On the Holomorphic Torus-Bott Tower of Aspherical Manifolds

Yoshinobu Kamishima^a and Mayumi Nakayama^a

Received February 2013

Abstract—We introduce a notion of *holomorphic torus-Bott tower* which is an iterated holomorphic Seifert fiber space with fiber a complex torus. This is thought of as a holomorphic version of a *real Bott tower*. The top space of the holomorphic torus-Bott tower is called a holomorphic torus-Bott manifold. We discuss the structure of holomorphic torus-Bott manifolds and particularly the *holomorphic rigidity* of holomorphic torus-Bott manifolds.

DOI: 10.1134/S0081543814060157

1. INTRODUCTION

A holomorphic torus-Bott tower is a sequence of holomorphic Seifert fiber bundles by a complex torus fiber $T^1_{\mathbb{C}}$:

$$M = M_n \to M_{n-1} \to \dots \to M_1 \to \{ \text{pt} \}.$$

$$(1.1)$$

The top space M of the tower (1.1) is said to be a holomorphic torus-Bott manifold of dimension 2n(see Definition 2.1 below for more details). Inductively from (1.1), M turns out to be a closed aspherical manifold. Then it is shown that the fundamental group Γ of M is virtually nilpotent. Let $E(N) = N \rtimes K$ be the semidirect product of a simply connected nilpotent Lie group N with a compact group K in which K is a maximal compact group of the automorphism group Aut(N). When we forget a complex structure on M, it is proved that M is diffeomorphic to an infranil-manifold $N/\rho(\Gamma)$ where $\rho: \Gamma \to E(N)$ is a discrete faithful representation. In particular, Seifert rigidity implies that two holomorphic torus-Bott manifolds with isomorphic fundamental groups are diffeomorphic.

In this paper we are interested in a *holomorphic version* of structure and rigidity for holomorphic torus-Bott manifolds.

By a holomorphic nilmanifold we shall mean a complex nilmanifold with left invariant complex structure. Refer to [17] for the recent results of deformation of left invariant nilpotent Lie algebras. On the other hand, denote by $T_{\mathbb{C}}^k$ a complex k-dimensional torus. Recall the structure theorem from S. Murakami's classical result [15].

Theorem. Let $T^1_{\mathbb{C}} \to Y \to T^k_{\mathbb{C}}$ be a principal holomorphic torus bundle. Then Y is biholomorphic to a holomorphic nilmanifold N/Δ where N is a two-step nilpotent Lie group with left invariant complex structure containing a discrete uniform subgroup Δ .

To study the holomorphic rigidity of our holomorphic torus-Bott manifolds, we need to generalize this result to the case of holomorphic torus bundles (orbibundles) over holomorphic infranilmanifolds (infranil-orbifolds).

We refer to [14, 3] for a holomorphic Seifert fibration. We shall prove the following Theorem 6.1: Let M be a 2n-dimensional holomorphic torus-Bott manifold which is a holomorphic fiber bundle over \widehat{M} with fiber $T^1_{\mathbb{C}}$. Then M is biholomorphic to a holomorphic infranil-manifold N/Γ in which

^a Department of Mathematics and Information Sciences, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo 192-0397, Japan.

E-mail addresses: kami@tmu.ac.jp (Y. Kamishima), nakayama-mayumi@ed.tmu.ac.jp (M. Nakayama).

 N/Γ has a holomorphic Seifert fibration $T^1_{\mathbb{C}} \to N/\Gamma \to \widehat{N}/\widehat{\Gamma}$ such that \widehat{M} is biholomorphic to a holomorphic infranil-manifold $\widehat{N}/\widehat{\Gamma}$.

The proof of this theorem is organized as follows: As the fundamental group of M is virtually nilpotent, the smooth classification implies that M is diffeomorphic to an infranil-manifold N/Γ . Even if N/Γ supports a complex structure, it does not follow that M is *biholomorphic* to N/Γ . However, N has a central extension $1 \to \mathbb{C} \to N \to \hat{N} \to 1$ in this case. Assume inductively that \hat{M} is *biholomorphic* to a holomorphic infranil-manifold $\hat{N}/\hat{\Gamma}$. Then we can find a nilpotent Lie group N' isomorphic to N. The group N' admits an $\mathbb{E}(N')$ -invariant complex structure J for which the central extension $1 \to \mathbb{C} \to N' \to \hat{N} \to 1$ becomes a principal holomorphic bundle. Moreover, N' is biholomorphic to the complex space \mathbb{C}^n ; indeed, this fact is due to Oka's principle that the universal covering (N', J) is biholomorphic as a principal holomorphic bundle to the product $(\mathbb{C} \times \hat{N}, J_0 \times \hat{J})$ inductively. Speculating on the cohomology exact sequence induced from a short exact sequence $1 \to \mathbb{Z}^2 \xrightarrow{i} \mathbb{C} \xrightarrow{j} T_{\mathbb{C}}^1 \to 1$,

$$\dots \to H^1_{\phi}(\widehat{\Gamma}; \operatorname{hol}(\widehat{N}, \mathbb{C})) \xrightarrow{j} H^1_{\phi}(\widehat{\Gamma}; \operatorname{hol}(\widehat{N}, T^1_{\mathbb{C}})) \xrightarrow{\delta} H^2_{\phi}(\widehat{\Gamma}; \mathbb{Z}^2) \to \dots,$$

we can show that M is biholomorphic to a holomorphic infranil-manifold N'/Γ' where $\Gamma' \leq E_J(N')$ which is the semidirect product $N' \rtimes K'$ invariant under the complex structure J. There we construct a deformation N'/Γ' of N/Γ (see Theorem 5.1 below). Of course, N'/Γ' is nothing but N/Γ topologically.

The paper consists of the following sections. In Section 2 we introduce a notion of holomorphic torus-Bott tower and prove some topological results. We construct complex structures on holomorphic infranil-manifolds in Section 3. We study holomorphic infranil actions and holomorphic Seifert actions in Section 4. In Section 5, we prove the following Theorem 5.1, which is a key tool to prove Theorem 6.1. Suppose that there is an equivariant holomorphic Seifert action $(\mathbb{Z}^2, \mathbb{C}) \to (\Gamma, N) \to (\widehat{\Gamma}, \widehat{N})$ such that $\widehat{N}/\widehat{\Gamma}$ is an infranil-manifold.

Let (N, Γ) be a holomorphic Seifert action. Then there exists a nilpotent Lie group N' and a discrete subgroup $\Gamma' \leq E_J(N')$ for which the quotient N/Γ is biholomorphic to the holomorphic infranil-manifold N'/Γ' .

In Section 6 we prove the above Theorem 6.1. As an application, each holomorphic fiber bundle $T^1_{\mathbb{C}} \to M_i \to M_{i-1}$ of (1.1) gives rise to a group extension of the fundamental groups: $1 \to \mathbb{Z}^2 \to \pi_i \to \pi_{i-1} \to 1$. This group extension represents a cocycle in $H^2_{\phi}(\pi_{i-1};\mathbb{Z}^2)$. A holomorphic torus-Bott manifold is said to be of *finite type* if each cocycle has *finite order*; otherwise it is said to be of *infinite type* (cf. Definition 7.1). In Section 7, we apply Theorem 6.1 to show the following Theorem 7.2:

A holomorphic torus-Bott manifold M of finite type is biholomorphic to a complex euclidean space form \mathbb{C}^n/Γ with holonomy group $L(\Gamma)$ lying in $\prod_{i=1}^n H_i$ where H_i is either $\{1\}, \mathbb{Z}_2, \mathbb{Z}_4$ or \mathbb{Z}_6 .

An example of finite type is a Kähler Bott tower, i.e. each M_i is a Kähler manifold such that $T^1_{\mathbb{C}} \to M_i \to M_{i-1}$ is a Kähler submersion (see Subsection 7.2). It is shown in Theorem 7.5 that every Kähler Bott manifold M is biholomorphic to a complex euclidean space form \mathbb{C}^n/Γ of Theorem 7.2. In Section 8 we study holomorphic torus-Bott manifolds of infinite type. As the fundamental group of such a manifold is virtually nilpotent (but not virtually abelian), it is a non-Kähler manifolds of infinite type. We shall consider what non-Kähler geometric structures exist on holomorphic torus-Bott manifolds of infinite type. We shall consider what non-Kähler geometric structures exist on holomorphic torus-Bott manifolds of infinite type.

(i) a (2n+2)-dimensional locally homogeneous locally conformal Kähler manifold $M = \mathbb{R} \times \mathcal{N}/\Gamma$ where \mathcal{N} is the Heisenberg nilpotent Lie group and $\Gamma \leq \mathbb{R} \times (\mathcal{N} \rtimes \mathrm{U}(n))$ is a discrete uniform subgroup; (ii) a complex (2n + 1)-dimensional locally homogeneous *complex contact* manifold \mathcal{L}/Γ where $\mathcal{L} = \mathcal{L}_{2n+1}$ is a complex (2n + 1)-dimensional complex nilpotent Lie group and Γ is a discrete uniform subgroup of $\mathcal{L} \rtimes (\operatorname{Sp}(n) \cdot S^1)$.

In particular, \mathcal{L}_3 is the Iwasawa nilpotent Lie group.

