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Abstract—We propose a method for constructing orthogonal multiwavelet bases of the space
L2(R) for any known multiscaling functions that generate a multiresolution analysis of dimen-
sion greater than 1.
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INTRODUCTION

Consider, as in [3,5–7], instead of one scaling function a system of k functions {ϕl(x) : l = 1, k}
whose shifts and compressions generate by Mallat’s classical scheme the corresponding multireso-
lution analysis of dimension k > 1. Keinert noted [2, Ch. 10] that there exist methods of wavelet
construction from known multiscaling functions satisfying “basic regularity conditions.” In [4], a
universal method was proposed for constructing biorthogonal bases of multiwavelets in the case
when multiscaling functions are compactly supported. In our paper, the method of multiwavelet
construction from multiscaling functions does not involve any additional constraints except for
condition (e) of the following known definition of an MRAk.

Definition. A sequence of nested closed subspaces

. . . ⊂ Vj ⊂ Vj+1 ⊂ . . . (j ∈ Z) (0.1)

of the space L2(R) is called its multiresolution analysis of dimension k (MRAk) if it satisfies the
following conditions:

(a)
⋃

j Vj = L2(R);

(b)
⋂

j Vj = {0};
(c) f(x) ∈ Vj ⇔ ∀l ∈ Z f(x − l/2j) ∈ Vj ;

(d) f(x) ∈ V0 ⇔ ∀j ∈ Z f(2jx) ∈ Vj;

(e) there exist functions ϕs(x), s = 1, k, from V0 ⊂ L2(R) such that the set of their integer
shifts ϕs(x − n), s = 1, k, n ∈ Z, forms a basis of the space V0 orthonormal in L2(R).

The functions ϕ1(x), ϕ2(x), . . . , ϕk(x) are called multiscaling.
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ORTHOGONAL MULTIWAVELET BASES S163

The main result of the present paper is an algorithm for constructing orthonormal bases of
multiwavelet spaces from known orthonormal bases of multiresolution analysis spaces.

Similarly to the case of one scaling function, wavelet subspaces Wj corresponding to an MRAk

are defined by the conditions

Wj � Vj = Vj+1, Vj ∈ MRAk, j ∈ Z, (0.2)

where � means the orthogonal sum of subspaces.

1. NECESSARY ORTHOGONALITY CONDITIONS

IN TERMS OF MASKS OF SCALING FUNCTIONS

The material presented in this section is well known (see, for example, [2, Ch. 7]), similarly
to the case k = 1, and is given here with the aim of introducing necessary notions and notation.
Let us write scaling relations for functions that form a basis of spaces of an MRAk. For this, we
introduce a scaling vector function (a column)

Φ(x) =
(
ϕ1(x), ϕ2(x), . . . , ϕk(x)

)T
.

As follows from the definition of an MRAk, the components of the vector function Φj,n(x) =
2j/2Φ(2jx − n) form an orthonormal basis of the space Vj; hence, condition (0.1) is equivalent to
the equality

Φ(x)
L2(R)
=

∑
n∈Z

HnΦ1,n(x) (1.3)

with matrix coefficients

Hn =

⎛
⎜⎜⎜⎝

h1,1
n h1,2

n . . . h1,k
n

h2,1
n h2,2

n . . . h2,k
n

. . .

hk,1
n hk,2

n . . . hk,k
n

⎞
⎟⎟⎟⎠

and componentwise convergence in L2(R) of the series in (1.3). This is equivalent to the fact that
the sequences of complex numbers {hr,s

n }n∈Z (r, s = 1, k) belong to l2(Z).
After the Fourier transform, equality (1.3) takes the form

Φ̂(ω) = M
(ω

2

)
Φ̂

(ω

2

)
, (1.4)

where

Φ̂(ω) =
(
ϕ̂1(ω), ϕ̂2(ω), . . . , ϕ̂k(ω)

)T
,

M(ω) =
1√
2

∑
n∈Z

Hne−2πinω =

⎛
⎜⎜⎜⎝

m1,1(ω) m1,2(ω) . . . m1,k(ω)
m2,1(ω) m2,2(ω) . . . m2,k(ω)

. . .

mk,1(ω) mk,2(ω) . . . mk,k(ω)

⎞
⎟⎟⎟⎠.

