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Abstract—A method for reducing systems of partial differential equations to corresponding
systems of ordinary differential equations is proposed. A system of equations describing two-
dimensional, cylindrical, and spherical flows of a polytropic gas; a system of dimensionless
Stokes equations for the dynamics of a viscous incompressible fluid; a system of Maxwell’s
equations for vacuum; and a system of gas dynamics equations in cylindrical coordinates are
studied. It is shown how this approach can be used for solving certain problems (shockless
compression, turbulence, etc.).
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INTRODUCTION

In a number of earlier papers, the authors studied the direction of the most intensive devel-
opment of a process described by a nonlinear partial differential equation (PDE) and developed a
geometric method, which made it possible to obtain some classes of solutions of such equations by
reducing them to an ordinary differential equation (ODE) or to a system of ODEs and to study
the character of the process [1–3].

In the present paper, this method is used to obtain some solutions of systems of nonlinear
differential equations: a system of equations describing two-dimensional, cylindrical, and spherical
flows of a polytropic gas; a system of dimensionless Stokes equations for the dynamics of a viscous
incompressible fluid; a system of Maxwell’s equations for vacuum; and a system of gas dynamics
equations in cylindrical coordinates. Solution of these systems are obtained after reducing them to
systems of ODEs.

1. Consider a system describing spherical, cylindrical, and two-dimensional waves with constant
entropy [4,5]:
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Here, r is the space coordinate, u is the speed of the gas, c is the sound speed in the gas, c2 = dp/dρ,
p is pressure, ρ is density, p = p(ρ) is the gas equation, k = const is the adiabatic exponent, and
N = const. The wave is two-dimensional for N = 0, cylindrical for N = 1, and spherical for N = 2.

2. Some solutions of the system of Stokes equations describing the dynamics a viscous incom-
pressible fluid are obtained in dimensionless form [6]:
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Here, S is the Strouhal number, E is the Euler number, R is the Reynolds number, F is the Froude
number, {u, v,w} are the components of the velocity vector, and p is pressure.

3. The above approach is applied for obtaining some solutions of the system of Maxwell’s
equations in vacuum [7]:

∂E
∂t

− curlH = 0,
∂H
∂t

+ curlE = 0. (0.3)

Here, E = (u1, u2, u3) is the electric field vector and H = (u4, u5, u6) is the magnetic field vector.

4. The following system of ODEs for gas dynamics equations written in cylindrical coordinates
is obtained by the geometric method [8]:
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Here, {x, r, ϕ} are cylindrical coordinates, {u, v,w} are the components of the velocity vector, p is
pressure, � is the gas density, and κ is the adiabatic exponent.

For a particular case of system (0.1), it is shown that the approach described in the present paper
produces singular solutions that are well known in gas dynamics [4] — Riemann simple waves [9].

1. THE SYSTEM OF ONE-DIMENSIONAL UNSTEADY MOTION

OF A POLYTROPIC GAS

Consider system (0.1).

Assertion 1. Under certain conditions, system (0.1) can be reduced by the geometric method
to a system of ODEs.
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Proof. Let there exist a coordinate system in which u = u(ψ(r, t)) and c = c(ψ(r, t)). Then,
the level surface ψ = ψ(r, t) of these functions and system (0.1) can be represented in the form

u′ψt +
[
uu′ +

(c2)′

k − 1

]
ψr = 0, (c2)′rψt + [u(c2)′ + (k − 1)c2u′]rψr + (k − 1)Nuc2 = 0. (1.1)

Here, the prime (′) denotes differentiation with respect to ψ. Lower indices at the function ψ(r, t)
denote differentiation with respect to the corresponding variables.

Suppose that, in the first equation of (1.1), ψt �= 0 and ψr/ψt = f(ψ), where f(ψ) is some
function. Then ψr = f(ψ)ψt. Substituting this expression into the second equation of the system,
we find that rψt = (1 − k)Nuc2/{(c2)′ + f [u(c2)′ + (k − 1)c2u′]}. The right-hand side of the
obtained expression depends on ψ only. Denote it by g1(ψ); then, rψt = g1(ψ) and rψr = rψtf =
g1(ψ)f(ψ) = g2(ψ) (by definition, g2(ψ) = f(ψ)g1(ψ)). Computing the derivative ψtr, we get
ψtr = (g2g

′
1 − g1)/r2. Computing ψrt, we get ψrt = g′2g1/r

2. Equating the mixed derivatives, we
obtain the dependence g2g

′
1 − g1g

′
2 = g1. Hence, under the assumption g1 �= 0, we have

g2 = g1f(ψ), f = C − w, w =
∫

dψ

g1
. (1.2)