2. HOLOMORPHIC TORUS-BOTT TOWER

Suppose that there is a tower of fiber bundles (1.1),

$$M = M_n \to M_{n-1} \to \ldots \to M_1 \to \{\mathrm{pt}\}$$

Each (M_m, J_m) is a complex manifold such that

$$T^1_{\mathbb{C}} \to M_m \to M_{m-1}$$
 (2.1)

is a holomorphic fiber bundle (m = 1, ..., n) which induces a group extension

$$1 \to \mathbb{Z}^2 \to \pi_m \to \pi_{m-1} \to 1. \tag{2.2}$$

For m = 1, $M_1 = T_{\mathbb{C}}^1$ with $\pi_1 = \mathbb{Z}^2$. Let (X_m, J_m) be the universal covering space of M_m $(m = 1, \ldots, n)$ such that $X_1 = \mathbb{C}$.

Definition 2.1. The *holomorphic torus-Bott tower* is a tower (1.1) which satisfies the following conditions:

(1) There is an equivariant holomorphic principal bundle

$$(\mathbb{Z}^2, \mathbb{C}) \to (\pi_m, X_m, J_m) \xrightarrow{p_m} (\pi_{m-1}, X_{m-1}, J_{m-1})$$
(2.3)

associated with the group extension (2.2).

(2) Each π_m normalizes the holomorphic action of \mathbb{C} .

We call the top space $M (= M_n)$ a holomorphic torus-Bott manifold (of depth n).

There are several remarks. Condition (2) for m is equivalent to say that $T^1_{\mathbb{C}} \to M_m \to M_{m-1}$ is a Seifert fiber space in the smooth case. It is not necessarily true that the universal covering X_m is biholomorphic to the product $\mathbb{C} \times X_{m-1}$. So, contrary to the smooth case, holomorphic Seifert actions are not described explicitly on the product $\mathbb{C} \times X_{m-1}$ in general. However, our holomorphic Seifert actions on the universal covering of a holomorphic torus-Bott manifold can be described. In fact, let $(X, J) (= (X_n, J_n))$ be the universal covering of a holomorphic torus-Bott manifold $M = M_n$. Put $(X_{n-1}, J_{n-1}) = (\hat{X}, \hat{J})$.

Proposition 2.2. (X, J) is biholomorphic as a holomorphic principal bundle to the product $(\mathbb{C} \times \widehat{X}, J_0 \times \widehat{J}).$

Proof. By Definition 2.1, $X_1 = \mathbb{C}$. We assume inductively that $\widehat{X} = X_{n-1}$ is biholomorphic to \mathbb{C}^{n-1} . By condition (2) of Definition 2.1, $\mathbb{C} \to X \to \widehat{X}$ is a holomorphic principal bundle. When A_h is the sheaf of germs of (local) holomorphic functions on \widehat{X} , Oka's principle says that $H^1(\widehat{X}, A_h) = 0$ (see [9, pp. 167–168]). Thus (X, J) is holomorphically bundle isomorphic to the product $(\mathbb{C} \times \widehat{X}, J_0 \times \widehat{J})$. \Box

2.1. Holomorphic Seifert action. As a consequence of Proposition 2.2, the holomorphic action of π on (X, J) is a holomorphic action of π on $(\mathbb{C} \times \widehat{X}, J_0 \times \widehat{J})$. Assume that $(\widehat{\pi}, \widehat{X}, \widehat{J})$ is a holomorphic action. Let $(\mathbb{Z}^2, \mathbb{C}) \to (\pi, \mathbb{C} \times \widehat{X}, J) \xrightarrow{p} (\widehat{\pi}, \widehat{X}, \widehat{J})$ be an equivariant holomorphic principal bundle as in condition (1) of Definition 2.1.

• The group extension $1 \to \mathbb{Z}^2 \to \pi \to \hat{\pi} \to 1$ represents a cocycle $f: \hat{\pi} \times \hat{\pi} \to \mathbb{Z}^2$ such that each element $\gamma \in \pi$ is viewed as $(n, \alpha) \in \mathbb{Z}^2 \times \hat{\pi}$ with the group law

$$(n,\alpha)(m,\beta) = (n + \phi(\alpha)(m) + f(\alpha,\beta), \alpha\beta).$$

Here $\phi: \widehat{\pi} \to \operatorname{Aut}(\mathbb{Z}^2)$ is the homomorphism induced by the conjugation of π .

Since π normalizes the left translations \mathbb{C} on $\mathbb{C} \times \hat{X}$ by condition (2) of Definition 2.1, we can describe the action of π explicitly:

• There is a holomorphic map $\chi(\alpha): (\widehat{X}, \widehat{J}) \to (\mathbb{C}, J_0)$ for each $\alpha \in \widehat{\pi}$ such that the action $(\pi, \mathbb{C} \times \widehat{X})$ is described as

$$(n,\alpha)(x,w) = \left(n + \bar{\phi}(\alpha)(x) + \chi(\alpha)(\alpha w), \, \alpha w\right) \tag{2.4}$$

for all $(n, \alpha) \in \pi$ and $(x, w) \in \mathbb{C} \times \widehat{X}$. Here $\overline{\phi} : \widehat{\pi} \to \operatorname{Aut}(\mathbb{C})$ is a unique extension of ϕ .

By the definition, (π, X) is a holomorphic Seifert action (cf. [6, 14, 3]).

2.2. Topology of a holomorphic torus-Bott manifold. From (2.2) there is a homomorphism induced by conjugation, $\phi: \pi_{m-1} \to \operatorname{Aut}(\mathbb{Z}^2)$. Since each element of π_m is almost complex and normalizes \mathbb{C} , there exists a matrix $P \in \operatorname{GL}(2, \mathbb{R})$ such that

$$P^{-1} \cdot \phi(\pi_{m-1}) \cdot P \le \mathrm{U}(1).$$

If we let $P^{-1} \cdot \phi(\alpha) \cdot P = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ for $\alpha \in \pi_{m-1}$, then the trace condition shows that $\cos \theta = 0, \pm 1/2, \pm 1$. It follows that respectively

$$\phi(\alpha) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}^{\pm 1}, \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}^{\pm 1}, \begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix}.$$
 (2.5)

So ϕ extends uniquely to an automorphism $\overline{\phi} \colon \pi_{m-1} \to \operatorname{Aut}_J(\mathbb{C}) = \mathbb{C}^*$ such that

$$\bar{\phi}(\alpha) = \pm \mathbf{i}, \ e^{\pm \mathbf{i}\pi/3} \quad \text{or} \quad \pm 1 \qquad \forall \, \alpha \in \pi_{m-1},$$
(2.6)

respectively. In particular, $\overline{\phi}(\pi_{m-1})$ is a cyclic group of order 1, 2, 4 or 6.

Lemma 2.3. Each π_m is virtually nilpotent.

Proof. As $\mathbb{Z}^2 = \pi_1$, we suppose inductively that π_{m-1} is virtually nilpotent. Since $\phi(\pi_{m-1}) \leq \operatorname{Aut}(\mathbb{Z}^2)$ is a finite cyclic group, we choose a finite index normal nilpotent subgroup Δ_{m-1} of π_{m-1} such that $\phi(\Delta_{m-1}) = \{1\}$. Then the group extension of (2.2) induces a central extension:

And hence Δ_m is nilpotent, which proves the induction step. \Box

For a holomorphic torus-Bott manifold M, there is a holomorphic fiber bundle $T^1_{\mathbb{C}} \to M \to M_{n-1}$. As the fundamental group π of M is virtually nilpotent, there exists a simply connected nilpotent Lie group N and a discrete faithful homomorphism $\rho: \pi \to \Gamma \leq E(N)$ such that the quotient N/Γ is an infranil-manifold (cf. [1] for instance). Seifert rigidity for nil-fiber [11] (see also [10, 14]) implies the following

Proposition 2.4. Any holomorphic torus-Bott manifold M is diffeomorphic to an infranilmanifold N/Γ .

Moreover, the diffeomorphism h between them preserves the fiber, i.e. there is a commutative diagram of equivariant diffeomorphisms:

$$\begin{aligned} (\mathbb{Z}^2, \mathbb{C}) & \longrightarrow (\pi, X) \xrightarrow{p} (\widehat{\pi}, \widehat{X}) \\ & \text{id} & \tilde{h} & \hat{h} \\ (\mathbb{Z}^2, \mathbb{C}) & \longrightarrow (\Gamma, N) \xrightarrow{p} (\widehat{\Gamma}, \widehat{N}) \end{aligned}$$
 (2.8)

3. INVARIANT METRIC ON A NILPOTENT LIE GROUP

3.1. Holomorphic infranil-manifolds. Let N be a simply connected nilpotent Lie group with left invariant complex structure J. Denote by $\operatorname{Aut}_J(N)$ the group of automorphisms of N which preserve J, i.e. $\alpha_* \circ J = J \circ \alpha_*$ on T_1N . Choose a maximal compact subgroup K from $\operatorname{Aut}_J(N)$ and put $\operatorname{E}_J(N) = N \rtimes K$. Each element $h = (a, \alpha) \in \operatorname{E}_J(N)$ acts on N as $h(x) = a \cdot \alpha(x)$ for all $x \in N$. Then $\operatorname{E}_J(N) = N \rtimes K$ acts holomorphically on N. If Γ is a discrete (torsionfree) uniform subgroup of $\operatorname{E}_J(N)$, the quotient N/Γ is said to be a holomorphic infranil-orbifold (infranil-manifold). It is well known that a finite cover of N/Γ is a nilmanifold.