The matrix M(ω) is called a mask of the system of scaling functions; its elements

mr,s(ω)L
2

=
1√
2

∑
n∈Z

hr,s
n e−2πinω
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are 1-periodic functions square integrable on [0, 1), i.e., functions from L2[0, 1). Let us write〈
Φ(x),Φ(x − n)

〉
=

∫
R

Φ(x)[Φ(x − n)]∗dx, where [Φ(x)]∗ = [ϕ1(x), ϕ2(x), . . . , ϕk(x)]. Here and

elsewhere, A∗ = (A)T is the complex conjugate transpose of A. It is clear that the condition∫
R

ϕr(x)ϕs(x − n)dx = δr,sδ0,n (r, s = 1, k, n ∈ Z) of the orthonormality of the system {ϕs(x−n) :

s = 1, k, n ∈ Z} is equivalent to the matrix equality (with the unit matrix I of dimension k)

〈
Φ(x),Φ(x − n)

〉
= δ0,nI.

As in the classical case, passing to Fourier transforms, we get

〈
Φ(x),Φ(x − n)

〉
=

〈
Φ̂(ω), Φ̂(ω)e−2πinω

〉
=

∫
R

Φ̂(ω)[Φ̂(ω)]∗e2πinωdω = δ0,nI.

Representing the integral from this relation as the sum of integrals over the intervals [l, l + 1] and
replacing in these integrals ω by ω − l, as in the classical case (see, for example, [1, Ch. 1]), we
obtain ∫

R

Φ̂(ω)[Φ̂(ω)]∗e2πinωdω =
∑
l∈Z

l+1∫
l

Φ̂(ω)[Φ̂(ω)]∗e2πinωdω

=
∑
l∈Z

1∫
0

Φ̂(ω − l)[Φ̂(ω − l)]∗e2πin(ω−l)dω =

1∫
0

[∑
l∈Z

Φ̂(ω − l)[Φ̂(ω − l)]∗
]
e2πinωdω = δ0,nI,

which yields a necessary and sufficient condition of orthogonality in L2(R) of the system
{ϕs(x − n) : s = 1, k, n ∈ Z}: ∑

l∈Z

Φ̂(ω − l)
[
Φ̂(ω − l)

]∗ a.a.= I. (1.5)

This condition implies the known necessary condition for the masks M(ω), which will be given
here in a new form reflected in the following statement.

Statement. Let

M(ω) =
[
M(ω);M

(
ω +

1
2

)]
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1,1(ω) . . . m1,k(ω) m1,1
(
ω +

1
2

)
. . . m1,k

(
ω +

1
2

)
m2,1(ω) . . . m2,k(ω) m2,1

(
ω +

1
2

)
. . . m2,k

(
ω +

1
2

)
. . .

mk,1(ω) . . . mk,k(ω) mk,1
(
ω +

1
2

)
. . . mk,k

(
ω +

1
2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If the system {ϕs(x − n) : s = 1, k, n ∈ Z} is orthonormal, then

M(ω)(M(ω))∗ a.a.= I.

