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Abstract—The well-known problem of V.A. Steklov is closely related to the following extremal
problem. For a fixed n € N, find M,, 5 = sup,cg; ||#nl > (T), Wwhere ¢,,(z) is an orthonormal
polynomial with respect to a measure o € S5 and Sy is the Steklov class of probability mea-
sures o on the unit circle such that o/(8) > 6/(27) > 0 at every Lebesgue point of 0. There is
an elementary estimate M,, < y/n. E.A. Rakhmanov proved in 1981 that M,, > /n/(Inn)3/2.
Our main result is that M,, 2 \/n, i.e., that the elementary estimate is sharp. The paper gives

~

a survey of the results on the solution of this extremal problem and on the general problem of
Steklov in the theory of orthogonal polynomials. The paper also analyzes the asymptotics of
some trigonometric polynomials defined by Fejér convolutions. These polynomials can be used
to construct asymptotic solutions to the extremal problem under consideration.

DOI: 10.1134/50081543815040057

1. INTRODUCTION

The theory of orthogonal polynomials occupied an important place in the work of V.A. Steklov.
He published the total of 29 papers on this subject [11-39]. The first of them appeared in 1900, while
the last ones are dated 1926. In the 1940 survey on orthogonal polynomials [9], all these publications
were summarized and it was precisely indicated what new properties of orthogonal polynomials had
been obtained there. In the Russian literature, a detailed analysis of Steklov’s work was carried out
in 1977 by Suetin in his monographic survey [40]. The main attention in [40] was paid to Steklov’s
conjecture, which represented an open question at the time and attracted increased interest to this
field and related problems. First of all, interest was aroused by the problem of estimating orthogonal
polynomials on the support of the orthogonality weight, which was called Steklov’s problem in [40]:
find an estimate on (—1, 1) for a polynomial sequence {P,(x)}>2, that is orthonormal

1

/Pn(x) P (z) p(x) de = 6, m, n,m=0,1,2,..., (1.1)
“1

with respect to a strictly positive weight p:
p(x) >0 >0, x € [-1,1]. (1.2)
In 1921, Steklov conjectured that the sequence {P, (x)} is bounded at the points z € (—1,1), i.e.,

lim sup| P, (z)| < oo, (1.3)
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V.A. STEKLOV’S PROBLEM 73

if the weight p does not vanish on [—1, 1] (see [35, p. 321] or a citation in [40]). In the present study,
we mark the progress made after 1977 concerning the conjecture and problem of Steklov.

We will use the more convenient terminology of polynomials orthogonal on a circle. Let {¢,}
be a sequence of polynomials in z = ¢’ that are orthonormal on the unit circle,

2
/(bn(bm do(0) = 0pm, n,m=20,1,2,..., (1.4)
0

with respect to a measure o. The Steklov class Ss is a class of probability measures o on the unit
circle that satisfy the condition
1)
"> 1.5
A= (1.5)
at every Lebesgue point. In these terms, Steklov’s conjecture states that the polynomials ¢, gen-
erated by a measure in the Steklov class should be uniformly bounded in n on the support of the
orthogonality measure.
Steklov’s conjecture was disproved in 1979 by Rakhmanov [7]. He constructed polynomials with
conditions (1.4) and (1.5) such that

1im_>supH¢n(z; J)HLoo(T) = 00. (1.6)

More precisely, in Rakhmanov’s construction (below we will dwell on it in more detail), polynomials
displayed logarithmic growth (along a subsequence) and their orthogonality measure (from the
Steklov class) contained a discrete component. The Rakhmanov counterexample was extended to
continuous measures (weights) in [2].

The following extremal problem played an important role in Rakhmanov’s construction and in
the subsequent research on Steklov’s problem: for a fixed n, find

M5 = sup ||¢n(z;0)| oo ()- (1.7)
oESs

There is a trivial upper bound (see [41]):

1
Mnﬁg\/”; . neN. (1.8)

Indeed, (1.8) follows from the normalization condition (1.4) and the Cauchy—Schwarz inequality:

n 2 n
0 9 9 |’¢n(z§a)|’Loo(qr) ‘ ‘ ;
1> 27T/|¢n| d9:52|cj| >0 n+1 ) Pn(zi0) =: ZCJZJ'

T J=0 j=0

In 1981, Rakhmanov proved [8] the inequality
1
C\/”“L3 <M,s, C>0, §<1, (1.9)
d1ln°n ’

which allowed him to significantly improve his previous result (1.6) from [7]. Namely, he proved
that for any sequence {f,,}: B, — 0, there exists a 0 € S5, § < 1, such that

kn,
|k, (23 0) | Lo (1) > 5kn\/ (1.10)

In? &,
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74 AL APTEKAREV et al.

for some sequence {k,} C N. This estimate is almost sharp in view of the following result by
Geronimus [5, Theorem 3.5] and its refinement due to Nevai [6]. For o € Ss, we have

[6n(2;0) | Lo (1) = 0(V/n). (1.11)

Thus, Rakhmanov’s result left a very narrow interval to which the quantity M,, 5 and the growth
rate of the norms of subsequences of orthonormal polynomials can belong.

Recently, we have succeeded in proving that the well-known upper bounds (1.8) and (1.11) are
asymptotically sharp with respect to the growth order. The main result of our study [3] is

Theorem 1.1. Let 6 € (0,1). Then
(1) for sufficiently large n > ng > 0, there exists a constant C(6) > 0 such that

M, s > C(0)vn; (1.12)

(2) for an arbitrary sequence {Bn}: Bn — 0, there exists an absolutely continuous probability
measure o*: do* = o*df, o* € Ss, such that

168, (2507 | Loo(m) > BruVEins  Bra(8) >0, (1.13)
for some sequence {k,} C N.

Notice that § in the theorem is not necessarily small and may be arbitrarily close to unity. Of
course, this is possible at the cost of the value of the constant in (1.12), which in this case tends
to zero.