3.2. Construction of an E(N)-invariant complex structure. Let N be a simply connected nilpotent Lie group which has a central group extension $1 \to \mathbb{C} \to N \xrightarrow{\pi} \widehat{N} \to 1$. Let $E(N) = N \rtimes K$ be the semidirect product. As \mathbb{C} is normal in E(N), π induces an equivariant (continuous) homomorphism

$$\pi: (\mathcal{E}(N), N) \to (\mathcal{E}(\widehat{N}), \widehat{N}).$$
(3.1)

As $K \leq \operatorname{Aut}(N)$ normalizes \mathbb{C} , there is a homomorphism $\rho: K \to \operatorname{GL}(2,\mathbb{R})$. In order to be holomorphic on \mathbb{C} , we require that $\rho(K) \leq \operatorname{U}(1) \leq \operatorname{GL}(1,\mathbb{C}) = \operatorname{Aut}(\mathbb{C})$. Equivalently, for all $k \in K$,

$$k_* \circ J_0 = J_0 \circ k_* \qquad \text{on } T\mathbb{C}. \tag{3.2}$$

Suppose that \widehat{J} is a left invariant complex structure on the (2n-2)-dimensional nilpotent Lie group \widehat{N} . As before, $E_{\widehat{J}}(\widehat{N})$ denotes the holomorphic semidirect product $\widehat{N} \rtimes \widehat{K}$ of \widehat{N} with a compact group $\widehat{K} \leq \operatorname{Aut}_{\widehat{I}}(\widehat{N})$.

Proposition 3.1. There exists an E(N)-invariant complex structure on N under the requirement (3.2). Moreover,

$$(\mathbb{C}, J_0) \to (N, J) \xrightarrow{\pi} (N, J)$$

is a principal holomorphic bundle.

Proof. Choose an N-invariant Riemannian metric on N and average it by the compact group K. Since K normalizes N, this gives an E(N)-invariant Riemannian metric g on N. Let $T\mathbb{C}^{\perp} = \{X \in TN \mid g(X, A) = 0 \forall A \in T\mathbb{C}\}$. As g is E(N)-invariant and \mathbb{C} is normal in E(N), it is easy to see that $T\mathbb{C}^{\perp}$ is E(N)-invariant. Then the projection $\pi: N \to \widehat{N}$ induces an isomorphism $\pi_*: T\mathbb{C}^{\perp} \to T\widehat{N}$ at each point of N. Define an almost complex structure J on $T\mathbb{C}^{\perp}$ by the following correspondence at each point of N:

$$\pi_* J X = \widehat{J} \pi_* X. \tag{3.3}$$

Let J_0 be the standard complex structure on \mathbb{C}^k $(k \ge 1)$. If we note that $TN = T\mathbb{C} \oplus T\mathbb{C}^{\perp}$, then we define

$$J(A+X) = J_0A + JX, \qquad A \in T\mathbb{C}, \quad X \in T\mathbb{C}^{\perp}.$$
(3.4)

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 286 2014

It follows that J is an *almost complex* structure on N. Since E(N) leaves $T\mathbb{C}^{\perp}$ invariant and normalizes \mathbb{C} , the decomposition is preserved by any element $h \in E(N)$; $h_*A + h_*X \in T\mathbb{C} \oplus T\mathbb{C}^{\perp}$. In view of (3.1), the hypothesis that \widehat{J} is $E(\widehat{N})$ -invariant shows that

$$\pi_*(h_*JX) = \pi(h)_*\pi_*(JX) = \pi(h)_*\widehat{J}\pi_*(X) = \widehat{J}\pi(h)_*\pi_*(X) = \widehat{J}\pi_*(h_*X) = \pi_*(Jh_*X),$$

and so $h_*JX = Jh_*X$ for all $X \in T\mathbb{C}^{\perp}$. As \mathbb{C} is the center of N, $x_*J_0 = J_0x_*$ on $T\mathbb{C}$ for all $x \in N$. Each $\alpha \in K$ satisfies $\alpha_*J_0 = J_0\alpha_*$ on $T\mathbb{C}$ by our requirement (3.2). In particular, if $h = (x, \alpha) \in E(N)$, then $h_*J_0 = J_0h_*$ on $T\mathbb{C}$. Taking into account these equalities, we have

$$Jh_*(A+X) = J_0h_*A + Jh_*X = h_*J_0A + h_*JX = h_*J(A+X)$$

and hence J is E(N)-invariant. Obviously $(\mathbb{C}, J_0) \to (N, J) \xrightarrow{\pi} (\widehat{N}, \widehat{J})$ is an almost complex principal fiber bundle with respect to J. Let $\varphi : (\pi^{-1}(U), J) \to (U \times \mathbb{C}, J_0 \times \widehat{J})$ be a local trivialization isomorphism for this bundle. As \widehat{J} is a complex structure by the hypothesis, so is J on N. \Box

3.3. Trivialization. Let $(\mathbb{C}, J_0) \to (N, J) \xrightarrow{\pi} (\widehat{N}, \widehat{J})$ be a principal holomorphic bundle from Proposition 3.1. We assume that $(\widehat{N}, \widehat{J})$ is biholomorphic to (\mathbb{C}^{n-1}, J_0) . By Proposition 2.2 we have

Corollary 3.2. (N, J) is biholomorphic as a holomorphic principal bundle to the product $(\mathbb{C} \times \hat{N}, J_0 \times \hat{J}).$

Let $E_J(N) = N \rtimes K$ be the holomorphic semidirect product. Choose a torsion-free discrete cocompact subgroup Γ from $E_J(N)$ so that N/Γ is a holomorphic infranil-manifold.

4. HOLOMORPHIC INFRANIL ACTION

4.1. Seifert infranil-manifold. We observe that a holomorphic infranil-manifold N/Γ will be a holomorphic Seifert manifold.

The central group extension $1 \to \mathbb{C} \to N \xrightarrow{\pi} \widehat{N} \to 1$ is viewed as a holomorphic principal bundle by Proposition 3.1. Under the hypothesis in Subsection 3.3, Corollary 3.2 shows that $N = \mathbb{C} \times \widehat{N}$ biholomorphically with the group law

$$(x, z) \cdot (y, w) = (x + y + f(z, w), z \cdot w).$$
 (4.1)

Here $f: \hat{N} \times \hat{N} \to \mathbb{C}$ is a 2-cocycle. Put $E(N) = E_J(N)$ for brevity. Since E(N) normalizes \mathbb{C} , there is a commutative diagram of exact sequences:

where we put $E(N)/\mathbb{C} = \widehat{N} \circ K$. As E(N) is the semidirect product $N \rtimes K$, $\widehat{N} \circ K$ has the group law; for $\alpha = a \circ k, \beta = b \circ h \in \widehat{N} \circ K$,

$$\alpha \cdot \beta = ak(b) \circ kh.$$

As $K \leq \operatorname{Aut}(N)$, there is a homomorphism $\widehat{\rho} \colon K \to \operatorname{Aut}(\widehat{N})$. If we recall that \widehat{K} is the maximal compact subgroup of $\operatorname{Aut}(\widehat{N}), \, \widehat{\rho}(K) \leq \widehat{K}$ up to conjugation. It follows that

$$\widehat{N} \circ K = \widehat{N} \rtimes \widehat{\rho}(K) \le \mathrm{E}(\widehat{N}). \tag{4.3}$$

Let $\phi: \widehat{N} \circ K \to \operatorname{Aut}(\mathbb{C})$ be a homomorphism induced by the conjugation from (4.2). Then $\operatorname{E}(N)$ is viewed as the set $\mathbb{C} \times (\widehat{N} \circ K)$ with the group law

$$(x,\alpha)\cdot(y,\beta) = \left(x+\phi(\alpha)(y)+\bar{\mathsf{f}}(\alpha,\beta),\,\alpha\cdot\beta\right) \tag{4.4}$$

in which $\overline{f}: \widehat{N} \circ K \times \widehat{N} \circ K \to \mathbb{C}$ is a 2-cocycle extending f on $\widehat{N} \times \widehat{N}$ of (4.1). The action of E(N) on N is interpreted in terms of group law (4.4): $E(N) \times E(N) \to E(N) \to N$; let $\alpha = a \circ k \in \widehat{N} \circ K$ with $(x, \alpha) \in E(N)$ and $b \in \widehat{N}$ with $(y, b) \in N$. Then

$$(x,\alpha) \cdot (y,b) = (x + \phi(\alpha)(y) + \overline{\mathsf{f}}(\alpha,b), ak(b) \circ k) \mapsto (x + \phi(\alpha)(y) + \overline{\mathsf{f}}(\alpha,b), ak(b)) \in N.$$
(4.5)

As in Subsection 3.1, E(N) normalizes \mathbb{C} , so the holomorphic action of E(N) on N induces a holomorphic action of $\widehat{N} \circ K$ on \widehat{N} by $\alpha b = ak(b)$ for all $\alpha = a \circ k \in \widehat{N} \circ K$ and $b \in \widehat{N}$. By the definition of Subsection 2.1, we obtain a *holomorphic Seifert fibration* associated with the group extensions of (4.2):

$$(\mathbb{C},\mathbb{C}) \to (\mathcal{E}(N),N) \xrightarrow{\pi} (\widehat{N} \circ K,\widehat{N})$$

where $N = \mathbb{C} \times \widehat{N}$ biholomorphically. Let $(y, w) \in N$. If $h = (x, \alpha) \in E(N)$ with $\alpha (= a \cdot k) \in \widehat{N} \circ K$, then as in (2.4) the holomorphic Seifert action implies that there is a holomorphic map $\mu(\alpha) : (\widehat{N}, \widehat{J}) \to (\mathbb{C}, J_0)$ such that

$$h(y,w) = \left(x + \phi(\alpha)(y) + \mu(\alpha)(\alpha w), \alpha w\right).$$
(4.6)