Proof. As follows from equalities (1.4) and (AB)∗ = B∗A∗,

∑
l∈Z

Φ̂(ω − l)
[
Φ̂(ω − l)

]∗ =
∑
l∈Z

M
(ω − l

2

)
Φ̂

(ω − l

2

)[
Φ̂

(ω − l

2

)]∗[
M

(ω − l

2

)]∗ a.a.= I. (1.6)
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Applying a known scheme, we decompose the latter sum into two sums, with even and odd l. Then,
using condition (1.5), we get

I
a.a.= M

(ω

2

)[
M

(ω

2

)]∗
+ M

(ω

2
+

1
2

)[
M

(ω

2
+

1
2

)]∗
. (1.7)

Changing in this equality ω/2 for ω, we can easily verify that it can be written in terms of the
introduced matrix M(ω) in the following equivalent form:

M(ω)(M(ω))∗ a.a.= I. (1.8)

Indeed, for example, the first element in the first row of this matrix is

k∑
s=1

∣∣m1,s(ω)
∣∣2 +

k∑
s=1

∣∣∣m1,s
(
ω +

1
2

)∣∣∣2,
where the first and second sums are the first elements of the first row of the matrices M(ω)[M(ω)]∗

and M(ω + 1/2)[M(ω + 1/2)]∗, respectively. The remaining equalities are verified similarly. �

2. BASES OF MULTIWAVELET SPACES

Let us construct wavelet spaces Wj (j ∈ Z) using the matrices M(ω). As follows from (0.2), it
is sufficient to construct W0 such that W0 �V0 = V1, since it is clear that Wj = dj

2W0 for remaining
j ∈ Z, where d2 is the operator of binary compression: (d2f)(x) = f(2x). Further, we construct a
vector function

Ψ(x) =
(
ψ1(x), ψ2(x), . . . , ψk(x)

)T
, ψs(x) ∈ L2(R), s = 1, k, (2.1)

such that {ψs(x − n)}, s = 1, k, n ∈ Z, is an orthonormal system in the space W0 ⊂ V1.
For the function ψs(x) to lie in W0 ⊂ V1, there must exist matrices Hψ

n composed of elements
{hr,s,ψ

n }n∈Z ∈ l2 such that

Ψ(x)
L2(R)
=

∑
n∈Z

Hψ
n

√
2Φ(2x − n). (2.2)

Here, the series of vector functions in the right-hand side of the equality converges componentwise
in L2(R). In terms of Fourier transforms, equality (2.2) looks as follows:

Ψ̂(ω) = Mψ
(ω

2

)
Φ̂

(ω

2

)
, (2.3)

where the mask of the multiwavelet system Mψ(ω) is given by the expression

Mψ(ω) =
1√
2

∑
n∈Z

Hψ
n e−2πinω =

⎛
⎜⎜⎜⎝

m1,1
ψ (ω) m1,2

ψ (ω) . . . m1,k
ψ (ω)

m2,1
ψ (ω) m2,2

ψ (ω) . . . m2,k
ψ (ω)

. . .

mk,1
ψ (ω) mk,2

ψ (ω) . . . mk,k
ψ (ω)

⎞
⎟⎟⎟⎠, (2.4)

mr,s
ψ (ω) =

1√
2

∑
n∈Z

hr,s,ψ
n e−2πinω ∈ L2[0, 1) (r, s = 1, k).
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Introduce the matrix

M
ψ(ω) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1,1
ψ (ω) . . . m1,k

ψ (ω) m1,1
ψ

(
ω +

1
2

)
. . . m1,k

ψ

(
ω +

1
2

)
m2,1

ψ (ω) . . . m2,k
ψ (ω) m2,1

ψ

(
ω +

1
2

)
. . . m2,k

ψ

(
ω +

1
2

)
. . .

mk,1
ψ (ω) . . . mk,k

ψ (ω) mk,1
ψ

(
ω +

1
2

)
. . . mk,k

ψ (ω +
1
2
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.5)

and express in terms of the matrices M(ω) and Mψ(ω) conditions of orthonormality of the sys-
tem {ψ1(x − n), ψ2(x − n), . . . , ψk(x − n)}n∈Z and orthogonality of the spaces V0 and W̃0 =
span{ψr(x − n)}.

