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Received September 2014

Abstract—We give upper bounds for the density of unit ball packings relative to their outer
parallel domains and discuss their connection to contact numbers. We also introduce packings
of soft balls and give upper bounds for the fraction of space covered by them.
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1. INTRODUCTION

1.1. Upper bounds for the density of unit ball packings relative to their outer par-
allel domains. Let E

d denote the d-dimensional Euclidean space, d ≥ 2. As usual, let lin( ·),
aff( ·), conv( ·), vold( ·), ωd, Svold−1( ·), dist( · , ·), ‖·‖, and o refer to the linear hull, the affine hull,
the convex hull in E

d, the d-dimensional Euclidean volume measure, the d-dimensional volume of
a d-dimensional unit ball, the (d− 1)-dimensional spherical volume measure, the distance function
in E

d, the standard Euclidean norm, and the origin in E
d.

A family of closed d-dimensional balls of radii 1 with pairwise disjoint interiors in E
d is called

a unit ball packing in E
d. The (upper) density of a unit ball packing is defined by an appropriate

limit [16, 25] and is, roughly speaking, the proportion of space covered by the unit balls of the
packing at hand. The sphere packing problem asks for the densest packing of unit balls in E

d. This
includes the computation of the packing density δd of unit balls in E

d, which is the supremum of
the upper densities of all unit ball packings in E

d. The sphere packing problem is a long-standing
open question with exciting recent progress. For an overview on the status of the relevant research
we refer the interested reader to [6, 13, 19]. Next, we recall two theorems on unit sphere packings
that naturally lead us to the first problem of this paper.

The Voronoi cell of a unit ball in a packing of unit balls in E
d is the set of points that are not

farther away from the center of the given ball than from any other ball’s center. As is well known,
the Voronoi cells of a unit ball packing in E

d form a tiling of Ed. One of the most attractive results
on the sphere packing problem was proved by C.A. Rogers [24] in 1958. It was rediscovered by
E. Baranovskii [1] and extended to spherical and hyperbolic spaces by K. Böröczky [9]. It can be
phrased as follows. Take a regular d-dimensional simplex of edge length 2 in E

d and then draw a
d-dimensional unit ball around each vertex of the simplex. Let σd denote the ratio of the volume of
the portion of the simplex covered by balls to the volume of the simplex. Now, take a Voronoi cell
of a unit ball in a packing of unit balls in the d-dimensional Euclidean space E

d, d ≥ 2, and then
take the intersection of the given Voronoi cell with the d-dimensional ball of radius

√
2d/(d + 1)

concentric to the unit ball of the Voronoi cell. (We note that
√

2d/(d + 1) is the circumradius of the
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regular d-dimensional simplex of edge length 2 in E
d.) Then the volume of the truncated Voronoi

cell is at least ωd/σd. In other words, the density of each unit ball in its truncated Voronoi cell is
at most σd. In 2002, the first named author [3] has improved Rogers’s upper bound on the density
of each unit ball in an arbitrary unit ball packing of E

d relative to its truncated Voronoi cell, by
replacing σd with σ̂d < σd for all d ≥ 8.

The above truncation of Voronoi cells with balls concentric to unit balls makes it natural to
introduce the following functionals for unit ball packings.

Definition 1. Let Bd = {x ∈ E
d : ‖x‖ ≤ 1} denote the closed unit ball centered at the origin o

of E
d, d ≥ 2, and let Pn := {ci + Bd : 1 ≤ i ≤ n with ‖cj − ck‖ ≥ 2 for all 1 ≤ j < k ≤ n} be

an arbitrary packing of n > 1 unit balls in E
d. The part of space covered by the unit balls of Pn

is denoted by Pn :=
⋃n

i=1(ci + Bd). Moreover, let Cn := {ci : 1 ≤ i ≤ n} stand for the set of
centers of the unit balls in Pn. Furthermore, for any λ > 0 let Pn

λ :=
⋃
{x + λBd : x ∈ Pn} =⋃n

i=1(ci + (1 + λ)Bd) denote the outer parallel domain of Pn having outer radius λ. Finally, let

δd(n, λ) := max
Pn

nωd

vold(P
n
λ)

=
nωd

minPn vold
(⋃n

i=1(ci + (1 + λ)Bd)
) and δd(λ) := lim sup

n→+∞
δd(n, λ).

Now, let P := {ci + Bd : i = 1, 2, . . . with ‖cj − ck‖ ≥ 2 for all 1 ≤ j < k} be an arbitrary
infinite packing of unit balls in E

d. Recall that

δd = sup
P

(
lim sup
R→+∞

∑
ci+Bd⊂RBd vold(ci +Bd)

vold(RBd)

)
.

Hence, it is rather easy to see that δd ≤ δd(λ) for all λ > 0 and d ≥ 2. On the other hand, it
was proved in [4] that δd = δd(λ) for all λ ≥ 1, leading to the classical sphere packing problem.
Furthermore, the theorem of [24] (see also [1, 9]) quoted above states that δd(n, λ) ≤ σd for all
n > 1, d ≥ 2, and λ ≥

√
2d/(d + 1) − 1. It implies the inequality δd ≤ δd(λ) ≤ supn δd(n, λ) ≤ σd

for all d ≥ 2 and λ ≥
√

2d/(d + 1) − 1. This was improved further by the above quoted theorem
of [3] stating that δd(n, λ) ≤ σ̂d < σd for all n > 1 and λ ≥

√
2d/(d + 1)− 1 provided that d ≥ 8. It

implies the inequality δd ≤ δd(λ) ≤ supn δd(n, λ) ≤ σ̂d < σd for all d ≥ 8 and λ ≥
√

2d/(d + 1)− 1.
Of course, any improvement of the upper bounds for δd ≤ δd(λ) with λ ≥

√
2d/(d + 1)− 1 would be

of interest. However, in this paper we focus on the closely related question of upper bounding δd(λ)
over the complementary interval 0 < λ <

√
2d/(d + 1)− 1 for d ≥ 2. Thus, we raise an asymptotic

problem on unit ball packings, which is a volumetric question on truncations of Voronoi cells of unit
ball packings with balls concentric to unit balls having radii 1 + λ > 1 reasonably close to 1 in E

d.
More exactly, we put forward the following question.