Using μ (cf. [14]), one can describe $\overline{f}: \widehat{N} \circ K \times \widehat{N} \circ K \to \mathbb{C}$ as $\overline{f}(\alpha, \beta) = \delta^1 \mu(\alpha, \beta)(w)$ for all $w \in \widehat{N}$, i.e.

$$\bar{\mathsf{f}}(\alpha,\beta) = \phi(\alpha)(\mu(\beta)(\alpha^{-1}\cdot w)) + \mu(\alpha)(w) - \mu(\alpha\beta)(w) \qquad \forall \alpha,\beta \in \widehat{N} \circ K, \quad \forall w \in \widehat{N}.$$
(4.7)

Here the set $hol(\widehat{N}, \mathbb{C})$ is an $(\widehat{N} \circ \widehat{K})$ -module defined by

$$(\alpha \cdot g)(w) = \phi(\alpha)(g(\alpha^{-1} \cdot w)) \qquad \forall g \in \operatorname{hol}(\widehat{N}, \mathbb{C}), \quad \forall \alpha \in \widehat{N} \circ K.$$
(4.8)

4.2. Holomorphic Seifert manifold. Consider a torsion-free discrete uniform subgroup Γ lying in $E(N) = E_J(N)$:

$$1 \longrightarrow \mathbb{Z}^{2} \longrightarrow \Gamma \xrightarrow{\pi} \widehat{\Gamma} \longrightarrow 1$$

$$\cap \qquad \cap \qquad \cap$$

$$1 \longrightarrow \mathbb{C} \longrightarrow E(N) \xrightarrow{\pi} \widehat{N} \circ K \longrightarrow 1$$

$$(4.9)$$

Here $\mathbb{Z}^2 = \mathbb{C} \cap \Gamma$ and $\widehat{\Gamma} = \pi(\Gamma)$. Then the group extension of Γ is represented by a 2-cocycle $[f] \in H^2_{\phi}(\widehat{\Gamma}; \mathbb{Z}^2)$ where $\phi = \phi_{|\widehat{\Gamma}}: \widehat{\Gamma} \to \operatorname{Aut}(\mathbb{Z}^2)$ is a homomorphism restricted to $\widehat{\Gamma}$. Note that \mathbb{Z}^2 is a $\widehat{\Gamma}$ -module through ϕ . In view of (4.6), we have shown that

Proposition 4.1. Given a holomorphic infranil action of $\widehat{\Gamma}$ (i.e. $\widehat{\Gamma} \leq E_{\widehat{J}}(\widehat{N})$), a holomorphic infranil action of Γ on (N, J) is a holomorphic Seifert action of Γ on $(\mathbb{C} \times \widehat{N}, J_0 \times \widehat{J})$ which can be determined by a holomorphic map $\mu(\alpha) \colon \widehat{N} \to \mathbb{C}$ for each $\alpha \in \widehat{\Gamma}$ such that

$$(n,\alpha)(x,w) = (n+\phi(\alpha)(x) + \mu(\alpha)(\alpha w), \ \alpha w) \qquad \forall (n,\alpha) \in \Gamma, \quad \forall (x,w) \in N.$$

$$(4.10)$$

Moreover, the cocycle f representing the group extension of Γ in (4.9) satisfies $\delta^1 \mu = f$ as in (4.7).

Comparing (4.5) with (4.10) implies that

$$\overline{\mathbf{f}}(\alpha, w) = \mu(\alpha)(\alpha w) \qquad \forall \, \alpha \in \widehat{\Gamma}, \quad \forall \, w \in \widehat{N}.$$
(4.11)

5. DEFORMATION OF NILPOTENT LIE GROUPS

Let $\operatorname{hol}(\widehat{N}, \mathbb{C})$ be the set of all holomorphic maps from $(\widehat{N}, \widehat{J})$ to \mathbb{C} . It is endowed with a $\widehat{\Gamma}$ -module as in (4.8), and similarly for $\operatorname{hol}(\widehat{N}, T^1_{\mathbb{C}})$ and \mathbb{Z}^2 (cf. Subsection 4.2).

Recall that a short exact sequence $1 \to \mathbb{Z}^2 \xrightarrow{i} \mathbb{C} \xrightarrow{j} T^1_{\mathbb{C}} \to 1$ induces a long cohomology exact sequence (cf. [14, 3])

$$\dots \to H^1_{\phi}(\widehat{\Gamma}; \mathbb{Z}^2) \xrightarrow{i} H^1_{\phi}(\widehat{\Gamma}; \operatorname{hol}(\widehat{N}, \mathbb{C})) \xrightarrow{j} H^1_{\phi}(\widehat{\Gamma}; \operatorname{hol}(\widehat{N}, T^1_{\mathbb{C}})) \xrightarrow{\delta} H^2_{\phi}(\widehat{\Gamma}; \mathbb{Z}^2) \to \dots$$
(5.1)

Put $\hat{\mu} = j \circ \mu \colon \widehat{N} \to T^{1}_{\mathbb{C}}$ for a holomorphic function μ of Proposition 4.1. Then (4.10) implies that $\delta[\hat{\mu}] = [f]$ by the definition. For any element $[\nu] \in H^{1}(\widehat{\Gamma}; \operatorname{hol}(\widehat{N}, \mathbb{C}))$, we have an element $j[\nu] \cdot [\hat{\mu}]$ such that $\delta(j[\nu] \cdot [\hat{\mu}]) = [f]$. Note that j maps $\mu + \nu$ to $j\nu \cdot \hat{\mu}$. From Proposition 4.1, $\delta^{1}\mu = f$ and so it follows that $\delta^{1}(\mu + \nu) = f$, which still defines the same group extension $1 \to \mathbb{Z}^{2} \to \Gamma \to \widehat{\Gamma} \to 1$.

We study a holomorphic Seifert action of Γ by this replacement $\mu+\nu$ which is given by

$$(n,\alpha)(x,w) = \left(n + \phi(\alpha)(x) + \mu(\alpha)(\alpha w) + \nu(\alpha)(\alpha w), \alpha w\right), \qquad n \in \mathbb{Z}^2, \quad \alpha \in \widehat{\Gamma}, \quad (x,w) \in N.$$
(5.2)

Theorem 5.1. There exists a nilpotent Lie group N' isomorphic to N such that the complex structure J is invariant under E(N'). The above action (Γ, N) is equivariantly biholomorphic to an infranil action of Γ' on N' (i.e. $\Gamma' \leq E_J(N')$). Here Γ' is a discrete uniform subgroup isomorphic to Γ . Specifically the quotient N/Γ is biholomorphic to the holomorphic infranil-manifold N'/Γ' . (In particular, $\Delta' = \Gamma' \cap N'$ is a finite index subgroup of Γ' such that N'/Δ' is a holomorphic nilmanifold.)

Proof. First, when we take a $\widehat{\Gamma}$ -module $\operatorname{Map}(\widehat{N}, \mathbb{C})$ consisting of smooth maps from \widehat{N} to \mathbb{C} instead of $\operatorname{hol}(\widehat{N}, \mathbb{C})$, we note that

$$H^{q}_{\phi}(\widehat{\Gamma}; \operatorname{Map}(\widehat{N}, \mathbb{C})) = 0, \qquad q \ge 1$$

(see [4, 14]).

If $[\nu] \in H^1_{\phi}(\widehat{\Gamma}; \operatorname{hol}(\widehat{N}, \mathbb{C}))$ is relaxed to be in $H^1_{\phi}(\widehat{\Gamma}; \operatorname{Map}(\widehat{N}, \mathbb{C}))$, then there is an element $\lambda \in \operatorname{Map}(\widehat{N}, \mathbb{C})$ such that $\delta^1 \lambda = \nu$, i.e. $\nu(\alpha)(\alpha w) = \delta^1 \lambda(\alpha)(\alpha w) = \alpha \circ \lambda(\alpha w) - \lambda(\alpha w)$; hence (cf. (4.8))

$$\nu(\alpha)(\alpha w) = \phi(\alpha)(\lambda(w)) - \lambda(\alpha w) \qquad \forall \alpha \in \widehat{\Gamma}, \quad \forall w \in \widehat{N}.$$
(5.3)

A function $\mathsf{f}'\colon \widehat{N}\times \widehat{N}\to \mathbb{C}$ is defined to be

$$\mathbf{f}'(z,w) = \mathbf{f}(z,w) + \delta^1 \lambda(z,w), \qquad z, w \in \widehat{N}.$$
(5.4)

As $1 \to \mathbb{C} \to N \to \widehat{N} \to 1$ is a central extension, $\delta^1 \lambda(z, w) = z \cdot \lambda(w) - \lambda(z \cdot w) + \lambda(z) = \lambda(z) + \lambda(w) - \lambda(z \cdot w)$. It is easy to see that $\delta^1 \mathbf{f}' = 0$, so \mathbf{f}' is a 2-cocycle in $H^2(\widehat{N}; \mathbb{C})$. Let $N' = \mathbb{C} \times \widehat{N}$ be the product with the group law

$$(x,z) \circ (y,w) = (x+y+\mathsf{f}'(z,w),\ z \cdot w).$$

N' becomes a Lie group. Moreover, if $\varphi \colon N \to N'$ is a map defined by

$$\varphi(x,z) = (x - \lambda(z), z), \tag{5.5}$$

then

$$\varphi((x,z) \cdot (y,w)) = \varphi(x+y+\mathsf{f}(z,w), z \cdot w) = (x+y+\mathsf{f}(z,w) - \lambda(z \cdot w), z \cdot w)$$
$$= (x+y+\mathsf{f}(z,w) + \delta^1\lambda(z,w) - \lambda(z) - \lambda(w), z \cdot w)$$
$$= (x+y+\mathsf{f}'(z,w) - \lambda(z) - \lambda(w), z \cdot w)$$
$$= (x-\lambda(z),z) \circ (y-\lambda(w),w) = \varphi(x,z) \circ \varphi(y,w).$$
(5.6)

Thus $\varphi \colon N \to N'$ is a Lie group isomorphism.