Theorem 1. Let {ϕs(x − n), s = 1, k, n ∈ Z} be an orthonormal system. Then, a system
{ψs(x − n), s = 1, k, n ∈ Z} of form (2.2) is orthonormal if only if

M
ψ(ω)(Mψ(ω))∗ a.a.= I, (2.6)

and the spaces W̃0 and V0 are orthogonal if and only if

Mψ(ω)(M(ω))∗ a.a.= 0, (2.7)

where 0 is the zero matrix of dimension k × k.

Proof. The proof is similar the case of an MRA1. Let a system {ψs(x − n), s = 1, k, n ∈ Z}
be orthonormal. Then, the validity of equality (2.6) is obtained by a modification of the proof of
the statement from Section 1: one should use (2.3) instead of (1.4), replace Φ̂(ω − l) by Ψ̂(ω − l),
preserve Φ̂ in the right-hand side of (1.6), and replace M by Mψ applying notation (2.5). As a
result, we obtain (2.6) instead of (1.8). It is easily seen that, in contrast to the statement, this
argument is invertible if we assume the orthogonality of the system {ϕs(x − n), s = 1, k, n ∈ Z}.

Let us prove the equality ∑
l∈Z

Φ̂(ω − l)[Ψ̂(ω − l)]∗ = 0

by the usual scheme. As always, the condition 〈ψr(x − n), ϕs(x − l)〉 = 0, r, s = 1, k, n, l ∈ Z,
of orthogonality of the spaces W0 and V0 is equivalent to the conditions

〈Φ(x),Ψ(x − n)〉 = 0, n ∈ Z, (2.8)

or, in terms of Fourier transforms, to the condition

〈Φ̂(ω), Ψ̂(ω)e−2πinω〉 =
∫
R

Φ̂(ω)[Ψ̂(ω)]∗e2πinωdω = 0.

Applying standard transformations (see the proof of formula (1.5)), we find that (2.8) is equivalent
to the equalities

1∫
0

∑
l∈Z

Φ̂(ω − l)[Ψ̂(ω − l)]∗e2πinωdω
a.a.= 0, n ∈ Z,
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which imply ∑
l∈Z

Φ̂(ω − l)[Ψ̂(ω − l)]∗ = 0.

Substituting representations (2.3) and (1.4) into this equality, we get

∑
l∈Z

Φ̂(ω − l)[Ψ̂(ω − l)]∗ =
∑
l∈Z

M
(ω − l

2

)
Φ̂

(ω − l

2

)[
Mψ

(ω − l

2

)
Φ̂

(ω − l

2

)]∗

=
∑
l∈Z

M
(ω − l

2

)
Φ̂

(ω − l

2

)[
Φ̂

(ω − l

2

)]∗[
Mψ

(ω − l

2

)]∗ a.a.= 0.

As in the classical case, using the transformations from the derivation of (1.7), we find that (2.8)
implies the equality

M
(ω

2

)[
Mψ

(ω

2

)]∗
+ M

(ω

2
+

1
2

)[
Mψ

(ω

2
+

1
2

)]∗ a.a.= 0. (2.9)

Inserting in (2.9) between the factors M and Mψ the matrix I in the form

∑
Φ̂

(ω − m

2

)[
Φ̂

(ω − m

2

)]∗
for m = 2l and m = 2l + 1, we see that these transformations are also invertible: (2.9) implies (2.8).

As in the proof of the statement, it is easy to verify that equality (2.9) after changing ω/2 for ω

is written in terms of the matrices M(ω) and Mψ(ω) in the form

M(ω)(Mψ(ω))∗ a.a.= 0. (2.10)

Indeed, for example, the first element in the first row of this matrix is
∑k

s=1 m1,s(ω)m1,s
ψ (ω) +∑k

s=1 m1,s(ω + 1/2)m1,s
ψ (ω + 1/2), and the first and second sums are the first elements in the first

row of the matrices M(ω/2)[Mψ(ω/2)]∗ and M(ω/2 + 1/2)[Mψ(ω/2 + 1/2)]∗, respectively. Similar
arguments are carried out for the remaining elements. �

If we find a matrix Mψ(ω) satisfying Theorem 1, then the functions ψs(x), s = 1, k, are uniquely
found from the part Mψ(ω) of this matrix and formulas (2.2) or (2.3). By Theorem 1, integer shifts
of these functions generate an orthonormal system in the space W0.