The structure of the paper. In Section 2, we present preliminary results concerning extremal
problems of the form (1.7). These results allow us to describe the structure of the extremal measure
in problem (1.7) and solve problem (1.7) for § small compared with 1/n. Then we discuss approaches
to the design of orthonormal polynomials with large norm as well as the constructions of such
polynomials (Section 3). In the concluding Section 4, for one of such constructions (that was not
used in [3]|) we present estimates for a polynomial close to the extremal one and for its derivatives.

2. EXTREMAL MEASURE AND SMALL ¢

In this section, we consider extremal problems of the form (1.7), but on other classes of orthogo-
nality measures. Namely, we consider the problem in the class of measures with derivative bounded
below (by a parameter §) and above (by a parameter A):

sup [|6n(2;0) | ooy =: M55, (2.1)
UES?

where S is the class of probability measures o such that A > ¢/(6) > & > 0. We also consider the
problem in the class of nonnormalized measures:

sup [ én(2;0)|| =: M. (2.2)
o/ (8)>6>0
2.1. Structure of an extremal measure. We begin with characterizing the extremal mea-
sures in (2.1) and (1.7).
Theorem 2.1. The following assertions are valid:

(1) there exists an evtremal measure o5 for the extremal problem (2.1); its density do%(9)/d0
takes only two values A and 6 and has at most 2n switches;

(2) there exists an extremal measure o for the extremal problem (1.7); it can be expressed as

doy =5d0+>  mpd(0 — Oy). (2.3)
k=1
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V.A. STEKLOV’S PROBLEM 75

Proof. A detailed proof of the theorem is given in [3]. Here we demonstrate the main idea of
the proof of assertion (1) of Theorem 2.1.

Our extremal problems (1.7) and (2.1) are variational problems for a functional F'(sg, s1,. .., Sp)
defined on a finite number of moments {sg, s1,...,s,} of a measure in the class Ss or S{;A, respec-
tively. We can set

F(SQ,Sl, .. -73n) = ‘¢n(1)’

The functional F is differentiable with respect to the moments. The set Sy is the weak closure of
the sets S{;A:

Ss=J S5
A>6

Thus, we can consider the extremal problems (1.7) and (2.1) as optimal control problems (see [1])

(30,51, -+, 80) = sup (24)
with constraints
27
/eike dO’(@) = 5, k = O, ...,n, OE€E Sg. (2.5)
0

Since F' is continuous and the moments are continuous in the weak topology, it follows that

sup F'= lim sup F.

S A—o0 S(SA
In turn, the problem
27
F — sup, /eika do(0) =sk, k=0,...,n, o€ S(;A, (2.6)
0

always has a solution because it is considered on the compact set
( o
/COSdeJ(G) =Res, k=0,...,n,
0
2m
/sink@da(@) =Imsg, k=1,...,n,
0
Let us write the Lagrangian for this case:

cess, s<C.

n 21
MF (50,815 58n) + Z A2kt 1 /cos k0 do(0) — Re s,
n 21
+ Z Aok /sin kO do(0) —Imsy | + L(so — C)

n

= XoF(80,81,---48n) — Z(Resk + Imsg) + L(sg — C)
k=0

27 n n
+ / ( Z Aokt1 cos kf + Z Aoy, sin k0> do(0).
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76 AL APTEKAREV et al.

The optimality condition for o € S5 in the variational problem (2.6) yields

A+06 A-=§ . = = .
o'(0) = 5 + o sign < l;) A2k+1 cos kb + l; Agf sin k:9> ; (2.7)

i.e., 0/(0) takes only two values A and ¢ and has at most 2n switches (since the degree of the control
trigonometric polynomial is at most n). O

2.2. Exact solution to the extremal problem with unconstrained mass of the mea-
sure. Now we pass to the extremal problem (2.2).

Theorem 2.2. The following assertions are valid:

(1) 4t holds that
~ n+1
M, s = \/ 5 (2.8)

(2) a mazximizing sequence {o;} for the extremal problem (2.2) is given by

doy=06d0+ > ms(0—0), O = Moor k=1,...m, (2.9)

— n+1

and
Or. D 210
{m;’}: Jim minrm,” = oo. (2.10)
Remark. We stress that in the class of measures S5, M > 0 (i.e., without constraint on
the total mass M), the elementary upper bound (1.8) is sharp and a maximizing sequence is given
by (2.3).

Proof of Theorem 2.2. Introduce the notation

n
O(2) = [[(z—ex), e =€, (2.11)
k=1
and let ®,,(z) = 2" 4 ... be a monic orthogonal polynomial on T,
2
;ﬂ /q)n(e“’)ei”e de(§) =0, v=0,...,n—1, (2.12)
0

where the orthogonality measure has the form

do; = 6dO + kaa(a — 0.
k=1

The polynomial ®,,(z) can be represented as

D, (2) = I, (2) <1 +Zn: Ci ) (2.13)

Notice that the orthogonality relations are equivalent to the following:

0= <(I>n(z) M (2) > ! 7<1>n(z)(H"(2) ) do@) =0, k=1,....n, z=¢"

"z—er/ 2w z— €
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V.A. STEKLOV’S PROBLEM 7

Using (2.13) and the equality
M) _ ()

z—er 21— zeg)’

we further have
2T

27
6 [ I (2) I, (2) n a/ 11, (2) 117, (2) df 2
0= Ci|II 2.14
27T/Z"11—Z€k +J1 2 1(2—5 (1 — ze )+mk 1T () (2.14)
0
for k =1,...,n. Now, suppose that (2.10) is valid. In view of (2.14), this implies

crs R C=(Ch,....C). (2.15)

Then we calculate the norm

27 n A n '
a2 = / (1 sy 9 ) (1 2, (_’W;A)H,xz) I, (2) do ()
j= J : J

0 1 7=1
2T n 2 m
- I, HW+20 Jeod+305 [(odo+d milCi, e
5 =1 k=1

Hence, taking into account (2.14) and (2.15), we obtain

10|57 — 1T 13 4o
®, (1) — I, (1).