Problem 1. Determine (respectively, estimate) δd(λ) for d ≥ 2 and 0 < λ <
√

2d/(d + 1)− 1.
Before stating our results on Problem 1, we comment on its connection to contact graphs of

unit ball packings, a connection that would be interesting to explore further. First, we note that
2/
√
3 − 1 ≤

√
2d/(d + 1) − 1 for all d ≥ 2. Second, observe that as 2/

√
3 is the circumradius

of a regular triangle of side length 2, it follows that if 0 < λ < 2/
√
3 − 1, then for any unit ball

packing Pn no three of the closed balls in the family {ci + (1 + λ)Bd : 1 ≤ i ≤ n} have a point in
common. In other words, for any λ with 0 < λ < 2/

√
3 − 1 and for any unit ball packing Pn, in

the arrangement {ci + (1 + λ)Bd : 1 ≤ i ≤ n} of closed balls of radii 1 + λ only pairs of balls may
overlap. Thus, computing δd(n, λ), i.e., minimizing vold(P

n
λ), means maximizing the total volume

of pairwise overlaps in the ball arrangement {ci + (1 + λ)Bd : 1 ≤ i ≤ n} with the underlying
packing Pn. Intuition would suggest achieving this by simply maximizing the number of touching
pairs in the unit ball packing Pn. Hence, Problem 1 becomes very close to the contact number
problem of finite unit ball packings for 0 < λ < 2/

√
3 − 1. Recall that the latter problem asks for
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DENSITY BOUNDS FOR OUTER PARALLEL DOMAINS 211

the largest number of touching pairs, i.e., contacts in a packing of n unit balls in E
d for given n > 1

and d > 1. We refer the interested reader to [5, 7] for an overview on contact numbers. Here, we
state the following observation.

Theorem 1. Let n > 1 and d > 1 be given. Then there exists λd,n > 0 and a packing P̂n of n
unit balls in E

d possessing the largest contact number for the given n such that for all λ satisfying
0 < λ < λd,n, δd(n, λ) is generated by P̂n, i.e., vold(Pn

λ) ≥ vold(P̂
n
λ) for every packing Pn of n unit

balls in E
d.

Blichfeldt’s method [8] (see also [14]) applied to Problem 1 leads to the following upper bound
on δd(λ).

Theorem 2. Let d and λ satisfy d
√
d− 1 ≤ λ ≤

√
2− 1. Then

δd(λ) ≤ sup
n

δd(n, λ) ≤
2d+ 4

(2− (1 + λ)2)d+ 4
(1 + λ)−d ≤ d+ 2

2
(1 + λ)−d ≤ 1. (1.1)

We note that Blichfeldt’s upper bound 2−d/2(d + 2)/2 for the packing density of unit balls
in E

d can be obtained from the upper bound formula of Theorem 2 by making the substitution
λ =

√
2− 1.

Theorem 3. Let λ satisfy 0 < λ < 2/
√
3 − 1 = 0.1547 . . . and let H be a regular hexagon

circumscribed about the unit disk B2 centered at the origin o in E
2. Then

δ2(λ) =
π

area(H ∩ (1 + λ)B2)
.

Definition 2. Let Td := conv{t1, t2, . . . , td+1} be a regular d-simplex of edge length 2 in E
d,

d ≥ 2, and let 0 < λ <
√
2d/(d + 1)− 1. Set

σd(λ) :=
(d+ 1)vold(T

d ∩ (t1 +Bd))

vold
(
Td ∩

(⋃d+1
i=1 ti + (1 + λ)Bd

)) < 1.

An elementary computation shows that if 0 < λ < 2/
√
3− 1, then

σ3(λ) =
π − 6φ0

πλ3 + (3π − 9φ0)λ2 + (3π − 18φ0)λ+ π − 6φ0
,

where φ0 := arctan(1/
√
2) = 0.615479 . . . .

Theorem 4. Let 0 < λ < 2/
√
3 − 1 = 0.1547 . . . . Set ψ0 := − arctan(

√
2/3 tan(5φ0)) =

0.052438 . . . . Then

δ3(λ) ≤ sup
n

δ3(n, λ) ≤
π − 6ψ0

π − 6ψ0 + (3π − 18ψ0)λ− 18ψ0λ2 − (π + 6ψ0)λ3
< σ3(λ). (1.2)

Finally, we note that the concept of δd(n, λ) is different from the notion of parametric density
introduced by Wills [28]. Namely, the outer parallel domain of a packing of n unit balls in E

d

considered in this paper is non-convex and it is different from the outer parallel domain of the
convex hull of the center points of a packing of n unit balls in E

d, which is the convex container
needed for the definition of parametric density.
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1.2. Upper bounds for the density of soft ball packings. So far, we have discussed
upper bounds for the densities δd ≤ δd(λ) ≤ supn δd(n, λ) of unit ball packings relative to their outer
parallel domains having outer radius λ in E

d. So, it is natural to go even further and investigate
unit ball packings and their outer parallel domains by upper bounding the largest fraction of E

d

covered by outer parallel domains of unit ball packings having outer radius λ in E
d. This leads us

to the packing problem of soft balls introduced as follows.
Definition 3. Let P := {ci + Bd : i = 1, 2, . . . with ‖cj − ck‖ ≥ 2 for all 1 ≤ j < k}

be an arbitrary infinite packing of unit balls in E
d. Moreover, for any d ≥ 2 and λ ≥ 0 let

Pλ :=
⋃+∞

i=1 (ci + (1 + λ)Bd) denote the outer parallel domain of P :=
⋃+∞

i=1 (ci +Bd) having outer
radius λ. Furthermore, let

δd(Pλ) := lim sup
R→+∞

vold(Pλ ∩RBd)

vold(RBd)

be the (upper) density of the outer parallel domain Pλ assigned to the unit ball packing P in E
d.

Finally, let
δd(λ) := sup

P
δd(Pλ)

be the largest density of the outer parallel domains of unit ball packings having outer radius λ
in E

d. Putting it somewhat differently, one could say that the family {ci + (1 + λ)Bd : i = 1, 2, . . .}
of closed balls of radii 1 + λ is a packing of soft balls with penetrating constant λ if P := {ci +Bd :
i = 1, 2, . . .} is a unit ball packing of E

d in the usual sense. In particular, δd(Pλ) is called the
(upper) density of the soft ball packing {ci + (1 + λ)Bd : i = 1, 2, . . .} with δd(λ) standing for the
largest density of packings of soft balls of radii 1 + λ having penetrating constant λ.

Problem 2. Determine (respectively, estimate) δd(λ) for d ≥ 2 and 0 ≤ λ <
√

2d/(d + 1)− 1.
Rogers’s method [24] (see also [25]) applied to Problem 2 leads to the following upper bound

on δd(λ).
Theorem 5. Let Td := conv{t1, t2, . . . , td+1} be a regular d-simplex of edge length 2 in E

d,
d ≥ 2, and let 0 ≤ λ <

√
2d/(d + 1)− 1. Then

δd(λ) ≤ σd(λ) :=
vold

(
Td ∩

(⋃d+1
i=1 ti + (1 + λ)Bd

))

vold(Td)
< 1.

Clearly, Rogers’s upper bound σd for the packing density of unit balls in E
d is included in the

upper bound formula of Theorem 5, namely, with σd = σd(0).
Corollary 1. δ2(λ) = σ2(λ) for all 0 ≤ λ < 2/

√
3− 1.

For the following special case we improve our Rogers-type upper bound on δ3(λ).
Theorem 6. Let 0 ≤ λ < 2/

√
3− 1. Then

δ3(λ) ≤
(20

√
6φ0 − 4

√
6π − 10π)(1 + λ)3 + 18π(1 + λ)2 − 6π

3π − 15φ0 + 5
√
2

< σ3(λ),

where φ0 = arctan(1/
√
2) = 0.615479 . . . .