Let us describe an algorithm for constructing masks of multiwavelets from known masks of
multiscaling functions.

Consider the case k = 2 and then extend the method of constructing Mψ(ω) to all even k.
Compose the determinant

−−−→
b1(ω) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−→
i1

−→
i2

−→
i3

−→
i4

m1,1(ω) m1,2(ω) m1,1
(
ω +

1
2

)
m1,2

(
ω +

1
2

)
m2,1(ω) m2,2(ω) m2,1

(
ω +

1
2

)
m2,2

(
ω +

1
2

)
a1(ω) a2(ω) a1

(
ω +

1
2

)
a2

(
ω +

1
2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.11)
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where
−→
is are unit vectors:

−→
i1 = (1, 0, 0, 0), . . .,

−→
i4 = (0, 0, 0, 1); mr,s(ω) are elements of the mask

M(ω); the vector
−−→
a(ω) =

(
a1(ω), a2(ω), a1(ω + 1/2), a2(ω + 1/2)

)
is linearly independent with the

vectors
−−−−→
m1(ω) =

(
m1,1(ω),m1,2(ω),m1,1

(
ω +

1
2

)
,m1,2

(
ω +

1
2

))
,

−−−−→
m2(ω) =

(
m2,1(ω),m2,2(ω),m2,1

(
ω +

1
2
)
,m2,2

(
ω +

1
2

))
;

and a1(ω) and a2(ω) are arbitrary 1-periodic functions from L2[0, 1).

It is easy to see that the scalar product of a vector of type
−−−→
b1(ω) and the vectors

∑−→
is cs in the

space l24 coincides with the determinant obtained by replacing the first row in determinant (2.11)

by (c1, c2, c3, c4). Therefore, the vector
−−−→
b1(ω) :=

(
b1
1(ω), b2

1(ω), b3
1(ω), b4

1(ω)
)

constructed in this way
is orthogonal in the space l24 to the vectors

−−−−→
m1(ω) =

(
m1,1(ω),m1,2(ω),m1,1

(
ω +

1
2

)
,m1,2

(
ω +

1
2

))
,

−−−−→
m2(ω) =

(
m2,1(ω),m2,2(ω),m2,1

(
ω +

1
2

)
,m2,2

(
ω +

1
2

))
;

it is also 1-periodic since the elements and the corresponding algebraic complements of the vectors
in the first row of determinant (2.11) are 1-periodic. It is seen from the formulas

b1
1(ω) = det

⎛
⎜⎜⎜⎜⎜⎝

m1,2(ω) m1,1
(
ω +

1
2

)
m1,2

(
ω +

1
2

)
m2,2(ω) m2,1

(
ω +

1
2

)
m2,2

(
ω +

1
2

)
a2(ω) a1

(
ω +

1
2

)
a2

(
ω +

1
2

)

⎞
⎟⎟⎟⎟⎟⎠ ,

b3
1(ω) = det

⎛
⎜⎜⎜⎜⎜⎝

m1,1(ω) m1,2(ω) m1,2
(
ω +

1
2

)
m2,1(ω) m2,2(ω) m2,2

(
ω +

1
2

)
a1(ω) a2(ω) a2

(
ω +

1
2

)

⎞
⎟⎟⎟⎟⎟⎠

that b3
1(ω) = b1

1(ω +1/2), since the determinant b1
1(ω +1/2) is obtained from the determinant b3

1(ω)
by an even permutation of columns. It is verified similarly that b4

1(ω) = b2
1(ω + 1/2). Thus, the

vector
−−−→
b1(ω) has the form

−−−→
b1(ω) =

(
b1
1(ω), b2

1(ω), b1
1(ω + 1/2), b2

1(ω + 1/2)
)
.