Since ψr = ψtf(ψ), the solution of this quasi-linear first-order equation can be represented in the
form [7] ψ = ψ(t + fr) or t = −f(ψ)r + G(ψ). Differentiating the latter relation with respect to t,
we get 1 = G′ψt − rf ′ψt. Hence, ψt = 1/(G′ − f ′r). On the other hand, ψt = g1/r. Equating these
relations and substituting the value f ′ = −1/g1 from (1.2) into the resulting expression, we find
that the equality is possible only when G(ψ) = const. Define G = t0. From the relation t = G−fr,
we get f(ψ) = −(t − t0)/r. Hence, ψ = ψ(y) and y = (t − t0)/r. Then, however, u = u(y) and
c = c(y). Substituting such functions u(y) and c(y) into system (0.1), we come to the system
of ODEs

du

dy
=

Nc2uy

c2y2 − (1 − uy)2
,

dc2

dy
=

(k − 1)(1 − uy)Nc2u

c2y2 − (1 − uy)2
;

passing to the independent variable z = 1/y, we obtain the system

du

dz
= − Nc2u

z[c2 − (u − z)2]
,

dc2

dz
=

(k − 1)(u − z)Nc2u

z[c2 − (u − z)2]
, (1.3)

which was to be proved. �
Thus, we have found a class of solutions to system (0.1) of PDEs given by system (1.3) of ODEs.

It is easy to see that system (1.3) has a solution of the form u = az, c = bz, where a = const and
b = const. Substituting into the system a solution of this form, we obtain

u =
2z

(k + 1) + N(k − 1)
, c2 =

(N + 1)(k − 1)2z2

[(k + 1) + N(k − 1)]2
.

For system (1.3), the following problem is solved numerically: the initial values u = u0 = 25 and
c = c0 = 1 are given for z = z0 = 4.5, and the behavior of c(z) is studied for z < z0. Since the
system describes processes in a polytropic gas, we have ρ �−→ ∞ as c �−→ ∞, where ρ is density.
In this problem, shockless gas compression is observed for some values z∗ < z < z0; for z = z∗, the
sound speed is discontinuous at the point where the denominators [c2 − (u − z)2] of system (1.3)
change their signs.
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Assertion 2. In the special case ψ = c, system (0.1) reduces to the ODE

2
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Ncuu′′ − (N + 1)uu′ 3 − 2
k − 1

cu′ 2 +
2

k − 1
uu′

( 2
k − 1

− N
)

+
8

(k − 1)3
= 0. (1.4)

Proof. For system (0.1), consider a special case producing a simple wave. Let the independent
variable be ψ = c; hence, u = u(c). In this case, system (0.1) reduces to the system
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Here, the prime (′) denotes differentiation with respect to c. Finding from this system the derivatives
of c with respect to t and r and equating the mixed derivatives, we come to the following equation
for u = u(c):

2
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k − 1
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2

k − 1
uu′

( 2
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− N
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+
8
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which was to be proved. �
Let us write a specific solution of equation (1.4)

u = ± 1
k − 1

√
2[(3 − k) − N(k − 1)]

N + 1

[
c − 2(N + 1)

3 − k − N(k − 1)

]
.

We see that u is a real-valued function in the case N = 0 if k < 3, in the case N = 1 if k < 2, and
in the case N = 2 if k < 5/3.

2. THE SYSTEM OF STOKES EQUATIONS

Consider system (0.2).

Assertion 3. Under certain conditions, system (0.2) can be reduced by the geometric method
to a system of ODEs.

Proof. Suppose that u = u(ψ(x, y, z, t)), v = v(ψ(x, y, z, t)), w = w(ψ(x, y, z, t)), and p =
p(ψ(x, y, z, t)). Then, ψ(x, y, z, t) = const is a level surface for u, v, w, and p. Under this
assumption, system (0.2) can be written in the form

Su′ψt + uu′ψx + vu′ψy + wu′ψz −
1
R

[u′′(ψ2
x + ψ2

y + ψ2
z) + u′(ψxx + ψyy + ψzz)] = 0,

Sv′ψt + uv′ψx + vv′ψy + wv′ψz −
1
R
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1
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,
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(2.1)