Let $\lambda: \widehat{N} \to \mathbb{C}$ be the map as above. We extend λ to $\widehat{N} \circ K$. Let $\alpha = a \cdot k \in \widehat{N} \circ K$. Since $K \leq \operatorname{Aut}(N)$, evaluated at $1 \in N$, we simply put

$$\bar{\lambda}(\alpha) = \lambda(a). \tag{5.7}$$

We can define a 2-cocycle $\overline{\mathsf{f}}' \colon (\widehat{N} \circ K) \times (\widehat{N} \circ K) \to \mathbb{C}$ to be

$$\bar{\mathsf{f}}'(\alpha,\beta) = \bar{\mathsf{f}}(\alpha,\beta) + \delta^1 \bar{\lambda}(\alpha,\beta), \qquad \alpha,\beta \in \widehat{N} \circ K, \tag{5.8}$$

where

$$\delta^1 \bar{\lambda}(\alpha,\beta) = \phi(\alpha)(\bar{\lambda}(\beta)) - \bar{\lambda}(\alpha\beta) + \bar{\lambda}(\alpha).$$
(5.9)

Then we have a group G as the set $\mathbb{C} \times (\widehat{N} \circ K)$ with the group law

$$(x,\alpha)\circ(y,\beta) = \left(x+\phi(\alpha)(y)+\bar{\mathsf{f}}'(\alpha,\beta),\,\alpha\beta\right). \tag{5.10}$$

By construction, there is an exact sequence $1 \to N' \to G \xrightarrow{\pi} K \to 1$. As N' is a simply connected nilpotent Lie group, it follows that $G = N' \rtimes K'$ for which π maps K' isomorphically onto K. In particular, G = E(N'). As in (5.6), if we define $\overline{\varphi} \colon E(N) \to E(N') = G$ to be

$$\overline{\varphi}(x,\alpha) = (x - \overline{\lambda}(\alpha), \alpha), \tag{5.11}$$

then

$$\overline{\varphi}((x,\alpha)\cdot(y,\beta)) = \left(x+\phi(\alpha)(y)+\overline{\mathsf{f}}(\alpha,\beta)-\overline{\lambda}(\alpha\beta),\,\alpha\beta\right)$$
$$= \left(x+\phi(\alpha)(y)+\overline{\mathsf{f}}(\alpha,\beta)+\delta^{1}\overline{\lambda}(\alpha,\beta)-\phi(\alpha)(\overline{\lambda}(\beta))-\overline{\lambda}(\alpha),\,\alpha\beta\right)$$
$$= \left(x+\phi(\alpha)(y)+\overline{\mathsf{f}}'(\alpha,\beta)-\phi(\alpha)(\overline{\lambda}(\beta))-\overline{\lambda}(\alpha),\,\alpha\beta\right)$$
$$= \left(x-\overline{\lambda}(\alpha),\alpha\right)\circ\left(y-\overline{\lambda}(\beta),\beta\right) = \overline{\varphi}(x,\alpha)\circ\overline{\varphi}(y,\beta).$$
(5.12)

Hence $\overline{\varphi} \colon \mathcal{E}(N) \to \mathcal{E}(N')$ is an isomorphism. By formula (5.11), $\overline{\varphi}_{|\mathbb{C}} = \mathrm{id}$ and the induced homomorphism $\widehat{\varphi} \colon \widehat{N} \to \widehat{N}$ of $\overline{\varphi}$ is id on $\widehat{N} \circ K$. This induces the following exact sequences:

$$1 \longrightarrow \mathbb{C} \longrightarrow E(N) \xrightarrow{\pi} \widehat{N} \circ K \longrightarrow 1$$

$$id \downarrow \qquad \overline{\varphi} \downarrow \qquad id \downarrow \qquad (5.13)$$

$$1 \longrightarrow \mathbb{C} \longrightarrow E(N') \xrightarrow{\pi} \widehat{N} \circ K \longrightarrow 1$$

We recall the infranil action of E(N') on N'. As in (4.5), for $\alpha = a \circ k \in \widehat{N} \circ K$ with $(x, \alpha) \in E(N')$ and $w \in \widehat{N}$ with $(y, w) \in N'$, it follows that

$$(x,\alpha)\circ(y,w) = \left(x+\phi(\alpha)(y)+\bar{\mathsf{f}}'(\alpha,w),ak(w)\circ k\right)\mapsto \left(x+\phi(\alpha)(y)+\bar{\mathsf{f}}'(\alpha,w),\alpha w\right)\in N' \quad (5.14)$$

where $\alpha w = ak(w)$. So we put this infranil action (E(N'), N') to be

$$(x,\alpha)\circ'(y,w) = \left(x+\phi(\alpha)(y)+\overline{\mathsf{f}}'(\alpha,w),\,\alpha w\right). \tag{5.15}$$

Let $\Gamma \leq E(N)$ be as above. As in (4.9), there is a commutative diagram

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 286 2014

In view of (4.11), (5.3) and (5.8), (5.9), the action (5.2) becomes

$$(n,\alpha)(x,w) = \left(n + \phi(\alpha)(x) + \mu(\alpha)(\alpha w) + \nu(\alpha)(\alpha w), \, \alpha w\right)$$

$$= \left(n + \phi(\alpha)(x) + \bar{\mathsf{f}}(\alpha, w) + \phi(\alpha)(\bar{\lambda}(w)) - \bar{\lambda}(\alpha w), \, \alpha w\right)$$

$$= \left(n + \phi(\alpha)(x) + \bar{\mathsf{f}}(\alpha, w) + \delta^{1}\bar{\lambda}(\alpha, w) - \bar{\lambda}(\alpha), \, \alpha w\right)$$

$$= \left(n + \phi(\alpha)(x) + \bar{\mathsf{f}}'(\alpha, w) - \bar{\lambda}(\alpha), \, \alpha w\right)$$

$$= \left(n - \bar{\lambda}(\alpha), \alpha\right) \circ'(x, w) = \overline{\varphi}(n, \alpha) \circ'(x, w), \quad (5.17)$$

where \circ' is defined in (5.14). Hence the action of (Γ, N) is equivalent to the infranil action of $\overline{\varphi}(\Gamma)$ on N' defined in (5.15).

On the other hand, there is an E(N')-invariant complex structure J' on N' by Proposition 3.1 such that (N', J') is biholomorphic to $(\mathbb{C} \times \hat{N}, J_0 \times \hat{J})$ by Corollary 3.2. By Proposition 4.1, for every $\alpha \in \widehat{\Gamma}$ there exists an element $\mu'(\alpha) \in \operatorname{hol}(\widehat{N}, \mathbb{C})$ for which a holomorphic infranil action of $\overline{\varphi}(\Gamma)$ on (N', J') is obtained as

$$\overline{\varphi}(n,\alpha) \circ'(x,w) = \left(n + \phi(\alpha)(x) + \mu'(\alpha)(\alpha w), \, \alpha w\right). \tag{5.18}$$

Comparing this with (5.17), we obtain

$$\mu(\alpha)(\alpha w) + \nu(\alpha)(\alpha w) = \mu'(\alpha)(\alpha w).$$
(5.19)

For arbitrary $A \in T\mathbb{C}$ and $V \in T\widehat{N}$, calculate

$$(n,\alpha)_*J(A,V) = (n,\alpha)_*(J_0A,\widehat{J}V) = (\phi(\alpha)(J_0A) + \mu(\alpha)_*(\alpha_*\widehat{J}V) + \nu(\alpha)_*(\alpha_*\widehat{J}V), \alpha_*\widehat{J}V)$$
$$= (J_0\phi(\alpha)(A) + J_0\mu(\alpha)_*(\alpha_*V) + J_0\nu(\alpha)_*(\alpha_*V), \widehat{J}\alpha_*V)$$
$$= (J_0\phi(\alpha)(A) + J_0\mu'(\alpha)_*(\alpha_*V), \widehat{J}\alpha_*V)$$
$$= J'(\phi(\alpha)(A) + \mu'(\alpha)_*(\alpha_*V), \alpha_*V) = J'\overline{\varphi}(n,\alpha)_*(A,V).$$
(5.20)

As $(n, \alpha)_*J = J(n, \alpha)_*$ on TN, it follows that J' = J on $\mathbb{C} \times \widehat{N} = N = N'$. And hence the holomorphic action (Γ, N, J) is equivariantly biholomorphic to $(\varphi(\Gamma), N', J)$. Equivalently the quotient N/Γ is biholomorphic to the holomorphic infranil-manifold $N'/\overline{\varphi}(\Gamma)$. \Box

6. HOLOMORPHIC CLASSIFICATION

Let M be a holomorphic torus-Bott manifold of dimension 2n. By Definition 2.1, $X_1 = \mathbb{C}$. We assume inductively that X_{n-1} is biholomorphic to \mathbb{C}^{n-1} . By condition (2) of Definition 2.1, $\mathbb{C} \to X = X_n \to \hat{X} = X_{n-1}$ is a holomorphic principal bundle. Thus by Corollary 3.2, (X, J) is biholomorphic to the product $(\mathbb{C} \times \hat{X}, J_0 \times \hat{J})$ as a holomorphic bundle. Hence the action on the universal covering (X, π, J) is identified with a holomorphic Seifert action $(\mathbb{C} \times \hat{X}, \pi, J_0 \times \hat{J})$ as in (2.4).