min my — 00
k

Finally, set

which yields
MLall3ap = 6(n +1),  T,(1) =n+ 1.
Thus,
n(1) — \/n—|— ! if minmy — oco.
[l d k
The theorem is proved. O

Remark. This theorem has the following corollary for our original problem (1.7). Consider
the class Sj for § small compared with 1/n. Then, choosing the scale ¢, (z; o) = o= Y2¢,(z; 1) for

any « > 0, we obtain
n+1
Mg, =" o),
n

C
Op = , m, — +00 as n — oo.
nmpy,

where

Thus, for small ¢, the elementary upper bound (1.8) for M,, 5 is sharp. If we take m, = 1/n and
make the total mass in the proof finite, then the above-constructed polynomials ¢, will be bounded
with respect to n for § ~ 1.
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3. DESIGN OF ORTHONORMAL POLYNOMIALS WITH LARGE NORM

3.1. Orthogonal polynomials on a circle: The main properties. To describe approaches
and constructions related to the extremal problem (1.7), we need some concepts from the theory of
orthogonal polynomials on a circle (see [5, 10]).

For an arbitrary polynomial P,(z) = p,2z" + ...+ p1z + po, its nth inverse (or its x-transform)
is defined as

1
Pr(z) = z"Pn<Z) = o F 12" D,

Notice that if z* # 0 is a root of P,(z), then (2*)~! will be a root of P’(z). We also note that the
definition of the nth inverse polynomial does not exclude the vanishing of the leading coefficients
of P,(z); in this case the polynomial P}(z) has a zero (of the corresponding order) at the origin. It
is well known [5] that all zeros of ¢,, are located inside D; thus, ¢¥ has no zeros in D.

For monic orthogonal polynomials, one uses the notation ®,,:

Py, (25 1)
”q)n”lu

Using these polynomials, one can define circular parameters -, such that

(IDn(Ov M) = ~Tn-1-

Dp(zp) =2"+ ..o balzp) =

Then (see [10])
O (21 1) = bz ) (P0 - pu1), o =+1— |7l

The circular parameters allow one to write recurrence relations for polynomials orthonormal
with respect to a probability measure and their nth inverses (see [5]):

¢n+1 = p;l(ZQSn ’7n¢ ’
|M|

1
(b;kz—i—l = p;1(¢; - ’YnZ(bn)? ¢6 = \/‘M‘ =1

Along with the polynomials ¢,, and ¢}, we will need polynomials of the second kind 1, and 1} that
are defined by recurrence relations of the same form but with circular parameters —v,, i.e. (see [10,

p. 57]),

{wn-i—l = p;zl(zwn +7n1/};;)7 ¢0 = \/’M’ = 1, (3 1)
w;-{-l = PZl(T/)Z + Yn2¥n), ¢S = \/|,u| =1.

An important role in the theory of orthogonal polynomials on a circle is played by two analytic
functions in the disk whose boundary values are related to the orthogonality measure dy. We mean
the Carathéodory function

£+2

F: ReF(z)>0, zeD, F(z) = /C(z,ew)d,u(e), C(z,¢) = £ £eT,

and the Szegd function
1 . )
II: 1II(z) #0, zeD, II(z) = exp 4 /C(z, ) log 11/ (%) db
7r
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V.A. STEKLOV’S PROBLEM 79

The Szeg6 function is considered under Szegd’s condition on the absolutely continuous part of the
orthogonality measure:

™

1
exp| /ln(27r,u'(0)) 0| =p>0 & {yn} € £2,

—T

since p = [[,;5¢ p; by the Szegd theorem (see [10]). The Carathéodory function is considered without
constraints on the measure; its Taylor coefficients are equal to the moments of the measure du. The
relationship between the boundary values and the absolutely continuous part of the measure is given
by the formulas

2rReF =4  and |2 =2my  on T.

A key place in the theory of orthogonal polynomials on a circle is occupied by the Bernstein—Szegs
approximations for the Carathéodory function and the orthogonality measure:

dé dé

Yn(z) L it _ —
Fale) = ) T/0(7 ) dpn(0),  dpn(0) 2l ()2 T 27|t (ei0)|2

The first n Taylor coefficients of F;, and the first 2n moments of du,, coincide with the corresponding
coefficients of F' and moments of the measure du. Finally, note three remarkable limit relations of
the theory of orthogonal polynomials on a circle

djn = dp,  Fo(z) > F(z),  and  gi(z) 5 TI(z),  z€D,

where the first relation is satisfied in the sense of weak convergence of measures, and the second
and third hold uniformly in z € D under additional conditions on du (for example, for p in Sy with
smooth ).

3.2. Construction of extremal polynomials: Rakhmanov’s approach. Consider the
Christoffel-Darboux kernel

n
Kn(&2,m) =Y 65(& 1) b2 ).
=0
The following important result is due to Geronimus [5]:

Lemma 3.1. Consider a measure pu(t) = (1 — t)u + tdy with t € (0,1). Then one has the
identity
O (15 ) Kp—1(1, 2, 1)

Cn(2u(t)) = Pulzip) — 1, bty (L) (32)

In |7], Rakhmanov used the following generalization, in which point masses are added at several
specially chosen points rather than at a single point.

Lemma 3.2. Let p be a measure on the circle T, ®,(z; 1) be monic orthogonal polynomials,
and Kn(§,z,p0) = >0 0i(& 1) ¢j(2z;1) be the Christoffel-Darboux kernel. If points & € T, j =

1,...,m, m <mn, are chosen so that

Kn—l(&j?&lwu) = Oa ] 7é la (33)
then

N N = P (Eks 1)
D, (z;m) = Pp(z; 1) ; 1t mp K1 (& Exo 1) Ko—1(&ks 21, 1), (3.4)
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where

m
77:N+ka56k, Zk‘:ezek, meO
k=1

The application of this formula to du = df immediately yields the estimate
M,s>C(6)Inn

for an appropriate choice of the weights {m;}. Moreover, it is easy to show that one cannot improve
the logarithmic growth by changing {my}. When the measure dy is different from df, the calculation
of the polynomials, the Christoffel-Darboux kernel, and its zeros appears to be problematic.