As a special case, Theorem 6 for λ = 0 gives the upper bound 0.778425 . . . for the density
of unit ball packings in E

3 proved earlier by the first named author in [2]. More generally, as
δd ≤ δd(λ)δd(λ) for all d ≥ 2 and λ > 0, upper bounds on δd(λ) and δd(λ) imply upper bounds
for δd in a straightforward way.

In the rest of the paper we prove the theorems stated. For concluding remarks see the last
section of this paper.
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DENSITY BOUNDS FOR OUTER PARALLEL DOMAINS 213

2. PROOF OF THEOREM 1

First, we show that there exists λ′
d,n > 0 such that for every λ satisfying 0 < λ < λ′

d,n, δd(n, λ) is
generated by a packing of n unit balls in E

d possessing the largest contact number c(n, d) for the
given n. Our proof is indirect and starts by assuming that the claim is not true. Then there exists
a sequence λ1 > λ2 > . . . > λm > . . . > 0 of positive reals with limm→+∞ λm = 0 such that the unit
ball packing P(λm) := {ci(λm) +Bd : 1 ≤ i ≤ n with ‖cj(λm)− ck(λm)‖ ≥ 2 for all 1 ≤ j < k ≤ n}
that generates δd(n, λm) has a contact number c(P(λm)) satisfying

c(P(λm)) ≤ c(n, d)− 1 (2.1)

for all m = 1, 2, . . . . Clearly, by assumption, the inequality

vold(P
n
λm

) ≥ vold(P(λm)) (2.2)

must hold for every packing Pn = {ci +Bd : 1 ≤ i ≤ n with ‖cj − ck‖ ≥ 2 for all 1 ≤ j < k ≤ n}
of n unit balls in E

d and for all m = 1, 2, . . . , where

Pn
λm

=

n⋃

i=1

(
ci + (1 + λm)Bd

)
and P(λm) :=

n⋃

i=1

(
ci(λm) + (1 + λm)Bd

)
.

By choosing convergent subsequences if necessary, one may assume that limm→+∞ ci(λm) = c′i ∈ E
d

for all 1 ≤ i ≤ n. Clearly, P ′ := {c′i + Bd : 1 ≤ i ≤ n} is a packing of n unit balls in E
d. Now,

let P ′′ := {c′′i + Bd : 1 ≤ i ≤ n} be a packing of n unit balls in E
d with maximum contact

number c(n, d). Finally, let 2 + 2λ′ be the smallest distance between the centers of non-touching
pairs of unit balls in the packings P ′ and P ′′. Thus, if 0 < λm < λ′ and m is sufficiently large,
then the number of overlapping pairs in the ball arrangement {ci(λm) + (1 + λm)Bd : 1 ≤ i ≤ n}
is at most c(n, d). On the other hand, the number of overlapping pairs in the ball arrangement
{c′′i + (1 + λm)Bd : 1 ≤ i ≤ n} is c(n, d). Hence, (2.1) implies in a straightforward way that
vold(P(λm)) > vold

(⋃n
i=1(c

′′
i + (1 + λm)Bd)

)
, a contradiction to (2.2). This completes our proof of

the existence of λ′
d,n > 0.

Second, we turn to the proof of the existence of the packing P̂n of n unit balls in E
d with the

extremal property stated in Theorem 1. According to the first part of our proof, for every λ satisfying
0 < λ < λ′

d,n there exists a packing P(λ) := {ci(λ) +Bd : 1 ≤ i ≤ n with ‖cj(λ) − ck(λ)‖ ≥ 2 for
all 1 ≤ j < k ≤ n} of n unit balls in E

d with a contact number c(P(λ)) = c(n, d) such that

vold(P
n
λ) ≥ vold(P(λ)) (2.3)

for every packing Pn = {ci + Bd : 1 ≤ i ≤ n with ‖cj − ck‖ ≥ 2 for all 1 ≤ j < k ≤ n} of n unit
balls in E

d, where

Pn
λ =

n⋃

i=1

(
ci + (1 + λ)Bd

)
and P(λ) :=

n⋃

i=1

(
ci(λ) + (1 + λ)Bd

)
.

Now, if we assume that P̂n does not exist, then clearly we must have a sequence λ1 > λ2 > . . . >
λm > . . . > 0 of positive reals with limm→+∞ λm = 0 and with unit ball packings P(λm) :=
{ci(λm) + Bd : 1 ≤ i ≤ n with ‖cj(λm) − ck(λm)‖ ≥ 2 for all 1 ≤ j < k ≤ n} in E

d each with
maximum contact number c(P(λm)) = c(n, d) such that we have (2.3), i.e.,

vold(P
n
λm

) ≥ vold(P(λm))
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for every packing Pn = {ci + Bd : 1 ≤ i ≤ n with ‖cj − ck‖ ≥ 2 for all 1 ≤ j < k ≤ n} of n unit
balls in E

d and for all m = 1, 2, . . . . In particular, we must have

vold(P(λM )) ≥ vold(P(λm)) (2.4)

for all positive integers 1 ≤ m ≤ M . Last but not least, by the non-existence of P̂n we may
assume about the sequence of the unit ball packings P(λm), m = 1, 2, . . . (respectively, of volumes
vold(P(λm)), m = 1, 2, . . . ), that for every positive integer N there exist m′′ > m′ ≥ N with

vold(P(λm′′)) > vold(P(λm′)). (2.5)

Finally, let 2 + 2λ′
m be the smallest distance between the centers of non-touching pairs of unit balls

in the packing P(λm), m = 1, 2, . . . . We claim that there exists a positive integer N ′ such that

0 < λm < λ′
m for all m ≥ N ′. (2.6)

Indeed, otherwise there exists a subsequence λ′
mi

, i = 1, 2, . . . , with λmi ≥ λ′
mi

> 0 for all i =
1, 2, . . . and so with limi→+∞ λ′

mi
= 0, which implies the existence of a packing of n unit balls in E

d

(via taking a convergent subsequence of the unit ball packings P(λmi), i = 1, 2, . . . , in E
d) with

contact number at least c(n, d) + 1, a contradiction.
Thus, relations (2.6) and c(P(λm)) = c(d, n) imply in a straightforward way that the equality

vold(P(λm′′)) = vold(P(λm′)) must hold for all m′′ > m′ ≥ N ′, a contradiction to (2.5). This
completes our proof of Theorem 1.