Substituting now into the fourth row of determinant (2.11) the vector
−−−→
b1(ω) instead of

−−→
a(ω), we

obtain the new vector

−−−→
b2(ω) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−→
i1

−→
i2

−→
i3

−→
i4

m1,1(ω) m1,2(ω) m1,1
(
ω +

1
2

)
m1,2

(
ω +

1
2

)
m2,1(ω) m2,2(ω) m2,1

(
ω +

1
2

)
m2,2

(
ω +

1
2

)
b1
1(ω) b2

1(ω) b1
1

(
ω +

1
2

)
b2
1

(
ω +

1
2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2.12)
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It is clear that the vector
−−−→
b2(ω) also has the form

−−−→
b2(ω) :=

(
b1
2(ω), b2

2(ω), b1
2

(
ω +

1
2

)
, b2

2

(
ω +

1
2

))
and is orthogonal to the vectors

−−−−→
m1(ω) and

−−−−→
m2(ω). Replacing in determinant (2.12) the first row

by
−−−→
b1(ω), we see that

−−−→
b1(ω)⊥

−−−→
b2(ω) in the space l24.

Using these vectors, we can construct

−−−−→
ms

ψ(ω) =
(
ms,1

ψ (ω),ms,2
ψ (ω),ms,1

ψ

(
ω +

1
2

)
,ms,2

ψ

(
ω +

1
2

))
, s = 1, 2,

setting
−−−−→
ms

ψ(ω) =
−−−→
bs(ω)/‖

−−−→
bs(ω)‖l24

. Thus, we have constructed the masks and the matrix Mψ of
multiwavelets from the system of scaling functions of an MRA2, more exactly, from the elements
of the mask matrix of this system. By construction, the mask Mψ(ω) satisfies Theorem 1, and its
elements look as follows:

mr,s(ω) =
br
s(ω)

‖
−−−→
bs(ω)‖l24

, r, s = 1, 2.

Similarly, we construct wavelet bases for other even k:

−−−→
b1(ω) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−→
i1 . . .

−→
ik

−−→
ik+1 . . .

−→
i2k

m1,1(ω) . . . m1,k(ω) m1,1
(
ω +

1
2

)
. . . m1,k

(
ω +

1
2

)
. . .

mk,1(ω) . . . mk,k(ω) mk,1
(
ω +

1
2

)
. . . mk,k

(
ω +

1
2

)
a1

1(ω) . . . ak
1(ω) a1

1

(
ω +

1
2

)
. . . ak

1

(
ω +

1
2

)
. . .

a1
k−1(ω) . . . ak

k−1(ω) a1
k−1

(
ω +

1
2

)
. . . ak

k−1

(
ω +

1
2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.13)

choosing arbitrary 1-periodic functions
−−−→
as

j(ω) from L2[0, 1) so that the last 2k − 1 rows of the
determinant are linearly independent.

Further, we write
−−−→
b1(ω) instead of

−−−→
a1(ω) in (2.13) and obtain

−−−→
b2(ω), and so on. As a result, we

get the system of vectors {
−−−→
b1(ω), . . . ,

−−−→
bk(ω)}, which, after a unit normalization in l22k, defines the

matrix Mψ(ω). Obviously, this matrix has form (2.5) and satisfies properties (2.6) and (2.7).
Now, let k be odd. Consider the vector

−−−→
b̃1(ω) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−→
i1 . . .

−→
ik

−−→
ik+1 . . .