In the subsequent paper [8], Rakhmanov again used the idea of modifying the weight by a point
mass, but this time he defined the orthogonality measure implicitly.

3.3. Construction of extremal polynomials: An alternative approach. In (3], to es-
timate from below the solution of the extremal problem (2.5), i.e., to construct (for a fixed n) an
orthogonal polynomial ¢ (z;0) for o in the Steklov class S,

o5 (L;0) > C(8)v/n, o€ Ss, (3.5)

we proposed a fundamentally different approach.

First, we rewrote the Steklov condition in the form of several relations that generally involve
an arbitrary polynomial and an arbitrary Carathéodory function. Then we presented all necessary
parameters in an explicit form, and the greater part of the proof consists in verifying that these
parameters satisfy the desired conditions. In this approach, the absolute value of the orthogonal
polynomial on the circle is given explicitly, and the orthogonality measure can easily be found from
available formulas. In particular, the measure can be thoroughly analyzed.

The following lemma from [3] provides a reformulation of problem (3.5).

Lemma 3.3. To prove (3.5), it suffices to find a polynomial ¢ and a Carathéodory function F
with the following properties:

(1) ¢k (2) has no roots in D;

(2) ¢ (2) is normalized as

Jlenrzdo=om a0 >0, (3.
T
(3) ¢ has a large uniform norm, i.e.,
|6n ()] ~ V/n;
(4) F € C®(T), ReF >0 on T, and
2171' /Re F(e%)do = 1; (3.7)
T
(5) in addition,
672+ [F(2) (8 (2) = 63,(2)) | < C2(0) (Re F (=) ? (3:8)

uniformly in z € T.
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Proof. For a detailed proof of the lemma, see [3|; here we only outline this proof.

It is well known (we have already pointed this out) that polynomials orthonormal with respect
to a probability measure possess properties (1) and (2) indicated in the lemma. One can easily
show (and we do this in [3]) that the converse is also valid; i.e., any polynomial ¢,(z) possessing
properties (1) and (2) is orthonormal with respect to some probability measure and also defines the
first n circular parameters vy, ...,v,—1. Property (3) gives the necessary growth of the norm.

Now, let us show that properties (4) and (5) guarantee the existence of a measure o in the
Steklov class S5 for which ¢,, is the nth orthonormal polynomial.

Note that F defines (according to property (4) in the lemma) the corresponding probability
measure o, which is absolutely continuous and has a positive smooth density ¢’ defined by the
equality
_ Re F(e?)

o (0) o

(3.9)
Denote its circular parameters by {7;}, 7 = 0,1,..., and the corresponding orthonormal polyno-
mials of the first and second kind by {<;~5]} and {Jj}, j =0,1,..., respectively. Notice that the
normalization of the measure & implies ¢g = 109 = 1. Baxter’s theorem (see [10]) implies that
¥; € £* (in fact, the decrease is much faster, but ¢! is sufficient for our purposes). Then we form a
probability measure o with the following circular parameters:

707"'7771—17?07%17"' .

We will show that this measure is the sought measure in the Steklov class for which ¢,, is the nth
orthonormal polynomial.
Let us prove that o € Ss. Set

Tn = 70, Yntl = 71, cee (3.10)

Baxter’s theorem states that o is absolutely continuous, ¢’ belongs to the Wiener class W(T), and
o’ is positive on T. The first n orthonormal polynomials corresponding to the measure o are {¢;},
j=0,....,n—1.

In [3], we obtained a fundamental identity that allows one to calculate the polynomials ¢; and v;
(orthonormal with respect to o) for indices j > n:

20% v = Gn(0r, — Vi) + O (D +U) = 02 (60 + 65+ Fin (65 — 6n)), (3.11)
where _
~ Y (2)
Foz)= "~ .
=5

Since {7, } € £! and {v,} € ¢!, we have [10, p. 225

F,—F, m-— oo, o =1, @) =1, n— oo,

uniformly on ). The functions II and II are the Szegd functions for o and o, respectively; i.e., they
are external functions in D, which yields the factorization

|2 =27x0’, |72 = 275" (3.12)
Now in (3.11) we let m — oo and obtain
210 = T1(6n + 6, + F (@7, = én))- (3.13)
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Thus, the first formula in (3.12) shows that in the class of sufficiently regular measures, the Steklov
condition ¢’ > §/(27) is equivalent to

(6 + ¢ + F (8 — ) z=¢?eT. (3.14)

<2

Z)
Since |¢y| = |¢;| on T, we have

[TL(¢n + 65, + F (&, — ¢n))| < 20T (167 + [F (0], — ¢n)l) < 2C1(O)[TT|(Re F)'? = 2C1(5)

owing to (3.8) and (3.9) and the second formula in (3.12). Thus, for (3.14) to hold, we must set
C1(8) := 6~Y2 in (3.8). Since we assume that ¢ is fixed, explicit formulas for C(§) and C(8) do
not matter. [J

3.4. Constructions of an extremal polynomial. As a polynomial asymptotically close to
an extremal one, in [3] we proposed the following construction. The polynomial ¢} was taken in
the form

(b;';(z) = Cnfn(z)v fn(z) = Pm(z) + Qm(z) + Q:n(z)v (3'15)

where P, and @, are some polynomials of degree 2m — 1 and m — 1, respectively, m = [01n] with
a sufficiently small é; > 0, and the zeros of the polynomial @, lie outside the disk ID. Note that
here @}, is defined by the application of the operation * of order n. The constant C,, is chosen
so that

/ 6572 d6 = 2r

(i.e., the orthogonality measure of the polynomial ¢, is a probability measure, see (3.6)). Note
that one of the main technical difficulties in applying Lemma 3.3 in [3] was the verification of the

fact that
2

n 1/
C, = /\fn]_zda ~1 (3.16)

uniformly in n. Then, to prove the desired lower bound (3.5), it suffices to show that f,, possesses
the other properties indicated in the lemma.