3. PROOF OF THEOREM 2

For simplicity, we set λ := 1 + λ and use it for the rest of the paper. In the proof that follows
we apply Blichfeldt’s idea to Pn within the container

⋃n
i=1(ci + λBd) following the presentation of

Blichfeldt’s method in [14].
For i = 1, 2, . . . , n, let ci = (ci1, ci2, . . . , cin). Clearly, if i �= j, we have ‖ci − cj‖2 ≥ 4, or

equivalently,
∑d

k=1(cik − cjk)
2 ≥ 4. Summing up for all possible pairs of different indices, we obtain

2n(n− 1) = 4

(
n

2

)
≤ n

n∑

i=1

(
d∑

j=1

c2ij

)

−
d∑

j=1

(
n∑

i=1

cij

)2

,

which yields

2(n − 1) ≤
n∑

i=1

‖ci‖2. (3.1)

We need the following definitions and lemma.
Definition 4. The function

ρλ(x) =

⎧
⎨

⎩
1− 1

2
‖x‖2 if ‖x‖ ≤ λ,

0 if ‖x‖ > λ

is called the Blichfeldt gauge function.
Lemma 1. For any y ∈ E

d, we have

n∑

i=1

ρλ(y − ci) ≤ 1.
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Proof. Without loss of generality, let y be the origin. Then, from (3.1), it follows that

n∑

i=1

ρλ(ci) =
∑

‖ci‖≤λ

(
1− 1

2
‖ci‖2

)
≤

n∑

i=1

(
1− 1

2
‖ci‖2

)
= n− 1

2

n∑

i=1

‖ci‖2

≤ n− 1

2
· 2(n− 1) = 1. �

Definition 5. Let

I(ρλ) =

∫

Ed

ρλ(x) dx, δ =
nωd

vold
(⋃n

i=1(ci + λBd)
) , Δ = δ

I(ρλ)

ωd
.

Clearly, Lemma 1 implies that Δ ≤ 1, and therefore δ ≤ ωd/I(ρλ), which yields the inequality
δd(n, λ) ≤ ωd/I(ρλ).

Now,

I(ρλ) =

∫

Ed

ρλ(x) dx =

∫

λBd

(
1− 1

2
‖x‖2

)
dx =

λ∫

0

(
1− 1

2
r2
)
rd−1dωd dr

= ωd

(
λd − d

2(d+ 2)
λd+2

)
.

Hence, we have

δd(n, λ) ≤
1

λd
(
1− d

2d+4λ
2
) =

2d+ 4

(2− λ 2)d+ 4
λ−d,

and the assertion follows.

4. PROOF OF THEOREM 3

Let Pn = {ci + B2 : i = 1, 2, . . . , n} be a packing of n unit disks in E
2, and let 1 < λ =

1 + λ < 2/
√
3.

Definition 6. The λ-intersection graph of Pn is the graph G(Pn) with {ci : i = 1, 2, . . . , n}
as vertices, and with two vertices connected by a line segment if their distance is at most 2λ.

Note that since 1 < λ < 2/
√
3, the λ-intersection graph of Pn is planar, but if λ > 2/

√
3, it is

not necessarily so.
Definition 7. The unbounded face of the λ-intersection graph G(Pn) is bounded by finitely

many closed sequences of edges of G(Pn). We call the collection of these sequences the boundary
of G(Pn), and denote the sum of the lengths of the edges in them by perim(G(Pn)).

We remark that an edge of G(Pn) may appear more than once in the boundary of G(Pn) (for
instance, if the boundary of the unbounded face contains a vertex of degree 1). Such an edge
contributes its length more than once to perim(G(Pn)).

We prove the following stronger statement, which readily implies Theorem 3.
Theorem 7. Let Pn = {ci +B2 : i = 1, 2, . . . , n} be a packing of n unit disks in E

2, and let
1 < λ < 2/

√
3. Let A = area

(⋃n
i=1(ci + λB2)

)
and P = perim(G(Pn)). Then

A ≥ (area(H ∩ λB2))n+

(
λ 2 arccos

1

λ
−

√
λ2 − 1

)
P + λ 2π. (4.1)
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C

ci

cj

u

m

([ci,m] + [o, λu]) ∩ (ci + λB2)

Boundary cells: the one with center ci is dark-shaded, and intC is light-shaded.

We note that Theorem 7 is a generalization of a result of Groemer in [18].

Proof. An elementary computation yields

area(H ∩ λB2) = λ 2

(
π − 6 arccos

1

λ

)
+ 6

√
λ2 − 1. (4.2)

Let C denote the union of the bounded faces of the graph G(Pn). Consider the Voronoi de-
composition of E2 by Pn. Observe that as λ < 2/

√
3, no point of the plane belongs to more than

two disks of the family {ci + λB2 : i = 1, 2, . . . , n}. Thus, if E = [ci, cj ] is an edge of G(Pn), the
midpoint m of E is a common point of the Voronoi cells of ci +B2 and cj +B2; more specifically,
m is the closest point to both ci and cj on the common edge of these cells. Hence, following Roger’s
method [25], we may partition C into triangles of the form T = conv{ci, c′i, c′′i }, where c′i is the
closest point to ci on an edge E of the Voronoi cell of ci +B2, and c′′i is an endpoint of E. We call
these triangles interior cells and define the center of any such cell T = conv{ci, c′i, c′′i } as ci and its
angle as the angle ∠(c′i, ci, c′′i ). Furthermore, we define the edge contribution of an interior cell to
be zero.

Now, let [ci, cj ] be an edge in the boundary of G(Pn), with outer unit normal vector u and
midpoint m. Then the sets ([ct,m] + [o, λu]) ∩ (ct + λB2), where t ∈ {i, j}, are called boundary
cells, with center ct (see the figure). We define their angles to be π/2 and their edge contributions
to be ‖ci − cj‖/2. Note that, even though no two interior cells overlap, this is not necessarily true
for boundary cells: such a cell may have some overlap with interior as well as boundary cells.

The proof of Theorem 7 is based on Lemma 2.

Lemma 2. Let T be an interior or boundary cell with center c, edge contribution x, and
angle α. Then

area(T ∩ (c+ λB2)) ≥
λ 2

(
π
6 − arccos 1

λ

)
+

√
λ2 − 1

π
3

α+

(
λ 2 arccos

1

λ
−

√
λ2 − 1

)
x. (4.3)

First, we show how Lemma 2 yields Theorem 7. Let the (interior and boundary) cells of Pn

be Tj , j = 1, 2, . . . , k, with center cj , angle αj , and edge contribution xj. Let T ′
j = Tj ∩ (cj + λB2).

Since the sum of the (signed) turning angles at the vertices of a simple polygon is equal to 2π,
we have

A =

k∑

j=1

area(T ′
j) + sλ 2π,
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where s is the number of components of the boundary of G(Pn). On the other hand,

k∑

j=1

αj = 2πn and
k∑

j=1

xj = P.