In system (2.1), the prime (′) denotes differentiation with respect to ψ and lower indices denote
differentiation of ψ with respect to the corresponding variables. Let ψt �= 0, ψx/ψt = f1(ψ),
ψy/ψt = f2(ψ), ψz/ψt = f3(ψ), and (ψ2

x + ψ2
y + ψ2

z)/ψt = f4(ψ), where fi(ψ) are arbitrary
functions (i = 1, 2, 3, 4). Then, ψt = f4/(f2

1 + f2
2 + f2

3 ) = g(ψ). From the equality of the mixed
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derivatives, we find that ψx = ag(ψ), ψy = bg(ψ), ψz = cg(ψ), a = const, b = const, and c = const.
Therefore, ψ = ψ(l) and l = t + ax + by + cz. Then, u = u(l), v = v(l), w = w(l), p = p(l), and
system (0.2) reduces to the system of ODEs

(S + au + bv + cw)ul + Eapl −
1
R

ull(a2 + b2 + c2) = 0,

(S + au + bv + cw)vl + Ebpl −
1
R

vll(a2 + b2 + c2) = 0,

(S + au + bv + cw)wl + Ecpl −
1
R

wll(a2 + b2 + c2) =
1
F

,

aul + bvl + cwl = 0,

(2.2)

which was to be proved. �
Differential consequences of the last equation of (2.2) yield the relations aull + bvll + cwll = 0

and au + bv + cw = A, A = const. If we multiply the first equation of system (2.2) by a, the
second equation by b, and the third equation by c and add the obtained relations, we obtain
pl = c/[FE(a2 + b2 + c2)]. Then, the first three equations of system (2.2) take the form

a2 + b2 + c2

R
ull − (S + A)ul −

ca

F (a2 + b2 + c2)
= 0,

a2 + b2 + c2

R
vll − (S + A)vl −

cb

F (a2 + b2 + c2)
= 0,

a2 + b2 + c2

R
wll − (S + A)wl +

a2 + b2

F (a2 + b2 + c2)
= 0.

(2.3)

A general solution of linear system (2.3) with constant coefficients is easily written. For A �= (−S),

u =
U0

α
exp (αl) − β

α
l + U1, α =

R(S + A)
a2 + b2 + c2

, β = − caR

F (a2 + b2 + c2)2
,

U0 = const, U1 = const;

v =
V0

α
exp (αl) − bβ

aα
l + V1, V0 = const, V1 = const;

w = −aU0 + bV0

cα
exp (αl) +

β(a2 + b2)
acα

l +
A − aU1 − bV1

c
;

p =
c

FE(a2 + b2 + c2)
l + p0, p0 = const, l = t + ax + by + cz.

(2.4)

If A = −S, then
u = −0.5βl2 + U2l + U3, U2 = const, U3 = const;

v = −0.5βl2 + V2l + V3, V2 = const, V3 = const;

w =
0.5β(a + b)

c
l2 − aU2 + bV2

c
l − aU3 + bV3 + S

c
.

(2.5)

As follows from formulas (2.4), these laws describe blow-up regimes, which results in turbulence
and supports the conjecture proposed by Jean Leray in 1933. The greater the Reynolds number,
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the faster the speed goes to infinity. If the Reynolds number is small, the blow-up also occurs but
later. In the case A = −S (see formulas (2.5)), the situation is different for the same Reynolds
numbers: the growth of the sound speed is shifted in time and is insignificant in comparison with
the its growth in the case A �= −S.

3. THE SYSTEM OF MAXWELL’S EQUATIONS

Consider system (0.3).

Assertion 4. Under certain conditions, system (0.3) can be reduced by the geometric method
to a system of ODEs.

Proof. Let ui = ui(ψ(t, x, y, z)) for i = 1, 2, 3, 4, 5, 6. Then, (0.3) can be written in the form

u′
1ψt + u′

5ψz − u′
6ψy = 0, u′

2ψt + u′
6ψx − u′

4ψz = 0, u′
3ψt + u′

4ψy − u′
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u′
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5ψt − u′
3ψx + u′

1ψz = 0, u′
6ψt − u′

1ψy + u′
2ψx = 0.