−→
i2k

m1,1(ω) . . . m1,k(ω) m1,1
(
ω +

1
2

)
. . . m1,k

(
ω +

1
2

)
. . .

mk,1(ω) . . . mk,k(ω) mk,1
(
ω +

1
2

)
. . . mk,k

(
ω +

1
2

)
a1

1(ω) . . . ak
1(ω) a1

1

(
ω +

1
2

)
. . . ak

1

(
ω +

1
2

)
. . .

a1
k−1(ω) . . . ak

k−1(ω) a1
k−1

(
ω +

1
2

)
. . . ak

k−1

(
ω +

1
2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.14)
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The constructed vector
−−−→
b̃1(ω) = (b̃1

1(ω), b̃2
1(ω), . . . , b̃2k

1 (ω)) is 1-periodic in ω; it is not equal to

(b̃1
1(ω), . . . b̃k

1(ω), b̃1
1(ω + 1/2) . . . , b̃k

1(ω + 1/2)) as in the case of even k, because, since the number of
permutations of columns of algebraic complements to elements from the first row of matrix (2.14)

is odd, we have the equalities b̃s
1(ω + 1/2) = −b̃k+s

1 (ω) for s = 1, k. Transform the vector
−−−→
b̃1(ω) so

that it satisfies the required condition. For this, we multiply it by the function λ1(ω). The resulting

vector λ1(ω)
−−−→
b̃1(ω) is orthogonal in l22k to all

−−−−→
ms(ω), s = 1, . . . , k, and is written as follows:

−−−→
b1(ω) := λ1(ω)

−−−→
b̃1(ω) =

(
λ1(ω)b̃1

1(ω), . . . , λ1(ω)b̃k
1(ω), λ1(ω)b̃k+1

1 (ω), . . . , λ1(ω)b̃2k
1 (ω)

)
.

Let us find conditions on λ1(ω) that are necessary and sufficient for the vector
−−−→
b1(ω) to have

the same structure as in the case of even k, i.e., conditions for the coincidence of the component

bs
1(ω + 1/2) = λ1(ω + 1/2)b̃s

1(ω + 1/2) for s = 1, k with the component bk+s
1 (ω) = λ1(ω)b̃k+s

1 (ω).
Obviously, by the above equalities for b̃s

1(ω + 1/2), it is sufficient to impose on the function λ1(ω)
the condition

λ1(ω) = −λ1

(
ω +

1
2

)
(2.15)

additionally to the condition of 1-periodicity. We now can substitute the obtained row function
−−−→
b1(ω) = λ1(ω)

−−−→
b̃1(ω) into determinant (2.14), replacing the row

−−−→
a1(ω) by it. Further, proceeding

similarly, we find
−−−→
b̃2(ω) and construct

−−−→
b2(ω) = λ2(ω)

−−−→
b̃2(ω) with λ2(ω) = −λ2(ω + 1/2), and so on.

As a result, after the normalization in l22k of the row vectors
−→
br for r = 1, k, we obtain matrix

functions Mψ and Mψ with the same properties as for even k.
Having obtained the masks Mψ(ω) of multiwavelets, we find, as in the classical case, an

expression for Fourier transforms of multiwavelets in terms of Fourier transforms of multiscaling
functions by formulas (2.3). The inverse Fourier transform yields vector function (2.1) and, hence,
the family of multiwavelets ψs

j,l, s = 1, k, j, l ∈ Z. The same result can be obtained by expanding

Mψ(ω) into a trigonometric series with matrix coefficients Hψ
n and then applying formula (2.2) for

the construction of vector function (2.1).
In the following theorem, we assume that the masks Mψ(ω) are constructed according to the

presented scheme as the corresponding submatrices of the matrix Mψ(ω).

Theorem 2. The system of functions ψs(x − n), s = 1, k, n ∈ Z, recovered from Fourier
transform (2.3) of the corresponding vector function Ψ(x), where the mask Mψ(ω) is defined above,
forms a basis of the space W0.