Consider the associated group extension $1 \to \mathbb{Z}^2 \to \pi \to \hat{\pi} \to 1$, which represents a 2-cocycle $[f] \in H_{\phi}(\hat{\pi}; \mathbb{Z}^2)$. As $(\pi, \mathbb{C} \times \hat{X})$ is a holomorphic Seifert action, there is a holomorphic map $\chi(\alpha)$: $\hat{N} \to \mathbb{C}$ for each $\alpha \in \hat{\pi}$ such that

$$(n,\alpha)(x,w) = (n + \bar{\phi}(\alpha)(x) + \chi(\alpha)(\alpha w), \alpha w) \qquad \forall (n,\alpha) \in \pi, \quad \forall (x,w) \in \mathbb{C} \times N,$$
(6.1)

which satisfies

$$\delta[\widehat{\chi}] = [f]. \tag{6.2}$$

By Corollary 2.4, X/π is diffeomorphic to an infranil-manifold N/π . Suppose that $(\widehat{X}, \widehat{\pi}, \widehat{J})$ is equivariantly biholomorphic to $(\widehat{N}, \widehat{\pi}, \widehat{J})$ for which $\pi \leq \mathrm{E}(N) = N \rtimes K$. Since $\phi: \widehat{\pi} \to \mathrm{Aut}(\mathbb{Z}^2)$ satisfies $\phi(\widehat{\pi}) \leq \mathrm{U}(1)$ from (2.6), we may assume that K satisfies the requirement (3.2) of Proposition 3.1. (In fact, as N centralizes \mathbb{C} and $N \rtimes K$ normalizes \mathbb{C} , the conjugation map $\rho: N \rtimes K \to \mathrm{GL}(2, \mathbb{R})$ satisfies $\rho(N \rtimes K) = \rho(K) \leq \mathrm{O}(2)$ in general. Taking $\mathrm{U}(1) \leq \mathrm{O}(2)$, we choose $K_0 \leq K$ such that $\rho(K_0) \leq \mathrm{U}(1)$ instead of K. As $\rho(\pi) = \phi(\widehat{\pi}) \leq \mathrm{U}(1)$, it follows that $\pi \leq N \rtimes K_0$, which satisfies the requirement obviously.)

By Proposition 3.1, there exists an E(N)-invariant complex structure J such that $\pi \leq E_J(N)$, i.e. the action (N, π) is a holomorphic infranil action. As (N, J) is biholomorphic to $(\mathbb{C} \times \widehat{N}, J_0 \times \widehat{J})$ by Corollary 3.2, Proposition 4.1 implies that there is a holomorphic map $\mu(\alpha) \colon \widehat{N} \to \mathbb{C}$ such that

$$(n,\alpha)(x,w) = (n + \phi(\alpha)(x) + \mu(\alpha)(\alpha w), \ \alpha w).$$
(6.3)

It also follows that

$$\delta[\widehat{\mu}] = [f]. \tag{6.4}$$

As both $[\widehat{\chi}]$ and $[\widehat{\mu}]$ belong to $H^1_{\phi}(\widehat{\pi}, \operatorname{hol}(\widehat{N}, \mathbb{C}))$, there exists an element $[\nu] \in H^1_{\phi}(\widehat{\pi}, \operatorname{hol}(\widehat{N}, \mathbb{C}))$ such that

$$[\widehat{\mu}]^{-1}[\widehat{\chi}] = [\widehat{\nu}]. \tag{6.5}$$

This implies that $j(\chi(\alpha)(w)) = j(\mu(\alpha)(w) + \nu(\alpha)(w)) \in T^1_{\mathbb{C}}$ for all $w \in \widehat{N}$. We may assume that (up to a constant)

$$\chi = \mu + \nu \colon \ \widehat{\pi} \to \operatorname{hol}(N, \mathbb{C}).$$
(6.6)

Theorem 6.1. Let M be a holomorphic torus-Bott manifold of dimension 2n and (X, π, J) be its universal covering. There exists a nilpotent Lie group N' with E(N')-invariant complex structure J such that the action (X, π, J) is equivariantly biholomorphic to a holomorphic infranil action (N', π', J) ($\pi' \leq E_J(N')$). Specifically, a 2n-dimensional holomorphic torus-Bott manifold M is biholomorphic to a holomorphic infranil-manifold N'/π' .

Proof. Suppose inductively that $(\widehat{X}, \widehat{\pi}, \widehat{J})$ is equivariantly biholomorphic to $(\widehat{N}, \widehat{\pi}, \widehat{J})$. Then the action (X, π) is equivariantly biholomorphic to a holomorphic action (N, π, J) such that

$$(n,\alpha)(x,w) = (n+x+\mu(\alpha)(\alpha w)+\nu(\alpha)(\alpha w), \alpha \cdot w).$$

Applying Theorem 5.1 to this action, we find that there is a holomorphic infranil geometry $(E_J(N'), N')$ such that the complex quotient N/π is biholomorphic to a holomorphic infranilmanifold N'/Γ' for a torsion-free discrete subgroup $\Gamma' \leq E_J(N')$. \Box

7. APPLICATION

Let $M = M_n \to M_{n-1} \to \ldots \to M_1 \to \{\text{pt}\}$ be a holomorphic torus-Bott tower as in (1.1). Each holomorphic fiber bundle induces a group extension $1 \to \mathbb{Z}^2 \to \pi_m \to \pi_{m-1} \to 1$ which represents a 2-cocycle in $H^2_{\phi}(\pi_{m-1}; \mathbb{Z}^2), m = 1, \ldots, n$ (see (2.2)).

Definition 7.1. A holomorphic torus-Bott tower is of finite type if each 2-cocycle has finite order in $H^2_{\phi}(\pi_{m-1};\mathbb{Z}^2)$. Otherwise (i.e. there exists a cocycle of infinite order), a holomorphic torus-Bott tower is said to be of infinite type.

7.1. Holomorphic torus-Bott manifold of finite type. Since U(n) is the maximal compact unitary subgroup in $\operatorname{GL}(n,\mathbb{C})$, the affine group $\operatorname{A}_{\mathbb{C}}(n) = \mathbb{C}^n \rtimes \operatorname{GL}(n,\mathbb{C})$ has the complex euclidean subgroup $\operatorname{E}_{\mathbb{C}}(n) = \mathbb{C}^n \rtimes \operatorname{U}(n)$. If Γ is a torsion-free discrete uniform subgroup in $\operatorname{E}_{\mathbb{C}}(n)$, then the quotient \mathbb{C}^n/Γ is a compact complex euclidean space form. The group Γ is said to be a Bieberbach group. **Theorem 7.2.** If M is a 2n-dimensional holomorphic torus-Bott manifold of finite type, then M is biholomorphic to a complex euclidean space form \mathbb{C}^n/Γ ($\Gamma \leq E_{\mathbb{C}}(n)$). Moreover, the holonomy group $L(\Gamma) \leq U(n)$ is isomorphic to the product

$$\begin{pmatrix} H_1 & & & \\ & H_2 & & \\ & & \ddots & \\ & & & H_n \end{pmatrix}$$

where H_i is either $\{1\}$, \mathbb{Z}_2 , \mathbb{Z}_4 or \mathbb{Z}_6 .

Proof. Put $(\pi, X) = (\pi_{n-1}, X_n)$ and $(\hat{\pi}, \hat{X}) = (\pi_{n-1}, X_{n-1})$. Let

$$(\mathbb{Z}^2, \mathbb{C}) \to (\pi, X) \xrightarrow{p} (\widehat{\pi}, \widehat{X})$$
 (7.1)

be an equivariant principal holomorphic bundle (cf. (2.3)). Inductively suppose that $\widehat{X}/\widehat{\pi}$ is biholomorphic to a complex euclidean space form $\mathbb{C}^{n-1}/\widehat{\Gamma}$ ($\widehat{\Gamma} \leq \mathbb{E}_{\mathbb{C}}(n-1)$). As $\widehat{\pi} \cong \widehat{\Gamma}$, $\widehat{\pi}$ has a normal free abelian subgroup $\mathbb{Z}^{2(n-1)}$ of finite index. Consider the commutative diagram as in (4.9):

Note that $\phi(\hat{\pi}) \leq \operatorname{Aut}(\mathbb{Z}^2)$ is a finite cyclic group. Taking a finite index subgroup if necessary, we may assume that the lower sequence is a central group extension. The cocycle of $H^2_{\phi}(\hat{\pi};\mathbb{Z}^2)$ restricts to an element of a free abelian group $H^2(\mathbb{Z}^{2(n-1)};\mathbb{Z}^2)$. Since the cocycle representing (7.2) is a torsion in $H^2_{\phi}(\pi_{m-1};\mathbb{Z}^2)$ by the hypothesis, it is zero in $H^2(\mathbb{Z}^{2(n-1)};\mathbb{Z}^2)$, i.e. the lower group extension splits; $\Delta \cong \mathbb{Z}^2 \times \mathbb{Z}^{2(n-1)} = \mathbb{Z}^{2n}$.