(3.1)

Here, the prime (′) denotes differentiation with respect to ψ and lower indices at the function
ψ(t, x, y, z) denote the derivatives with respect to the corresponding variables. Consider the case
ψt �= 0. Assume that

ψz

ψt
= f1(ψ),

ψy

ψt
= f2(ψ),

ψx

ψt
= f3(ψ), (3.2)

where fj(ψ) for j = 1, 2, 3 are arbitrary functions. It is easy to verify that the solution of
system (3.2) has the form

ψ = ψ(t + zf1(ψ) + yf2(ψ) + xf3(ψ)). (3.3)

System (3.1) has a nontrivial solution if the corresponding determinant is zero. This is so if
f2
1 + f2

2 + f2
3 = 1. Hence, setting f3 = ±

√
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1 − f2
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1 − f2
2

u′
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)
,

(3.4)

which was to be proved. �
The functions f1(ψ), f2(ψ), u2(ψ), and u3(ψ) in relations (3.4) are arbitrary. Consider the case

when f1 = f2 = ψ and ψ = t + zf1 + yf2 + x
√

1 − f2
1 − f2

2 in relation (3.3). Assume also that
u2 = aψ + c2, u3 = bψ + c3, a = const, b = const, c2 = const, and c3 = const. Then, the solution
of system (3.4) has the form

u1 = 0.5(a + b)
√

1 − 2ψ2 + c1, u4 = 0.5(a − b)ψ2 + c2,

u5 = 0.25(b − a)ψ
√

1 − 2ψ2 +
a + 3b
4
√

2
arcsin (ψ

√
2) + c5,
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u6 = 0.25(a − b)ψ
√

1 − 2ψ2 +
3a + b

4
√

2
arcsin (ψ

√
2) + c6,

c1 = const, c4 = const, c5 = const, c6 = const,

where

ψ =
t(1 − y − z) ±

√
t2(1 − y − z)2 − (t2 − x2)[(1 − y − z)2 + 2x2]

(1 − y − z)2 + 2x2
.

4. FINDING THE STRENGTHS OF THE MAGNETIC AND ELECTRIC FIELDS

THAT PRODUCE THE MOTION OF CHARGED PARTICLES

WITH A GIVEN CONSTANT SPEED

Lorentz established [10] that the drift direction of the center of a charged particle coincides
with the vector product of the vectors E and H of the electric and magnetic fields.

Let us solve for system (0.3) the following problem. Assume that the vector U = (u, v,w) of
velocity drift is given for the center of a charge; let u = const, v = const, and w = const. Then [10],
the following dependences hold: u = u2u6 − u3u5, v = u3u4 − u1u6, and w = u1u5 − u2u4. Hence,
uu1 + vu2 + wu3 = 0 and uu4 + vu5 + wu6 = 0. From system (3.4), we find that

(
f1 ±

vf1f2

u
√

1 − f2
1 − f2

2

∓ w(1 − f2
1 )

u
√

1 − f2
1 − f2

2

)
u′

2

+
(
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2 )

u
√
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1 − f2

2

∓ wf1f2

u
√
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1 − f2

2

)
u′
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(
± f2√
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1 − f2

2

− v

u

)
u′

2 +
(
± f1√

1 − f2
1 − f2

2

− w

u

)
u′

3 = 0.

(4.1)

System (4.1) has a nontrivial solution if (vf2 + wf1 ± u
√

1 − f2
1 − f2

2 )2 = u2 + v2 + w2. Finding f2

from this relation, we conclude that the function f2 is real-valued if the discriminant of the obtained
quadratic equation is zero. Consequently, we have

f1 = ± w√
u2 + v2 + w2

, f2 = ± v√
u2 + v2 + w2

.

Substituting the obtained values f1 and f2 into system (3.4), we get

u1 = ∓
(v

u
u2 +

w

u
u3

)
+ a1, u4 = ±

( w√
u2 + v2 + w2

u2 −
v√

u2 + v2 + w2
u3

)
+ a2,

u5 = ±
( vw

u
√

u2 + v2 + w2
u2 +

u2 + w2

u
√

u2 + v2 + w2
u3

)
+ a3,

u6 = ∓
( u2 + v2

u
√

u2 + v2 + w2
u2 +

vw

u
√

u2 + v2 + w2
u3

)
+ a4, ai = const (i = 1, 2, 3, 4).

(4.2)

Note once again that U = E × H; consequently, u = u2u6 − u3u5, v = u3u4 − u1u6, and w =
u1u5−u2u4. Substituting into these expression the values of the components of the vectors E and H
from (4.2), we find that u2 = u2(u, v,w, a1, a2, a3) = const, u3 = u3(u, v,w, a1, a2, a3) = const, and
a4 = a4(u, v,w, a1, a2, a3) = const. Thus, we find all constant components of the vectors of the
electric and magnetic fields that produce the drift of the charged particle in a given direction with
a given constant speed. If the given drift is variable, we can similarly obtain electric and magnetic
fields producing this drift.
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5. THE SYSTEM OF GAS DYNAMICS EQUATIONS

IN CYLINDRICAL COORDINATES

Consider system (0.4).