Proof. Let f(x) ∈ W0, i.e., (1) f(x) ∈ V1 and (2) f(x)⊥V0. By condition (1), we have
f(x) =

∑
n∈Z

Cf
nΦ1,n(x), where elements of the row vector Cf

n lie in l2(Z), or, equivalently,

f̂(ω) =
−−−−−→
mf

(ω

2

)
Φ̂

(ω

2

)
,

where
−−−−→
mf (ω) =

∑
n∈Z

Cf
ne2πinω is a 1-periodic vector function of dimension 1 × k.

By condition (2), 〈f(x), ϕl(x − n)〉L2(R) = 0 for l = 1, k. Since the components of the vector

functions f̂(ω)Φ̂(ω) are integrable, this condition can be written in terms of Fourier transforms in
the form ∫

R

−−−−−→
mf

(ω

2

)
Φ̂

(ω

2

)[
e−2πinω

−−−−→
m

(ω

2

)
Φ̂

(ω

2

)]∗
dω = 0 ∀n ∈ Z.
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Divide the integral into the sum of integrals over the intervals [ν, ν + 1] and then pass to the
integral over the interval [0, 1]. Considering separately the sums over even and odd ν and using the
properties of a matrix product and equality (1.5), we obtain the equivalent equality

∫
R

(−−−−−→
mf

(ω

2

)[−−−−→
m

(ω

2

)]∗
+

−−−−−−−−→
mf

(ω

2
+

1
2

)[−−−−−−−−→
m

(ω

2
+

1
2

)]∗)
e2πinωdω = 0 ∀n ∈ Z.

Therefore,
−−−−→
mf (ω)

[
M(ω)

]∗ +
−−−−−−−−→
mf

(
ω +

1
2

)[
M

(
ω +

1
2

)]∗ a.a.=
−→
0 . (2.16)

By (2.6), we have
−−−−→
mf (ω) =

−−→
α(ω)Mψ(ω),

where
−−→
α(ω) is a 1-periodic row vector of dimension k. Using equalities (2.16) and (2.10), we find

conditions on
−−→
α(ω). It is easy to see that

−−→
α(ω)Mψ(ω)[M(ω)]∗+

−−−−−−−→
α
(
ω +

1
2

)
Mψ

(
ω +

1
2

)[
M

(
ω +

1
2

)]∗

=
(−−−−−−−→
α
(
ω +

1
2

)
−
−−→
α(ω)

)
Mψ

(
ω +

1
2

)[
M

(
ω +

1
2

)]∗ a.a.=
−→
0 ,

−−−−−−−→
α
(
ω +

1
2

)
=

−−→
α(ω), f̂(ω) =

−−−−→
α
(ω

2

)
Mψ

(ω

2

)
Φ̂

(ω

2

)
=

−−−−→
α
(ω

2

)
Ψ̂(ω). (2.17)

Here, as seen from (2.17),
−−→
α(ω) is a 1/2-periodic row vector of dimension k; consequently, f̂(ω) is

the product of a 1-periodic vector and Ψ̂(ω). Applying the inverse Fourier transform, we find that

f(x) =
∑
n∈Z

DnΨ(x − n),

where Dn are the matrix coefficients from the expansion

−−−−→
α
(ω

2

)
=

∑
n∈Z

Dne−2πinω. �

These bases are defined nonuniquely, up to the chosen vectors
−−−→
as(ω), s = 1, . . . , k − 1, and

functions λs(ω), s = 1, . . . , k, with the required properties. For even k, we can multiply the

constructed vectors
−−−→
br(ω) by the functions λr(ω) with period 1/2. However, in the normalization

of the vectors
−−−→
br(ω), r = 1, k, for any k ∈ N, the arbitrariness in λs(ω) remains only in the form of

the factors μr(ω) for even k and eiπωμr(ω) for odd k with 1/2-periodic functions μr(ω) such that
|μr(ω)| = 1. Note that the method makes it possible to construct for a given family of multiscaling
functions a family of wavelet bases that is richer as compared to the classical case due to the

mentioned arbitrariness in the choice of the vectors
−−−→
as(ω), s = 1, . . . , k − 1.
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