Let us explain the purpose of the terms constituting the polynomial ¢} in (3.15). Since @,
is chosen with zeros outside D, all n zeros of Q,, + QF, are located on the unit circle T. Since
the polynomial ¢} defined in (3.15) is expected to be orthogonal on T, the zeros of Q,, + Q,
in (3.15) must be “pushed out” of D by an appropriately chosen polynomial P,,. This “pushing”
polynomial P, serves no other purpose and has a small absolute value. Thus, the main contribution
to the polynomial ¢} on the unit circle is made by Q,,, + @}, (the corresponding proposition is proved
in [3]). Let us give an appropriate representation for this term. We have

Qm + @y = |Qml exp(i Arg(Qm)) + |Qum| exp(ind — i Arg(Qm))

— 2/Qu exp<“;9> <"29 - Arg(%))

= 2exp<iza>\/fl(0) cos((Z —m+ 1>0+@(0)).
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Here we have used the notation
A(0) == |Q(e")]?, ®(h) := Arg(Qr,(e)), 6 € (0,2m),

where the operation * is of degree m — 1. It is clear that when verifying condition (3.16), one must
control the argument of ), and its derivative. We have

o(0) = 2171 7';‘(((5)) In|sin ¥ ; o ‘ dep, (3.17)
0

d'(0) = 2171 7( j((j)) >,ln sin ¥ o 'd(p. (3.18)
0

These representations show that we need the asymptotics for |Q,,|? and estimates for its two deriva-
tives in order to control Q),, + @, on the unit circle.

In [3], we defined the polynomial @Q,,(z) as an algebraic polynomial (in powers of z) without
zeros in D that is obtained by the Riesz—Fejér factorization of a positive trigonometric polynomial:

0|2
]Qm(z)]2 = gm(e) + ‘R(m,aﬂ)(e 9) R (3.19)
which consists of
1 s 1 s
Gnl0) = Fun(0) + , Fn (0= " )+ S Fu(0+ ). (3.20)
where F;, is the Fejér kernel,
2m
sin? "y
Falp)= "N 2 Fa0)=m, /]:m(go) dyp = 2, (3.21)
msin® ¥
0
and of the Taylor approximation Ry ) of the function (1 — 2)7¢,
k .
R(k,a) (Z) =g+ Z Cij, (322)
j=1

with a parameter o € (1/2,1).
In [3], the polynomial P, (from the definition of the polynomial ¢} in (3.15)), which pushes the
zeros out of the unit circle, is defined as

Pon(2) = @u(2)(1 — 2)(1 ~ 01R (1 (2)). (3.23)

Its degree deg P, = 2m + 1 is less than n in view of the choice of a small §;.

Finally, as the Carathéodory function F' (from property (4) in Lemma 3.3) that guarantees the
Steklov condition (by property (5) in Lemma 3.3) for the orthogonality measure of the polyno-
mial ¢, in [3] we proposed the following function:

F(z)= 5n(p(1 ten—2) "+ (L4 e, —2)7%), (3.24)

where €, = n=1, p € (0,p0), po is sufficiently small, and C~’n is a positive constant that we specify
when verifying the properties indicated in Lemma 3.3. It is clear that F' is a smooth function with
positive real part in D.
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Thus, as proved in [3], formulas (3.15), (3.19), (3.20), and (3.22)—(3.24) give an explicit expression
for the orthogonal polynomial ¢,, and the Carathéodory function F that satisfy Lemma 3.3 and thus
solve problem (3.5). Note that the explicit expressions given here solve problem (3.5) for small 4.
To prove assertions (1) and (2) of Theorem 1.1 for § € (0,1) (i.e., to solve problem (1.12) and
construct a subsequence of maximum possible growth), we successively complicated these explicit
constructions of ¢, and F. Nevertheless, the main idea of the new method proposed in [3] is given
by the explicit constructions presented here for small 9.

Now, let us explain the purpose of both terms constituting the positive trigonometric polynomial
|Qm(2)]? in (3.19). We can see that the first term G,,, in (3.19) (“hat”) guarantees the desired growth
of the orthogonal polynomial:

|6n (D] ~ v/n.

In our construction, the trigonometric polynomial @,, must preserve a large absolute value on an
interval of length ~ 1/m. We need this in order to keep the bounded derivatives of the polynomial
and, hence, to have sufficiently smooth Szeg6 functions that guarantee the Steklov condition for the
orthogonality measure. Since the Fejér kernel decays very rapidly, we take the sum of three kernels
(see (3.20)) to meet these requirements. We also require that outside this interval of order 1/m, the
polynomial should have a controlled decay, which should not be so fast as that of the Fejér kernel.
In (3.19), the polynomial R, o/2) (“wings”) serves this purpose.