Assertion 5. Under certain conditions, system (0.4) can be reduced by the geometric method
to a system of ODEs.

Proof. As in the systems considered earlier, we assume that u = u(ψ), v = v(ψ), w = w(ψ),
p = p(ψ), and � = �(ψ). Then, system (0.4) reduces to the system of ODEs

r�′(ψt + uψx + vψr) + �′wψϕ + �(u′rψx + v′rψr + w′ψϕ) = −�v,

r�u′(ψt + uψx + vψr) + w�u′ψϕ + rp′ψx = 0,

r�v′(ψt + uψx + vψr) + w�v′ψϕ + rp′ψr = w2�,

r�w′(ψt + uψx + vψr) + w�w′ψϕ + p′ψϕ = −wv�,

rp′(ψt + uψx + vψr) + p′wψϕ + κp(u′rψx + v′rψr + w′ψϕ) = −κpv.

(5.1)

As above, the prime (′) denotes differentiation with respect to ψ, and lower indices denote the
derivatives of the function ψ with respect to the corresponding variables.

Let, in system (5.1), rψt = f1(ψ), rψx = f2(ψ), ψϕ = f3(ψ), and rψr = f4(ψ). Then, equating
the mixed derivatives, we obtain the dependences f2 = c2f1, f3 = c3f1,

f4 = f1g(ψ), g(ψ) = c4−
∫

dψ

f1
, ψr = g(ψ)ψt, c2 = const �= 0, c3 = const �= 0, c4 = const.

In view of all the dependences between the first derivatives of ψ and equating all mixed derivatives,
we find that f3 = 0 and (t + c2x + g(ψ)r) = const (see the complete proof in Section 1). Therefore,
g(ψ) = (t0 − t − c2x)/r. Let g(ψ) = −ψ; then, ψ = (t − t0 + c2x)/r. Since U = U(ψ) and
U = {p, �, u, v, w}, the substitution of such functions into system (0.4) yields the system of ODEs

(q/�)�′ + c2u
′ − ψv′ = −v, qu′ + (c2/�)p′ = 0, qv′ − (ψ/�)p′ = w2, qw′ = −vw,

[q/(κp)]p′ + c2u
′ − ψv′ = −v, where q = 1 + c2u − ψv,

(5.2)

which was to be proved. �
Comparing the first and the last equations of system (5.2), we obtain the dependence p = a�κ,

where a = const > 0. From the first equation of system (5.2), we have c2u
′ − ψv′ = −v −

q(�′/�) = q(w′/w − �′/�); then, q′ = c2u
′ − ψv′ − v = −2v − q(�′/�) = q(2w′/w − �′/�). Hence,

q′/q = 2w′/w − �′/� and q�/w2 = c0, where c0 = const > 0 if w �= 0, � �= 0, and q > 0.
Using the obtained first integrals and assuming that [aκ�κ−1(c2

2+ψ2)−q2] �= 0, write system (5.2)
in a form resolved with respect to the derivatives:

u′ =
κac2�

κ−1(ψ� − vc0)
c0[aκ�κ−1(c2

2 + ψ2) − q2]
, v′ =

κa�κ−1(c2
2� + ψvc0) − q2�

c0[aκ�κ−1(c2
2 + ψ2) − q2]

,

�′ =
q�(vc0 − ψ�)

c0[aκ�κ−1(c2
2 + ψ2) − q2]

.

(5.3)
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System of equations (5.3) contains three arbitrary constants: a > 0, c2 > 0, and c0 > 0. If, for
example, c0 = c0(c2, a), then the solution of the system depends on an arbitrary function.

Let us write exact solutions of system (0.4):

� = �0 = const, p = a�κ
0 = const, u = u0 = const, v = �0ψ/c0,

w =
√

(1 + c2u0 − �0ψ2/c0)�0/c0.

� = �0 = const, p = a�κ
0 = const, u = ψ2�0/c0 − 1 +

√
aκ�

(κ−1)
0 (c2

2 + ψ2), v = ψ�0/c0,

w = ±(�0/c0)1/2[aκ�
(κ−1)
0 (c2

2 + ψ2)]1/4.

6. CONCLUSIONS

The geometric method, which was earlier used for studying and solving nonlinear PDEs, can
be applied for nonlinear and linear systems of PDEs. In this case, systems of PDEs are reduced to
systems of ODEs; the solution of the latter systems makes it possible to find in a number of cases
exact solutions of original systems of equations (see systems (0.2) and (0.4)) and solve some other
problems (systems (0.1)–(0.3)).
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