On the other hand, M is biholomorphic to a holomorphic infranil-manifold N/Γ for some $\Gamma \leq \mathsf{E}_J(\mathsf{N})$ by Theorem 6.1. In particular, Γ has a finite index subgroup Γ' isomorphic to \mathbb{Z}^{2n} . As Γ' is a discrete uniform subgroup of N , the Mal'cev uniqueness property implies that N is isomorphic to \mathbb{C}^n . (Note that N is isomorphic to a vector space \mathbb{R}^{2n} . The complex structure J on N is equivalent to the standard complex structure $J_0 = J_0 \times J_0$ on $\mathbb{C}^n = \mathbb{C} \times \mathbb{C}^{n-1}$ by Corollary 3.2. Thus (N, J) is holomorphically isomorphic to \mathbb{C}^n .) If we note that K belongs to $\operatorname{Aut}(\mathbb{C}^n) = \operatorname{GL}(n, \mathbb{C})$ in this case, it follows that $K = \mathrm{U}(n)$, so that $\mathrm{E}_J(\mathsf{N}) = \mathrm{E}_{\mathbb{C}}(n)$. Since $\Gamma \leq \mathrm{E}_{\mathbb{C}}(n)$, M is biholomorphic to a complex euclidean space form \mathbb{C}^n/Γ .

We may identify $M = \mathbb{C}^n/\Gamma$. Let $L: \operatorname{Aff}_{\mathbb{C}}(n) = \mathbb{C}^n \rtimes \operatorname{GL}(n, \mathbb{C}) \to \operatorname{GL}(n, \mathbb{C})$ be the holonomy homomorphism. It remains to describe the structure of the holonomy group $L(\Gamma)$ of \mathbb{C}^n/Γ . First of all note that $L(\Gamma) \leq \operatorname{U}(n)$. The (Bieberbach) group Γ has an extension as in (7.2):

$$1 \to \mathbb{Z}^2 \to \Gamma \xrightarrow{p} \widehat{\Gamma} \to 1 \tag{7.3}$$

where $\mathbb{C}^{n-1}/\widehat{\Gamma}$ is a 2(n-1)-dimensional complex euclidean space. As Γ normalizes $\mathbb{C} (\geq \mathbb{Z}^2)$, we have

$$L((n,\alpha)) = \left\{ \begin{pmatrix} \bar{\phi}(\alpha) & 0\\ 0 & B_{\alpha} \end{pmatrix} \right\} \le \mathrm{U}(n) \qquad \forall (n,\alpha) \in \Gamma.$$
(7.4)

If we recall that $\widehat{\Gamma} \leq \mathcal{E}_{\mathbb{C}}(n-1) = \mathbb{C}^n \rtimes \mathcal{U}(n-1)$, then the action of Γ_{n-1} on \mathbb{C}^{n-1} is described as

$$\alpha(y) = (b_{\alpha}, B_{\alpha})(y) = b_{\alpha} + B_{\alpha}(y), \qquad \alpha \in \widehat{\Gamma}, \quad y \in \mathbb{C}^{n-1}.$$

By the induction hypothesis we assume that $L(\widehat{\Gamma}) = \{B_{\alpha}\} \leq \prod_{i=2}^{n} H_i$ where each H_i is isomorphic to one of $\{1\}, \mathbb{Z}_2, \mathbb{Z}_4$ or \mathbb{Z}_6 .

Noting that $H_1 = \phi(\{\alpha\}) = \{\pm 1\}, \{\pm i\}$ or $\{e^{\pm i\pi/3}\}$ from (2.6), we find from (7.4) that $L(\Gamma) \leq \prod_{i=1}^{n} H_i$. This proves the induction step. \Box

Remark 7.3. By the hypothesis $[f] \in H^2_{\phi}(\widehat{\Gamma}; \mathbb{Z}^2)$ has finite order, say ℓ . Let $\ell \cdot f = \delta^1 \widetilde{\lambda}$ for some function $\widetilde{\lambda}: \widehat{\Gamma} \to \mathbb{Z}^2$. Putting $\lambda = \ell/\widetilde{\lambda}: \Gamma_{n-1} \to \mathbb{C}$, we obtain

$$f = \delta^1 \lambda. \tag{7.5}$$

We have another holomorphic Seifert action of Γ on \mathbb{C}^n associated with the extension (7.3):

$$(n,\alpha)(x,y) = (n+\phi(\alpha)(x) + \lambda(\alpha), \alpha y) \qquad \forall (n,\alpha) \in \Gamma, \quad \forall (x,y) \in \mathbb{C}^n.$$

$$(7.6)$$

Then for $(n, \alpha) \in \Gamma$, the Seifert action (7.6) of Γ on $\mathbb{C} \times \mathbb{C}^{n-1} = \mathbb{C}^n$ is identified with the euclidean action:

$$(n,\alpha)\begin{bmatrix}x\\y\end{bmatrix} = \left(\begin{bmatrix}n+\lambda(\alpha)\\b_{\alpha}\end{bmatrix}, \begin{pmatrix}\phi(\alpha) & 0\\0 & B_{\alpha}\end{pmatrix}\right)\begin{bmatrix}x\\y\end{bmatrix}.$$
(7.7)

If we put

$$\rho((n,\alpha)) = \left(\begin{bmatrix} n+\lambda(\alpha) \\ b_{\alpha} \end{bmatrix}, \begin{pmatrix} \phi(\alpha) & 0 \\ 0 & B_{\alpha} \end{pmatrix} \right),$$
(7.8)

then this gives a faithful homomorphism $\rho \colon \Gamma \to E_{\mathbb{C}}(n)$. We obtain a compact complex euclidean space form $\mathbb{C}^n/\rho(\Gamma)$. By the Bieberbach theorem, Γ is conjugate to $\rho(\Gamma)$ by some element $f \in A(2n) = \mathbb{R}^{2n} \rtimes \operatorname{GL}(2n,\mathbb{R})$. Two complex euclidean space forms \mathbb{C}^n/Γ and $\mathbb{C}^n/\rho(\Gamma)$ are affinely diffeomorphic. In general they are different holomorphic Bieberbach classes.

Remark 7.4. We have a similar result for an S^1 -fibered nilBott manifold of finite type. In fact, it is diffeomorphic to a euclidean space form with holonomy group isomorphic to $(\mathbb{Z}_2)^s$, $0 \le s \le n$ (cf. [16]).

7.2. Kähler Bott tower. An example of finite type is a Kähler torus-Bott manifold, i.e. a torus-Bott manifold which admits a Kähler structure. More precisely, let $T^1_{\mathbb{C}} \to M_m \xrightarrow{p_m} M_{m-1}$ be a holomorphic torus-Bott tower as in (2.1). Suppose that

- (1) each M_m supports a Kähler form Ω_m ;
- (2) $\mathbb{C} \to X_m \xrightarrow{p_m} X_{m-1}$ is the equivariant principal holomorphic bundle in which p_m is a Kähler submersion;
- (3) \mathbb{C} leaves Ω_m invariant $(m = 1, \ldots, n)$.

Then (2.1) is said to be a Kähler Bott tower. The top space $M = M_n$ is said to be a Kähler Bott manifold.

The following theorem is inspired by the result of Carrell [3] (see also [12]).

Theorem 7.5. Let (M, Ω) be a Kähler Bott manifold. Then M is biholomorphic to the complex euclidean space form \mathbb{C}^n/Γ where $L(\Gamma) = \prod_{i=1}^n H_i$.

Proof. To apply Theorem 7.2, it suffices to show that each cocycle [f] representing (2.2) is of finite order in $H^2_{\phi}(\pi_{m-1}; \mathbb{Z}^2)$. In fact, there is a central group extension $1 \to \mathbb{Z}^2 \to \Delta_m \xrightarrow{p_m} \Delta_{m-1} \to 1$ from (2.7). Put $T^1_{\mathbb{C}} = \mathbb{C}/\mathbb{Z}^2$, $Y_m = X_m/\Delta_m$ and $Y_{m-1} = X_{m-1}/\Delta_{m-1}$. Then M_m has a finite covering Y_m which admits a principal holomorphic fibration

$$T^1_{\mathbb{C}} \to Y_m \xrightarrow{q_m} Y_{m-1}.$$
 (7.9)

Then it is proved in [3] (see also [12, Corollary 2.5]) that the Kähler isometric action of $T^1_{\mathbb{C}}$ is homologically injective, i.e. the orbit map $\operatorname{ev}(t) = ty$ at a point $y \in Y_m$ induces an injective homomorphism $\operatorname{ev}_* \colon H_1(T^1_{\mathbb{C}}; \mathbb{Z}) = \mathbb{Z}^2 \to H_1(Y_m; \mathbb{Z})$. This implies that Δ_m has a finite index normal

splitting subgroup, so the representative cocycle of π_m in $H^2_{\phi}(\pi_{m-1};\mathbb{Z}^2)$ has finite order (see [5] for details). By Theorem 7.2, M is *biholomorphic* to a complex euclidean space form \mathbb{C}^n/Γ with the holonomy group $L(\Gamma) = \prod_{i=1}^n H_i$. \Box

Remark 7.6. It follows from the result of Hasegawa [7] and Baues and Cortés [2] that a compact aspherical Kähler manifold with virtually solvable fundamental group is *biholomorphic* to a complex euclidean space form. As the fundamental group of a Kähler Bott manifold is virtually nilpotent by Lemma 2.3, the above theorem is obtained from this result except for the holonomy group characterization.

