α
2
−1

≤ α

2

√
(α+ 1)α+1

(α+ 2)α+2
mα+1,

|q′′2 | ≤
α(α + 2)

4
sin2

t

2

(
1

m2
+ sin2

t

2

)− α
2
−2

+
α

4

(
1

m2
+ sin2

t

2

)− α
2
−1

≤ α

4

(
2 +

(
α+ 2

α+ 4

)α+4
2

)
mα+2.

We can also obtain an upper bound using a power series expansion in t:

|q′2(t)| <
α

4
|t|
((

|t|
π

)2)− α
2
−1

=
απα+2

4
|t|−α−1,

|q′′2 (t)| <
α(α+ 2)

16
t2
((

|t|
π

)2)− α
2
−2

+
α

4

((
|t|
π

)2)− α
2
−1

=
απα+2

4

(
1 + (α+ 2)

π2

4

)
|t|−α−2.

Thus,

|q′2(t)| � min

(
m,

π

|t|

)α+1

, |q′′2(t)| � min

(
m,

π

|t|

)α+2

.
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Now we can consider A′
2 and A′′

2 on [−π, π]. We split the integral into two parts

A′
2(θ) =

∫

T

q′2(t)Fm(θ − t) dt =

θ
2∫

θ
2
−π

q′2(t)Fm(θ − t) dt+

θ
2
+π∫

θ
2

q′2(t)Fm(θ − t) dt

and obtain

|A′
2(θ)| ≤

θ
2∫

θ
2
−π

|q′2(t)| dt max
t∈[ θ2 ,

θ
2
+π]

|Fm(t)|+

θ
2∫

θ
2
−π

|Fm(t)| dt max
t∈[ θ2 ,

θ
2
+π]

|q′2(t)|.

We have used the periodicity of the functions F , q
(j)
2 , and A(j)

2 and their symmetry about zero.
Now we recall (4.14):

|Fm(t)| ≤ 1

m
min

(
m,

π

|t|

)2
, t ∈ [−π, π].

We fix θ > 0, fix a period so that θ/2 is in the middle of the period, and continue

|A′
2(θ)| �

1

m
min

(
m,

2π

|θ|

)2
π∫

−π

min

(
m,

π

|t|

)α+1

dt+min

(
m,

2π

|θ|

)α+1
π∫

−π

1

m
min

(
m,

π

|t|

)2
dt.

As a result,

|A′
2(θ)| � mα+1min

(
1,

1

mθ

)2
+mα+1 min

(
1,

1

mθ

)α+1

� mα+1min

(
1,

1

mθ

)α+1

.

For A′′
2, we perform the same procedure with the exponent α+ 1 replaced by α+ 2:

|A′′
2(θ)| � mα+2 min

(
1,

1

mθ

)2
+mα+2 min

(
1,

1

mθ

)α+2

� mα+2 min

(
1,

1

mθ

)2
;

however, now the dominant term is the first one.
Lemma 4.3 is proved. �
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