Thus, summing up both sides in Lemma 2 and using the estimate s ≥ 1 imply Theorem 7. �
Proof of Lemma 2. For simplicity, let T ′ = T ∩ (c+ λB2).
First, we consider the case where T is a boundary triangle. Then α = π/2, and an elementary

computation yields

area(T ′) =
λ 2

2

(π
2
− arccos

x

λ

)
+

x

2

√
λ2 − x2. (4.4)

Combining (4.3) and (4.4), it suffices to show that the function

f(x) = −λ 2

2
arccos

x

λ
+

x

2

√
λ2 − x2 +

(
3

2
− x

)(
λ 2 arccos

1

λ
−

√
λ2 − 1

)

is not negative for any 1 ≤ x ≤ λ ≤ 2/
√
3. Note that

f ′′(x) =
−x

√
λ2 − x2

,

and hence f is a strictly concave function of x, from which it follows that it is minimal either at
x = 1 or at x = λ.

Now, we have f(1) = 0 and f(λ) = (3/2− λ)
(
λ 2 arccos(1/λ)−

√
λ2− 1

)
. Since λ≤ 2/

√
3< 3/2,

the first factor of f(λ) is positive. On the other hand, comparing the second factor to (4.2), we can
see that it is equal to (area(λB2 \H))/6 > 0.

Second, let T be an interior cell triangle, which yields x = 0. Observe that if T = conv{c,x,y}
is not a right triangle, then both x and y are vertices of the Voronoi cell of c + B2, from which
it follows that ‖x − c‖, ‖y − c‖ ≥ 2/

√
3. In this case T ′ is a circle sector, and area(T ′) = λ 2α/2,

which yields the assertion. Thus, we may assume that T = conv{x,y} has a right angle at x, and
that ‖x − c‖ < 2/

√
3. Moving y towards x increases the ratio (area(T ′))/α, and hence we may

assume that ‖y − c‖ = 2/
√
3. Under these conditions, we have

area(T ′) =
λ 2

2

(
α− arccos

2 cosα√
3λ

)
+

1√
3
cosα

√

λ2 − 4

3
cos2 α,

and, to prove (4.3), it suffices to show that the function

g(α) = −λ 2

2
arccos

2 cosα√
3λ

+
1√
3
cosα

√

λ2 − 4

3
cos2 α+

λ 2

2
arccos

1

λ
α− α

2

√
r2 − 1

is not negative if 1 ≤ λ ≤ 2/
√
3 and arccos(

√
3 λ/2) ≤ α ≤ π/6. To do this, we may apply a

computation similar to the one in the case of a boundary triangle. �

5. PROOF OF THEOREM 4

First of all, recall that λ = 1 + λ, and let

δ :=
π − 6ψ0

π − 6ψ0 + (3π − 18ψ0)λ− 18ψ0λ2 − (π + 6ψ0)λ3
< σ3(λ).

Consider a unit ball packing Pn in E
3, and let V be the Voronoi cell of some ball of Pn, say B3.

Let F be a face of V , and denote the intersection of the conic hull of F with V , B3, and bdB3 = S
2
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by VF , BF , and SF , respectively. Furthermore, we set V ′
F = VF ∩ (λB3). To prove Theorem 4, it is

sufficient to show that
vol3(BF )

vol3(V ′
F )

≤ δ. (5.1)

Recall the well-known fact (cf. [25]) that the distance of any (d− i)-dimensional face of V from o
is at least

√
2i/(i + 1). Thus, λ < 2/

√
3 yields that the intersection of aff F with λB3 is either

contained in F or disjoint from it. In the second case vol3(BF )/vol3(V
′
F ) = 1/λ 3 < δ, and thus we

may assume that aff F ∩ (λB3) ⊂ F .
Let the distance between F and o be x, where 1 ≤ x ≤ λ < 2/

√
3. An elementary computation

shows that vol3((λBF ) \ VF ) = π(2λ 3/3− λ 2x+ x3/3), from which it follows that

vol3(V
′
F )

vol3(BF )
= λ 3 −

π
(
2
3λ

3 − λ 2x+ 1
3x

3
)

vol3(BF )
. (5.2)

First, we intend to minimize vol3(BF ), while keeping the value of x fixed. Recall the following
lemma from [4].

Lemma 3. Let Fi be an i-dimensional face of the Dirichlet–Voronoi cell of p+Bd, in a unit
ball packing in E

d. Let the distance of aff Fi from p be R <
√
2. If Fi−1 is an (i− 1)-dimensional

face of Fi, then the distance of aff Fi−1 from p is at least 2/
√
4−R2.

This immediately yields that the distance of o from any sideline of F is at least 2/
√
4− x2,

and from any vertex of F at least
√

(4− x2)/(3− x2). By setting H = aff F and denoting the
projection of o onto H by c, we may rephrase this observation in the following way: F is a polygon
in H containing the circle C1 with center c and radius

√
4/(4 − x2)− x2 = (2− x2)/

√
4− x2 such

that each vertex of F is outside the circle C2 with center c and radius (2 − x2)/
√
3− x2. Observe

that we have a similar condition for the projection of F onto the sphere S
2. Thus, to minimize

vol3(BF ), or equivalently Svol2(SF ) = 3vol3(BF ), we may apply the following lemma from [22].
Lemma 4 (Hajós). Let 0 < r < R < π/2, and let Cr and CR be two concentric circles on

the sphere S
2, of radii r and R, respectively. Let P denote the family of convex spherical polygons

containing Cr with no vertex contained in the interior of CR. If P ∈ P has minimal spherical area
over all the elements of P, then each vertex of P lies on CR and each but at most one edge of P
touches Cr.

Such a polygon is called a Hajós polygon of the two circles. By Lemma 4, we may assume that
F is a Hajós polygon and compute Svol2(SF ) = 3vol3(BF ) under this condition.

Let [p,q] be an edge of F that touches C1, and let m be the midpoint of [p,q]. Let the
angles of the triangle T = conv{p,m, c} at p, m, and c be β, γ = π/2, and α, respectively.
Let T ′ be the central projection of T onto S

2 from o, and denote the angles of T ′ by α′, β′,
and γ′ according to the notation in T . We compute Svol2(T

′) = α′ + β′ + γ′ − π. First, we
observe that, by the properties of the projection, we have α′ = α and γ′ = γ = π/2. Since
‖p − c‖ = (2 − x2)/

√
3− x2 and ‖m − c‖ = (2 − x2)/

√
4− x2, an elementary computation yields

‖p−m‖ = (2− x2)/
√

(3− x2)(4− x2) and

α′ = arctan
1√

3− x2
.

In the following, we use Lemma 5.
Lemma 5. Let H denote the tangent plane of the unit sphere S

2 at some point p ∈ S
2. Let

T = conv{p1,p2,p3} ⊂ H with p1 = p. For i = 1, 2, 3, let φi be the angle of T at pi and p′
i be

the central projection of pi on S
2 from o. Furthermore, let T ′ be the central projection of T, with
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p′
i and φ′

i being the projections of pi and φi, respectively, and d′i being the spherical length of the
side of T ′ opposite to p′

i. Then

tanφ2 = tanφ′
2 cos d

′
3 and tanφ3 = tanφ′

3 cos d
′
2.