The asymptotics for the norm of the trigonometric polynomial @, (defined in (3.19)—(3.22))
and upper bounds for its first and second derivatives were obtained in [3, Appendices A, B] (see |3,
Lemmas 5.2, 5.3 and the proof of Lemma 6.1]). These rather delicate technical estimates lead to the
key lemma [3, Lemma 6.1] (needed to prove (3.16)), which controls the phase of Q,,(¢”) (denote it
by ®) for |f| < v, where v is a small fixed number:

|®'(0)] < m. (3.25)

In the present paper, to diversify approaches and constructions for verifying technically difficult
places in the proof of Theorem 1.1, we represent the polynomials @, from (3.15) in another explicit
form, different from that used in [3] (see (3.20) and (3.22)), and prove estimates for |Q,,| and
its derivatives that are necessary to verify (3.16) (see Section 4). Preserving the above-described

general requirements for the polynomial @,,, we build @,, of terms different from those in (3.20)
and (3.22). Set (see [4])

A#) = 1Q(e”)]* := (4@ Fin)(0), (3.26)

where ¢ ® F,, is the convolution with the Fejér kernel F,, (3.21) of the function

. 9 —(1’/2
q(0) = me" s020/2) 4 <m_2 + sin? 2> =:q1+ q, (3.27)
which is split into two terms (in accordance with (3.19)), i.e., into the hat ¢; and wings g¢o.

4. ESTIMATES FOR FEJER CONVOLUTIONS IN THE CONSTRUCTION
OF THE POLYNOMIAL @Q,,

The aim of this section is to obtain estimates matching the results from [3, Appendices|, which
are needed to prove (3.25); this finally leads to the verification of (3.16) for the new input data (3.26)
and (3.27).
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4.1. Formulation of the results. In this subsection, we formulate the estimates to be proved
(see [4]). We begin with the hat

™

Ai(z) == (1 ® Fn) () = /m(t)fm(w —t)dt, G (t) = me—m /)

Prior to formulating the result on the asymptotics of A;(z) and its derivatives A} (z) and A (x)
as m — 0o, we introduce a sequence of entire functions {E;}:

Eo(r) :=(r — 1)677«2, Ei(r) :=r(r— 1)677«2, Es(r) := (r — 1)(27“2 — 1)6772.

Denote by {cg»l)} the coefficients of the power series expansion of Ej(r) about r = 1:

This allows us to form two other sets of entire functions

o o0
Gilt) = S, S = Y1
v=0 v=0
with coefficients
C(,l)jl C(,l)jl
~(l) ._ g J ~() ._ i J ‘
@ Z(j+2u+1)!’ s Z(j+2u+2)!
Lemma 4.1. For any € > 0, as m — 0o, we have
2
~ 1
m Y7 Gy(ma) + O(ma), afm < |,
sin® 7 €
A (z) =
1 \/7'('(1 o cosemar) 1 1
C 2 +O| 5 o) lzim=>
m sin® 3 mex €

and, for the derivatives,

2
—/TTe 1
m? VI Gy ma) +00m),  falm < |,
2

i) = /7 sin 1 1
TS mx+0< 2>, zlm > L

e sin2 55 mx €

— 2 ~
V(o) + Calma)) +O(m™), el < L
2

1 1
m\/ﬂcosmx+0< 3>, alm > L
ma

™

Af(z) =

2z
€ sin 2 g

Here the function Co(€) is even and

Co(6) >0  VEeR. (4.1)

Now we pass to the wings

s

A2(0) := (g2 ® Fn)(0) := /qg(t)]:m(H —t)dt.

—T
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Lemma 4.2.

Ay(0) = max<:n, |9|)_a, 0c - (4.2)

For the derivatives A, = ¢, ® F,, and A} = ¢ ® F,,,, we obtained the following upper bound
(cf. [3, Lemma 5.2]).

Lemma 4.3.
1 a+1 1 2
/ < gl s " < 2 s
AL0)] < m mm(l,m9> A S m mm(l,nw).

4.2. Asymptotics of the hat and its derivatives. Here we prove Lemma 4.1 on the asymp-
totics of

AP (z) = / PO Fp(@—t)dt, p=0,1,2, (4.3)
where, recall,
25in2(t/2 Sin2 me
qu(t) = me ™ SE/2) Fulp) =  F,-
msin® ¥

Proof of Lemma 4.1. We begin with a general approach to the estimate (4.3) for an arbi-
trary p. Then we specify the general result for p = 0,1,2. The general approach consists of the
following steps:

1. We split the integral (4.3) into two parts

m—2/3
AP _ / ot / o Ayt A,
—m—2/3 [_W’ﬂ]\[_m72/37m72/3]

where the second integral is estimated as

~ m2/3
Aip = O(m2+2pe_ 4 ) (4.4)
2. Introduce the notation
_m2e2 sin? 7 (z — 1) q(p)(t) v—t)?
Sm(x,t) :=e 4 i_t 5 s fp(z,t) = L mth( 2')
( 9 ) me~ 4 sin? ”‘Et
Thus,
m—2/3
A1y = / Ip(x,t) S (x,t) dt. (4.5)
m—2/3
Consider the expansion
o
fp(z,t) = Z F, j(z,m)t’ (4.6)
§=0

and notice that the coefficients ﬁpJ are bounded for z € (—7, 7). Now we leave the first N terms in

the power series expansion and estimate the remainder of the series using the inequality || < m=2/3;

fp(z,t) = Z ﬁm(w,m)tj + Z O(m"i)th. (4.7

<N >N

The sharpness of the asymptotics will depend on N.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 289 2015



V.A. STEKLOV’S PROBLEM 87

3. Next, we substitute (4.7) into (4.5) and, using estimates similar to (4.4), extend the integration
interval in (4.5) from [—m~2/3 m=2/3] to [—o0, o0]:

D=3 Byylwm) Ji(wm) + > Om)Jy (w,m), (4.8)
I<N >N
where
Ji(,m) = /thm(w,t)dt, T, (e, m) :—/\t\jSm(w,t)dt

This representation implies
Jow(z,m) = Jop(x,m) >0, zeR, keN. (4.9)

4. Then we consider the integrals J;. We use the identity

S

sin2 M@t : -
D //COS rm(x —t))drds = 2m2//cos rm(x —t))dsdr.
0 0

—t\2
(*3%) ) /

It yields
1 1

L m2e2
Jj(x,m) = 2m2/ / tie= "4 /cos(rm(x—t))dsdtdr.
0

—00 T

8

We can explicitly integrate with respect to s and ¢:

-1 k+1
Jop, = 2k+2( I /Cos(rmx) Eox (1) dr,

m2k—1
0
(4.10)
k+1
Jok11 = 2k+3 \/ﬂ /sm rma) Fogy1(r) dr,
0
where Ej(r) are some entire functions:
Ey:=(r— 1)677«2, Ey=r(r— 1)67T2, Ey = (r— 1)(27“2 — e

Thus, to complete the description of the general approach, we should explain how to obtain the
asymptotics of Jy(x,m) as m — oo. We will find the asymptotics separately in two domains

1 1
|z|m < and |x|m > Ve > 0.
£ £

5. For bounded |z|m, we take the power series expansions of the entire functions Ej(r) at the
point r =1,

o
)
:Zc 1—r
J=1
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and substitute them into (4.10). Expanding the resulting integrals in mz,

) -1 ) —1)¥ | 2v+1
/cosrmx 1—r)]dr:2( )3t (m , /smrmx 1—r)]dr:2( )J(mx) ,
= (J —|—21/—i—1 — (j +2v +2)!
0 V= 0 v=
we form other entire functions
" o0 " o0
Gty = S-1E0E, () = S 1rahe
v=0 v=0
with coefficients
o0 (OF 0 (OB
S DU SO (IS S o
v = (Gj+2v+1)1" v = (j+2v +2)!

Thus, for finite |z|m, we obtain the following representation for the integrals (4.10):

( )kJrl\/ﬂ. 2k+2
m2k—1

( )k+1 \/ﬂ. 2k+3

2k Sops1(mz). (4.11)

Jor(z,m) = Cop(mz), Jokt1(z,m) =

For k = 0, the first of these formulas together with (4.9) yields (4.1).
6. For growing |z|m, we integrate by parts in (4.10). We have

4
Jo(z,m) = —4y/mm (cosemm — 1) (mz)™2 + . sinma (mz) ™3

1

+ 0 (1 —cosmz) + 4/((:08 rmx — 1)735(7“)67742 dr| (mz)™ 3,

e
0

where P5(r) is a polynomial with degP5; = 5. Thus,

CoS M 1 1
=1 1-— . 4.12
Jol,m) Vﬂm( e ) (max)? * O<m2x3> (4.12)
Similarly,
8/ 1 1

= — i 4.1

Ji(z,m) . sinmz (ma)? + O<m3w3 ), (4.13)
8/ [ cosmx 1 1

= 1

ol m) m ( e > (ma)? * O<m4w3 >’

16y/7 /sinmx — mx 1 1
To(a,m) = m? < e > (mz)? " O<m5$3>’

and so on. Now we can analyze the special cases of Agp), p=0,1,2. We will use the notation
T 2 2 T T
T°cos s — 2xsin
a(x):—<,2x>, b(z) = 2 .
2

sin 4 sin? ;‘“
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Case p = 0. We have
m2t2

fo(z,t) = exp{ i m? sin? ; }a(x —t)

= a(z) + b(x)t + O(1)t* + O(1)t* + <418

a(z)m? + O(l)>t4 +....

Notice that the exponents in this series have the following periodic structure:
O(m2k)t4k, O(m2k)t4k+1, O(m2k)t4k+2, O(m2k)t4k+3, ke N.
Thus,
folz,t) = a(z) +O)t,  te [-m 23 m™ 23]
This yields

Ay = a(z)Jo(z,m) + O(1)J, (z,m),

where O(1) is bounded as a function of x and m. Hence, using (4.11) and (4.12), we arrive at the
assertion of Lemma 4.1 for p = 0.

Case p=1. We have

2 242
t t
fi(z,t) = _n; exp{ m4 — m? sin? 5 } sint-a(x —t)
mia(z)

L CO B b(w) £2 4 O(1)ym26 + O(1)mt* — ( o

+() 1 m 15 +... .
ThUS,

fiz,t) = —m2a(2w) t+0mA)2,  te[-m Y3 m),

This yields

Agl) — —’I’)’L2 a(Qx) J1($,m) + O(m2)J2(x,m)

Now, using (4.11) and (4.13), we obtain the assertion of Lemma 4.1 for p = 1.
Case p = 2. We have

2 2,2
t t
fo(z,t) = _m exp{m —mzsinz2}(2008t—m281n2t)a(w—t).

Expanding in t¥ implies

242 243 6
fg(,I,t) — —m2 a(;') <1 . m2t > _m2 b(;) (t . m2t > i mlg;x) 46 —|—O(m4/3)

for t € [—m~2/3,m=2/3]. This yields

2 2
AgQ) — _m2 CL(2$) <JO - T’;’ J2> . m2 b(g) <J1 o T’;’ J3> + O(m4/3)J0.
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Integrating by parts, we get

1
m? 5 2 8y/m 1 1
Jo — 0 Jy = —8\/7Tm/cos(rmx)r (r—1)e " dr=— mcos mx (ma)? + O( 4>,
0

e miz

1

2

Jy — n; J3 = —16\/7Tm/sin(rmw)r(r + 1) (r — 1)267# dr
0

32,/ 1 1
= (2cosmx+e)(m$)3+0<m4m4>.

Now, using (4.11), we obtain the assertion of Lemma 4.1 for p = 2.

Lemma 4.1 is proved. [

4.3. Asymptotics of the wings. Here we prove Lemma 4.2 on the asymptotics of the second
term in representation (3.26), (3.27) for A:

s

As(6) = (g2 ® Fin)(0) = / 4a(t) Fon(6 — 1) dt.

—T

Proof of Lemma 4.2. We begin with the lower bound. For the Fejér kernel, we have

4in T
7'('2’ ‘t‘ < na
./Tn(t) > -
0, [|t[>
n
Hence (since go is positive),
0+ 7 0+
4n an (1 I\ “
Fn)(0) > t)dt > dt
war)0)> [ Guwaz [ (00
6—T 9— T

where we used the fact that o > 0. There are two possibilities: either

0<" = <t = <1+|t|>axm‘
n n n 2

or

6] > " = + = 4+ x|
n

The lower bound in (4.2) is proved.