8. HOLOMORPHIC TORUS-BOTT TOWER OF INFINITE TYPE

We study a holomorphic torus-Bott tower of infinite type. It is hard to determine a *holomorphic* classification of holomorphic torus-Bott manifolds of *infinite type* in higher dimension. Recall the following facts about holomorphic torus-Bott manifolds of *infinite type*:

- The fundamental group is virtually nilpotent (but not abelian).
- A holomorphic torus-Bott manifold of infinite type is a non-Kähler manifold.

8.1. Four-dimensional holomorphic torus-Bott manifolds. It follows from the classification of complex surfaces that a four-dimensional holomorphic torus-Bott manifold is finitely covered by either $T_{\mathbb{C}}^2$ or $S^1 \times \mathcal{N}/\Delta$ where \mathcal{N} is a three-dimensional Heisenberg Lie group isomorphic to the 3×3 upper triangular unipotent matrices with lattice Δ .

Proposition 8.1. A four-dimensional holomorphic torus-Bott manifold is biholomorphic to either $T^2_{\mathbb{C}}/F$ or $S^1 \times \mathcal{N}^3/\Delta$ where F is a finite group of U(2) and Δ is a discrete uniform subgroup of $\mathcal{N} \rtimes U(1)$.

8.2. Six-dimensional examples of infinite type. As a special case of six-dimensional holomorphic torus-Bott manifolds of infinite type, there is a nontrivial holomorphic principal torus bundle over a complex 2-torus which is a holomorphic principal nilmanifold: $T_{\mathbb{C}}^1 \to N_3/\Gamma \xrightarrow{q_3} T_{\mathbb{C}}^2$. Here N_3 is a two-step nilpotent Lie group with a left invariant complex structure. There is a classification of six-dimensional nilpotent Lie algebras with left invariant complex structure in [18, 19]. As b_1 is either 4 or 5 in this case except for \mathbb{C}^3 , the classification gives

Proposition 8.2. A six-dimensional holomorphic torus-Bott manifold over a four-dimensional complex euclidean space form is biholomorphic to the quotient of the following nilpotent Lie group by a cocompact subgroup acting properly discontinuously:

- \mathbb{C}^3 ;
- $\mathcal{N}^3 \times \mathcal{N}^3$ (Lie algebra \mathfrak{h}_2);
- $\mathbb{R}^+ \times \mathcal{N}^5$ (Lie algebra \mathfrak{h}_3);
- the Iwasawa Lie group \mathcal{L}_3 (Lie algebra \mathfrak{h}_5);
- the Nilpotent Lie group corresponding to \mathfrak{h}_4 ;
- the Nilpotent Lie group corresponding to \mathfrak{h}_6 ;
- $\mathbb{R}^3 \times \mathcal{N}^3$ (Lie algebra \mathfrak{h}_8).

Remark 8.3. Here $\mathcal{N}_8 = \mathbb{R}^3 \times \mathcal{N}^3$ is viewed as $\mathbb{R} \times \mathbb{R} \to \mathcal{N}_8 \to \mathbb{R}^2 \times \mathbb{C}$. There is another exact sequence $1 \to \mathbb{C} \to \mathcal{N}_8 \to \mathbb{R}^+ \times \mathcal{N}^3 \to 1$ such that $[\mathcal{N}_8, \mathcal{N}_8] = \mathbb{R} \leq \mathbb{C}$. Note that this is a splitting exact sequence $\mathcal{N}_8 = \mathbb{C} \times (\mathbb{R}^+ \times \mathcal{N}^3)$ but the base space $\mathbb{R}^+ \times \mathcal{N}^3$ is not \mathbb{C}^2 .

It is interesting to find what non-Kähler geometric structure exists on a holomorphic torus-Bott manifold of infinite type. We have found two such classes in general dimension. The following result is obtained in [8, 13].

Theorem 8.4. (i) A (2n+2)-dimensional compact infranil-manifold M admits a locally conformal Kähler structure if and only if $M = \mathbb{R} \times \mathcal{N}/\Gamma$ where \mathcal{N} is the Heisenberg nilpotent Lie group and $\Gamma \leq \mathbb{R} \times (\mathcal{N} \rtimes \mathrm{U}(n))$ is a discrete cocompact subgroup. In this case M has the holomorphic torus fibration over the complex euclidean orbifold:

$$T^1_{\mathbb{C}} \to M \to \mathbb{C}^n / \Gamma.$$

Some finite cover M' of $\mathbb{R} \times \mathcal{N}/\Gamma$ is a holomorphic torus-Bott manifold of infinite type:

$$M' \xrightarrow{T^1_{\mathbb{C}}} T^n_{\mathbb{C}} \to \ldots \to \{ \mathrm{pt} \}.$$

(ii) There exists a 2(2n + 1)-dimensional complex nilpotent Lie group $\mathcal{L} = \mathcal{L}_{2n+1}$ and a torsion-free discrete cocompact subgroup Γ of the semidirect product $\mathcal{L} \rtimes (\operatorname{Sp}(n) \cdot S^1)$ such that a 2(2n + 1)-dimensional complex infranil-manifold \mathcal{L}/Γ admits a complex contact structure. The infranil-manifold \mathcal{L}/Γ supports a holomorphic torus bundle over the quaternionic euclidean orbifold:

$$T^1_{\mathbb{C}} \to \mathcal{L}/\Gamma \to \mathbb{H}^n/\Delta$$

Moreover, some finite cover M' of \mathcal{L}/Γ is a holomorphic torus-Bott manifold of infinite type:

$$M' \xrightarrow{T^1_{\mathbb{C}}} T^{2n}_{\mathbb{C}} \to \ldots \to \{ \mathrm{pt} \}.$$

Here \mathcal{L}_3 is the Iwasawa complex nilpotent Lie group.

REFERENCES

- 1. O. Baues, "Infra-solvmanifolds and rigidity of subgroups in solvable linear algebraic groups," Topology 43 (4), 903–924 (2004).
- O. Baues and V. Cortés, "Aspherical Kähler manifolds with solvable fundamental group," Geom. Dedicata 122, 215–229 (2006).
- J. B. Carrell, "Holomorphically injective complex toral actions," in Proc. 2nd Conf. on Compact Transformation Groups (Springer, Berlin, 1972), Part II, Lect. Notes Math. 299, pp. 205–236.
- P. E. Conner and F. Raymond, "Actions of compact Lie groups on aspherical manifolds," in *Topology of Manifolds:* Proc. Univ. Georgia, 1969 (Markham, Chicago, 1971), pp. 227–264.
- 5. P. E. Conner and F. Raymond, "Injective operations of the toral groups," Topology 10 (4), 283–296 (1971).
- P. E. Conner and F. Raymond, "Holomorphic Seifert fibering," in Proc. 2nd Conf. on Compact Transformation Groups (Springer, Berlin, 1972), Part II, Lect. Notes Math. 299, pp. 124–204.
- 7. K. Hasegawa, "A note on compact solvmanifolds with Kähler structures," Osaka J. Math. 43, 131–135 (2006).
- 8. K. Hasegawa and Y. Kamishima, "Compact homogeneous locally conformally Kähler manifolds," arXiv:1312.2202 [math.CV].
- 9. F. Hirzebruch, Topological Methods in Algebraic Geometry (Springer, Berlin, 1966), Grundl. Math. Wiss. 131.
- Y. Kamishima, K. B. Lee, and F. Raymond, "The Seifert construction and its applications to infranilmanifolds," Q. J. Math., Oxford, Ser. 2, 34, 433–452 (1983).
- 11. Y. Kamishima and M. Nakayama, "Topology of nilBott tower of aspherical manifolds" (in preparation).
- 12. Y. Kamishima and M. Nakayama, "Torus actions and the Halperin–Carlsson conjecture," arXiv:1206.4790v1 [math.GT].
- 13. Y. Kamishima and A. Tanaka, "On complex contact similarity manifolds," J. Math. Res. 5 (4), 1–10 (2013).
- K. B. Lee and F. Raymond, Seifert Fiberings (Am. Math. Soc., Providence, RI, 2010), Math. Surv. Monogr. 166.
- S. Murakami, "Sur certains espaces fibrés principaux holomorphes admettant des connexions holomorphes," Osaka Math. J. 11, 43–62 (1959).
- 16. M. Nakayama, "On the S¹-fibred nilBott tower," Osaka J. Math. **51**, 67–89 (2014); arXiv:1110.1164 [math.AT].
- S. Rollenske, "Geometry of nilmanifolds with left-invariant complex structure and deformations in the large," Proc. London Math. Soc., Ser. 3, 99 (2), 425–460 (2009).
- 18. S. M. Salamon, "Complex structures on nilpotent Lie algebras," J. Pure Appl. Algebra 157, 311–333 (2001).
- 19. L. Ugarte, "Hermitian structures on six-dimensional nilmanifolds," Transform. Groups 12 (1), 175-202 (2007).

This article was submitted by the authors in English