Proof. Let q be the orthogonal projection of p1 onto the line containing p2 and p3, and let q′

be the central projection of q onto S
2. Observe that the spherical angle ∠p′

1q
′p′

2 is a right angle.
Thus, from the spherical law of cosines for angles, it follows that

1 = tan(∠q′p′
1p

′
2) tan φ

′
2 cos d

′
3.

Now, we have ∠q′p′
1p

′
2 = ∠qp1p2 = π/2 − φ2, from which the first equality readily follows. The

second one can be proved in a similar way. �
From Lemma 5, we readily obtain tan β = tan β′ cos arctan(‖p− c‖/x), which yields

β′ = arctan

√
4− x2

x
.

Thus,

Svol2(T
′) = arctan

1√
3− x2

+ arctan

√
4− x2

x
− π

2
. (5.3)

Now, if 1 ≤ x ≤ 2/
√
3, then π/6 < φ0 ≤ α′ ≤ 0.659058 < π/4. Thus, F has either five or six

edges, depending on the values of x. More specifically, if 1 ≤ x <
√

(10 − 2
√
5)/5 = 1.051462 . . . ,

then F has six edges; otherwise, it has five. Using this, one can compute vol3(BF ) = Svol2(SF )/3
similarly to Svol2(T

′), which yields that if 1 ≤ x ≤
√

(10− 2
√
5)/5, then

vol3(BF ) =
10

3
arctan

√
4− x2

x
− 2

3
arccot

x
√
3− x2 tan

(
5 arctan 1√

3−x2

)

√
4− x2

− 2

3
π.

Denote the expression on the right by f(x). We may observe that if
√

(10− 2
√
5)/5 < x ≤ 2/

√
3,

then the area of the sixth triangle appears with a negative sign in f(x), which, combined with a
geometric observation, shows that in this case vol3(BF ) > f(x).

Let

F (x, λ) = f(x)− Cπ

(
2

3
λ 3 − λ 2x+

1

3
x3

)
, where C =

f(1)

π
(
2
3λ

3 − λ 2 + 1
3

) .

Note that F (1, λ) = 0 for every value of λ. Thus, by (5.1), (5.2), and the inequality vol3(BF ) ≥ f(x),
it follows that to prove Theorem 4, it is sufficient to show that F (x, λ) ≥ 0 for every 1 ≤ λ < 2/

√
3

and 1 ≤ x ≤ λ. On the other hand, it is an elementary exercise to check that ∂2F/∂x2 < 0 on
this region, which implies that F (x, λ) is minimal at F (1, λ) or F (λ, λ). We may observe that
F (λ, λ) = f(λ) is greater than four times the value of the expression in (5.3) at x = λ, which is
positive. Thus, F (x, λ) is not negative on the examined region, from which Theorem 4 follows.

6. PROOF OF THEOREM 5

The proof is based on a somewhat modified version of the proof of Rogers’s simplex packing
bound, as described in [25].

Recall that λ = 1 + λ, and let P be a unit ball packing in E
d and V be the Voronoi cell of some

ball in P, say Bd. Without loss of generality, we may assume that P is saturated, i.e., there is no
room to add additional balls to it; this implies, in particular, that V is bounded.
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We partition V into simplices in the following way. Let c0 = o. Consider any sequence Fd−1 ⊃
Fd−2 ⊃ . . . ⊃ F1 ⊃ F0 of faces of V such that dimFd−i = d− i for every 1 ≤ i ≤ d. Let ci be the
point of Fd−i closest to the origin o. By induction on dimension, one can see that the simplices of the
form S = conv{c0, c1, . . . , cd}, some of which might be degenerate, indeed tile V . These simplices
are called Rogers simplices. In the following we consider such a simplex S = conv{c0, c1, . . . , cd},
with the indices chosen as in the previous sentence, and recall one of their well-known properties
(cf. [25, p. 80, Lemma 2]).

Lemma 6 (Rogers). For any Rogers simplex S = conv{c0, c1, . . . , cd} and for any 1 ≤ i ≤
j ≤ d, we have

〈ci, cj〉 ≥
2i

i+ 1
.

Now, consider the d-dimensional simplex in E
d+1 with vertices (0, . . . , 0,

√
2, 0, . . . , 0), where

the ith coordinate is
√
2 and i = 1, 2, . . . , d + 1. This simplex is regular and has edge length 2.

A barycentric subdivision divides this simplex into (d+ 1)! congruent d-dimensional orthoschemes,
one of which has vertices qi = (

√
2/(i + 1), . . . ,

√
2/(i + 1), 0, . . . , 0), where qi has i + 1 nonzero

coordinates and i = 0, 1, . . . , d. Set Q = conv{q0,q1, . . . ,qd}. Then, for every 1 ≤ i ≤ j ≤ d,
we have

〈qi − q0,qj − q0〉 = 〈qi,qj〉 − 〈qi + qj ,q0〉+ 〈q0,q0〉

= (i+ 1)
2

(i + 1)(j + 1)
−

√
2

( √
2

i+ 1
+

√
2

j + 1

)
+ 2 =

2i

i+ 1
≤ 〈ci, cj〉.

Let A : Ed → E
d+1 be the affine map satisfying A(ci) = qi for i = 0, 1, . . . , d. Consider any

p ∈ S with ‖p − c0‖ = ‖p‖ ≤ λ. Then p is a convex combination of the vertices of S; that is,
p =

∑d
i=0 αici, where

∑d
i=0 αi = 1 and αi ≥ 0 for every value of i. By Lemma 6, we have

〈A(p)− q0, A(p) − q0〉 =
〈(

d∑

i=0

αiqi

)

− q0,

(
d∑

j=0

αjqj

)

− q0

〉

=
d∑

i=1

d∑

j=1

αiαj〈qi − q0,qj − q0〉 ≤
d∑

i=1

d∑

j=1

αiαj〈ci, cj〉 = 〈p,p〉.

Hence, A(S ∩ λBd) ⊆ Q ∩ (q0 + λBd+1).
On the other hand, affine maps preserve the volume ratio, and thus

vold(S ∩ λBd)

vold(S)
≤ vold(Q ∩ (q0 + λBd+1))

vold(Q)
,

which readily yields the assertion.

7. PROOF OF THEOREM 6

Consider a unit ball packing P in E
3, and let V be the Voronoi cell of some ball of P, say B3.

Let F be a face of V , and denote the intersection of the conic hull of F with V , B3, and bdB3 = S
2

by VF , BF , and SF , respectively. Furthermore, we set V ′
F := VF ∩ (λB3) with λ = 1 + λ. In the

proof, we examine the quantity vol3(V
′
F )/vol3(VF ). Without loss of generality, we may assume that

F contains the intersection of λB3 and aff F .
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Let the distance between F and o be x, where 1 ≤ x ≤ λ < 2/
√
3. An elementary computation

yields vol3((λBF ) \ VF ) = π(2λ 3/3− λ 2x+ x3/3), from which it follows that

vol3(V
′
F ) = λ 3vol3(BF )− π

(
2

3
λ 3 − λ 2x+

1

3
x3

)
. (7.1)

We introduce a spherical coordinate system on S
2, with the polar angle θ ∈ [0, π] measured

from the north pole, which we define as the point of S
2 closest to F . Now, we define functions

f(θ), g(θ), and h(θ) as the volumes of the sets of points of V ′
F , VF , and BF , respectively, with

polar angle at most θ. We observe that the proof of Sublemma 5 in [2] yields that h(θ)/g(θ) is a
decreasing function of θ; or even more, that for any fixed value of θ̄ and variable θ ≥ θ̄, the function
(h(θ)− h(θ̄))/(g(θ) − g(θ̄)) decreases.