Now, let us proceed to the upper bound. For the Fejér kernel, we have

T
n, It <
n
Faty < (4.14)
T T
29 ’t’ >
nt n
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Hence,
9+Z T 072
[t / 72 (Y dt / a2 (Y dt
n)(0) < dt .
(a2 ® Fn)(6) < /n<ﬂ' * n\m (9—t)2+ n\m (0 —1t)2
o-7 0+ -

Denote the integrals on the right-hand side by I, I, and I3. Using the symmetry, we can assume
that 6 € (0,7/2). The case of § € (7/2,7) is similar. For I;, we have

a

T n ™
g < hi= 10| <1 I = L+ A+ (1 - h)?) < n®
o<, = 1ol < = L= ()T (1=R)TT) <t
where we used the fact that o < 1, and
[0
0] > Z =  h>1 = I = 1“_’@ ((h+ 1) = (h— 1)) < nh~ = |0] .
To consider Iz, we make a change of variables:
1 —u
u: =
0—t 0
Then
no no
[ (m2\[(0u+1\"° 2 h 1\
I, = /(7T >< ut ) du:ﬂ- aege1 /<u+ ) du.
nd J\ 7 u n U
6 6
T—0 T—0

Note that in the integrand (“Zl)fa € (0,1); hence, either
0)>" = L=0nl0""n) =00
n
or

2
0] < Z =  L< 7;77—“9—&—1 /ua du = O(n®).

o

To consider I3, we make another change of variables:

) 1 _u
u: 0_t1= 0
We have
no né
7 2 o 24 T
Is = / Z@(i 1uu> du:;:gua /uo‘\l—u\_o‘du.
‘rriQ Trie

We estimate this integral for three domains of values of the parameter 0. In the first case,

no

nd o o 2a7T2+a N N
< = 1 —u| <2 = I3 < nolta | U du ~ n®.
0

In the second case, we have

1 nb ng\ > h T
< <1 = I3 < 7mo‘< ) /uo‘(l —u)"%du = 2%Tlrn® ~ n.
2= 1 7 sin oy
0
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Finally, in the third case 1 < nf/m, we split the integral into three parts:

no
7T2+a : 7 a T
[e% —
I3<n01+04 /u (1 —w) du+/ —u}du%—/(l—
0 1 1

_ mte (@) n9+ lnH g
ngl+a cons(oz—kﬂ_ aln’ .

Lemma 4.2 is proved. [

4.4. Wings: Estimates for the derivatives. Let us prove Lemma 4.3 on upper bounds for

the derivatives
! ! " " 1 2 t 3
Ay = go @ Fn, Ay =43 ® Fim, where q2 = m2 +Sln 9 .
Proof of Lemma 4.3. We have
= —Ygint 1 +sin2t o
©2=7y m?2 2 ’
2 1 t\ 22 1 t\ 27t
gy = a(ozlg ) sin2t<m2 + sin? 2) - Z cost(m2 + sin? 2)

The inequality between the geometric and arithmetic means yields

B+1
—£-1 1 g 2 +,8 1m252 ?
a< 12+a2> > a 1m25 (5m2)5§(ﬁm2)§ m2+a +a
" \/12+a2 m2+a’2 1+’8
m
1
= (A2 (B+1) 2

this allows us to estimate ¢5(t) and ¢4 (t) from above on t € [—m, 7:

—2_1
,_oa  t(1 5 t\ 2 a [(a+D)att
|C]2| < 9 Sln2 (m + sin 9 < 2 (a+2)a+2 m ’
ala+2) Lt 1 Lt\ 272 a1 .ot —5 1
lg5| < 4 sm22<m2 —|—sm22> + 4 <m2 + sin 5

a+4
« a+ 2\ 2
< 9 OH—Z‘
—4< +<a+4> )m

We can also obtain an upper bound using a power series expansion in ¢:

NN 8 apet?
/ Bl < « t | — tfafl
2\— 9 -2 2\— 5 -1 +2 2
" a(a + 2) 2 ‘t‘ 2 «Q ’t’ 2 ar® ™ —a—2
= 2 .
o< e +5 (0 , 1@+ )1

Thus,
' - a+1 - a+2
GOl Smin(m, 5 ) ] S min(m )
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Now we can consider A’ and A on [—m,m|. We split the integral into two parts
2 2

0
o T

%@—/%@ﬂw—ww—/%wﬂw—ww+/%waw—ww
T

0
2

[ VIS

—T

and obtain

[4

0
| A5(0)] < /!qé(t)!dt max | Fn(t)] + / [Fr(t)]dt ~ max |g5(t)].
[5:5+7] te5.5+]
0 _ 0 _

™ ™

2 2

We have used the periodicity of the functions F, qéj ), and .A;j ) and their symmetry about zero.

Now we recall (4.14):

1 2
|ﬁAMs7nmem§J, te [-m ]

We fix § > 0, fix a period so that 6/2 is in the middle of the period, and continue

1 21 \? T o+l o \ot1 K 1 2
|A5(0)] < . min(m, ’07T‘> /min(m, f;) dt—|—min<m, ‘;’> / o min<m, (;) dt.

As a result,

/ a+l_ - 1 ? a+l_ - 1 ot a+l_ - 1 ot
|A5(0)] < m* min| 1, +m* min| 1, <m* min| 1, .
mo mo mo

For Af, we perform the same procedure with the exponent o + 1 replaced by o + 2:

" a+2 . 1 ? a+2 . 1 ot a+2 . 1 2
|A5(0)] < m* ™ minf 1, +m®“min| 1, <m* ™ min| 1, ;
mo mo mbo

however, now the dominant term is the first one.
Lemma 4.3 is proved. [
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