Let v0 = f(θ0) = g(θ0), where θ0 is the largest θ with f(θ) = g(θ), and observe that for any
θ ≥ θ0 we have f(θ) − f(θ0) = λ 3(h(θ) − h(θ0)). Since f , g, and h are increasing functions and
(h(θ) − h(θ0))/(g(θ) − g(θ0)) decreases, we have h′(θ)/g′(θ) ≤ (h(θ) − h(θ0))/(g(θ) − g(θ0)). As
f ′(θ) = λ 3h′(θ) for every θ > θ0, this yields

f ′(θ)

g′(θ)
≤ f(θ)− f(θ0)

g(θ)− g(θ0)
=

f(θ)− v0
g(θ)− v0

,

from which it follows that
(
f

g

)′
=

(f ′(g − v0)− g′(f − v0)) + (f ′ − g′)v0
g2

≤ (f ′ − g′)v0
g2

.

On the other hand, it is easy to see that f ′(θ) ≤ g′(θ) for every θ ≥ θ0 and therefore (f/g)′ ≤ 0.
Let c be the closest point of aff F to o. It is a well-known fact [2] that the vertices of F

are not in the interior of the circle G with center c and radius
√

3/2− x2, and that it contains
the circle G0 with center c and radius (2 − x2)/

√
4− x2. Furthermore, at most five sides of F

intersect the relative interior of G (cf. [2] or [23]). Let us define VF∩G and V ′
F∩G analogously to

VF and V ′
F , respectively. Since f(θ)/g(θ) decreases and for θ sufficiently close to π/2 it is equal

to vol3(V
′
F )/vol3(VF ), we have vol3(V

′
F )/vol3(VF ) ≤ vol3(V

′
F∩G)/vol3(VF∩G). Let M0 be a regular

pentagon, with center c, such that the spherical area of the projection of M0 ∩G onto S
2 is equal

to that of F ∩G. Then, using the idea from [2, Proposition 1], we obtain

vol3(V
′
F∩G)

vol3(VF∩G)
≤

vol3(V
′
M0∩G)

vol3(VM0∩G)
.

Now, assume that the distance of the sides of M0 from G0 is y. Then (2 − x2)/
√
4− x2 ≤ y ≤√

3/2− x2. Let M(y) denote the regular pentagon with c as its center and its sidelines being at
distance y from c. We show that the relative density of M(y) is a decreasing function of y. Let y1
be arbitrary. Let x1 be the midpoint of a side of M(y1), v1 a vertex of this side, and y1 and z1
the intersections of [x1,v1] and [c,v1], respectively, with relbdG, the relative boundary of G. Let
X1 = conv{x1,y1, c} and U1 be the convex hull of c and the shorter circle arc in relbdG connecting
y1 and z1. Let VX1 and V ′

X1
be the sets of points of the conic hull of X1 in VF and in V ′

F , respectively.
We define VU1 and V ′

U1
similarly. Now we set y2 > y1 and introduce the same points and sets with

index 2 in the same way for M(y2).
Consider the sets {c,x1,y1} and {c,x2,y2}. Observe that the inner product of any two vectors

from the first set is at least as large as that of the corresponding two vectors from the second set.
Thus, Rogers’s method, as described in the previous section, yields

vol3(V
′
X1

)

vol3(VX1)
≥

vol3(V
′
X2

)

vol3(VX2)
≥

vol3(V
′
U1
)

vol3(VU1)
=

vol3(V
′
U2
)

vol3(VU2)
.
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Observe that vol3(VU1)/vol3(X1) ≤ vol3(VU2)/vol3(X2). Then an algebraic transformation like that
in the proof of [2, Proposition 2] yields that the relative density of M(y1) is greater than or equal
to that of M(y2). Thus, we may assume that M is a regular pentagon circumscribed about G0.

It remains to show that if 1 ≤ λ ≤ 2/
√
3, then the relative density for this pentagon is maximal

on x ∈ [1, λ] if x = 1. To do this, we apply an argument similar to the one in Section 5. Consider
the function f(x, λ) = vol3(V

′
M )− Cvol3(VM ), where C = C(λ) is the value of the relative density

of M , at x = 1. We may compute f(x, λ) using elementary methods and the tools described in
Section 5. An elementary calculation shows that if λ ≤ 1.14 or x ≤ 1.12, then ∂

∂x f(x, λ) < 0,
whereas if 1.14 ≤ λ ≤ 2/

√
3 and 1.12 ≤ x ≤ λ, then f(x, λ) < 0. Thus, for every 1 ≤ λ ≤ 2/

√
3,

the relative density of M is maximal if x = 1, which yields

δ3(λ) ≤
(20

√
6φ0 − 4

√
6π − 10π)λ 3 + 18πλ 2 − 6π

3π − 15φ0 + 5
√
2

.

8. CONCLUDING REMARKS

We note that Theorem 7 immediately yields the following.
Corollary 2. Let Pn = {ci + B2 : i = 1, 2, . . . , n} be a packing of unit disks in E

2. Let
1 < λ = 1 + λ < 2/

√
3. Set A = area

(⋃n
i=1(ci + λB2)

)
and P = perim

(
conv

(⋃n
i=1(ci + λB2)

))
.

Then

A ≥
(
λ 2

(
π − 6 arccos

1

λ

)
+ 6

√
λ2 − 1

)
n+

(
λ 2 arccos

1

λ
−

√
λ2 − 1

)
P + λ 2π.

Furthermore, the proof of Theorem 7 can be modified in a straightforward way to prove Remark 1
below. In this remark, we use the notations of Definitions 6 and 7 and set Λ̄ := 2.926949 . . . for the
smallest root of the equation

(√
3− λ 2π

2

)
(λ− 1)− λ

√
λ2 − 1 + λ 3 arccos

1

λ
= 0

that is greater than 1.
Remark 1. Let Pn = {ci + B2 : i = 1, 2, . . . , n} be a packing of n unit disks in E

2, and let
2/
√
3 ≤ λ ≤ Λ̄. Let A = area

(⋃n
i=1(ci + λB2)

)
and P = perim(G(Pn)). Then

A ≥
√
12n+

1

2

(
λ 2

(
π

2
− arccos

1

λ

)
+

√
λ2 − 1−

√
3

)
P + λ 2π. (8.1)

We note that both in Theorem 7 and Remark 1, the equality occurs, for example, if Pn is a
subfamily of the densest lattice packing of the plane E

2 with unit disks. Nevertheless, this is not
true if λ is sufficiently large.

Remark 2. Let n ≥ 371. Then there exists λ0 = λ0(n) such that for any λ > λ0 the following
holds: if, for some packing Pn := {ci +B2 : i = 1, 2, . . . , n}, area

(⋃n
i=1(ci + (1 + λ)B2)

)
is minimal

over all packings of n unit disks in E
2, then Pn is not a subfamily of the densest lattice packing of

unit disks in E
2.

Proof. For any λ > 0 and unit disk packing Pn := {ci +B2 : i = 1, 2, . . . , n}, we set

f(λ,Pn) = area

(
n⋃

i=1

(
ci + (1 + λ)B2

)
)

and λ = 1 + λ.
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Recall the following d-dimensional result of Capoyleas and Pach [11] and Gorbovickis [17] stating
that f(λ,Pn), as a function of λ, is analytic in some punctured neighborhood of infinity, has a pole
of order d at infinity, and, in particular,

f(λ,Pn) = ωdλ
d +Md

(
conv{c1, c2, . . . , cn}

)
λd−1 + g(λ,Pn),

where

Md(K) =

∫

Sd−1

max{〈x, u〉 : x ∈ K} dσ(u)

is the d-dimensional mean width of the convex body K (up to multiplication by a dimensional
constant) and limλ→∞ g(λ,Pn)/λd−1 = 0.

Note that if K is a 2-dimensional convex body, then M2(K) = perim(K)/π, where perim(K) is
the perimeter of K. Thus, in the planar case, we have

f(λ,Pn) = πλ 2 + Cperim(conv{c1, c2, . . . , cn})λ+ g(λ,Pn),

where limλ→∞ g(λ,Pn)/λ = 0 and C > 0.
Let n ≥ 371 be fixed. Then, by a result of Schürmann [26], only non-lattice packings

are the extremal packings under the perimeter function. Let P and Plat be the minimum of
perim(conv{c1, c2, . . . , cn}) over the family of n-element packings and lattice packings, respectively,
and let x = (Plat − P )/C > 0.

By compactness, there is some λ0 = λ0(n) such that for any λ > λ0 and for any n-element
packing Pn, we have g(λ,Pn) ≤ xλ/3. Then, if Pn minimizes perim(conv{c1, c2, . . . , cn}) over the
family of all n-element packings and Pn

lat is any lattice packing, we have

f(λ,Pn
lat) ≥ πλ 2 + CPlatλ− x

3
Cλ > πλ 2 + CPλ+

x

3
Cλ ≥ f(λ,Pn). �

Problem 3. Does Remark 2 hold with some universal λ0 independent of n?
Remark 3. Let Pn be a packing on n unit disks in E

2, 0 < λ < 2/
√
3 − 1, and assume that

the boundary of the λ-intersection graph G(Pn) of Pn is connected (cf. Definition 6) and contains
no edge of Pn more than once. Then we have the equality in (4.1) of Theorem 7 if and only if Pn

is a subfamily of the densest lattice packing of unit disks.
Definition 8. Let D ⊂ E

3 be a regular dodecahedron circumscribed about the unit ball B3.
Then, for λ with 0 < λ <

√
3 tan(π/5) = 1.258408 . . . , we set

τ3(λ) :=
vol3(B

3)

vol3(D ∩ (1 + λ)B3)
and τ3(λ) :=

vol3(D ∩ (1 + λ)B3)

vol3(D)
,

where
√
3 tan(π/5) is the circumradius of D.

Based on the proof of the dodecahedral conjecture of Hales and McLaughlin [20], it seems
reasonable to ask the following.

Problem 4. Is it true that for every λ such that 0 < λ <
√
3 tan(π/5) = 1.258408 . . . , we

have δ3(λ) ≤ τ3(λ) and δ3(λ) ≤ τ3(λ)?
We say that a packing P of unit balls in E

d is universally optimal if δd(Pλ) = δd(λ) holds for all
λ ≥ 0. (We note that this notion is a Euclidean analogue of the notion of perfectly distributed points
on a sphere introduced by L. Fejes Tóth in [15], which is different from the notion of universally
optimal distribution of points on spheres introduced by Cohn and Kumar in [12].) Recall that μd > 0
is called the simultaneous packing and covering constant of the closed unit ball Bd = {x ∈ E

d :
‖x‖ ≤ 1} in E

d if the following holds (for more details see, for example, [27]): μd > 0 is the smallest
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positive real number μ such that there is a unit ball packing P := {ci + Bd : i = 1, 2, . . . with
‖cj − ck‖ ≥ 2 for all 1 ≤ j < k} in E

d satisfying E
d =

⋃+∞
i=1 (ci + μBd). Now, if P is a universally

optimal packing of unit balls, then clearly δd(Pμd−1) = δd(μd − 1) = 1 and δd(P0) = δd(0) = δd.
Next, recall that according to the celebrated result of Hales [19], δ3 = π/

√
18 = 0.740480 . . . and

it is attained by the proper face-centered cubic lattice packing of unit balls in E
3. Furthermore,

according to a theorem of Böröczky [10], μ3 =
√

5/3 = 1.290994 . . . and it is attained by the proper
body-centered cubic lattice packing of unit balls in E

3. As a result it is not hard to see that there is
no universally optimal packing of unit balls in E

3. One may wonder whether there are universally
optimal packings of unit balls in E

d for d ≥ 4.
To state our observation about the planar case, we introduce the notion of uniformly recurrent

packings, defined in [21]. First, we generalize the notion of Hausdorff distance d( · , ·) between two
convex bodies. For two packings P1 and P2 of convex bodies, we say that d(P1,P2) ≤ ε if for any
K1 ∈ P1 contained in the unit ball of radius 1/ε with the origin as its center, there is a unique
K2 ∈ P2 such that d(K1,K2) ≤ ε, and vice versa. We say that P1 is a limit of P2, denoted as
P1 � P2, if a sequence of translates of P2 converges to P1 in the topology defined by the Hausdorff
distance. A packing is uniformly recurrent if it is maximal in the weak partial order � of the family
of packings. Kuperberg [21] proved that the only uniformly recurrent densest packing of Euclidean
unit disks is the densest hexagonal lattice packing; his proof was based on the observation that the
only minimal area Voronoi cell of a unit disk is the regular hexagon circumscribed about the disk.
Since this observation holds for any planar packing of soft disks, using a slight modification of the
proof of [21, Theorem 5], we have the following.

Remark 4. Let P be a packing of unit disks in the Euclidean plane. Then the following
statements are equivalent:

(1) P is the densest hexagonal lattice packing;
(2) P is uniformly recurrent and universally optimal;
(3) P is uniformly recurrent, and δ2(Pλ) = δ2(λ) for some 0 ≤ λ < 2/

√
3− 1.
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