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Abstract—We introduce a notion of holomorphic torus-Bott tower which is an iterated holo-
morphic Seifert fiber space with fiber a complex torus. This is thought of as a holomorphic
version of a real Bott tower. The top space of the holomorphic torus-Bott tower is called a holo-
morphic torus-Bott manifold. We discuss the structure of holomorphic torus-Bott manifolds
and particularly the holomorphic rigidity of holomorphic torus-Bott manifolds.
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1. INTRODUCTION

A holomorphic torus-Bott tower is a sequence of holomorphic Seifert fiber bundles by a complex
torus fiber T 1

C
:

M = Mn → Mn−1 → . . . → M1 → {pt}. (1.1)

The top space M of the tower (1.1) is said to be a holomorphic torus-Bott manifold of dimension 2n
(see Definition 2.1 below for more details). Inductively from (1.1), M turns out to be a closed as-
pherical manifold. Then it is shown that the fundamental group Γ of M is virtually nilpotent. Let
E(N) = N � K be the semidirect product of a simply connected nilpotent Lie group N with a com-
pact group K in which K is a maximal compact group of the automorphism group Aut(N). When we
forget a complex structure on M , it is proved that M is diffeomorphic to an infranil-manifold N/ρ(Γ)
where ρ : Γ → E(N) is a discrete faithful representation. In particular, Seifert rigidity implies that
two holomorphic torus-Bott manifolds with isomorphic fundamental groups are diffeomorphic.

In this paper we are interested in a holomorphic version of structure and rigidity for holomorphic
torus-Bott manifolds.

By a holomorphic nilmanifold we shall mean a complex nilmanifold with left invariant complex
structure. Refer to [17] for the recent results of deformation of left invariant nilpotent Lie algebras.
On the other hand, denote by T k

C
a complex k-dimensional torus. Recall the structure theorem from

S. Murakami’s classical result [15].
Theorem. Let T 1

C
→ Y → T k

C
be a principal holomorphic torus bundle. Then Y is biholomor-

phic to a holomorphic nilmanifold N/Δ where N is a two-step nilpotent Lie group with left invariant
complex structure containing a discrete uniform subgroup Δ.

To study the holomorphic rigidity of our holomorphic torus-Bott manifolds, we need to gener-
alize this result to the case of holomorphic torus bundles (orbibundles) over holomorphic infranil-
manifolds (infranil-orbifolds).

We refer to [14, 3] for a holomorphic Seifert fibration. We shall prove the following Theorem 6.1:
Let M be a 2n-dimensional holomorphic torus-Bott manifold which is a holomorphic fiber bundle

over ̂M with fiber T 1
C
. Then M is biholomorphic to a holomorphic infranil-manifold N/Γ in which
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N/Γ has a holomorphic Seifert fibration T 1
C
→ N/Γ → ̂N/̂Γ such that ̂M is biholomorphic to a

holomorphic infranil-manifold ̂N/̂Γ.
The proof of this theorem is organized as follows: As the fundamental group of M is virtually

nilpotent, the smooth classification implies that M is diffeomorphic to an infranil-manifold N/Γ.
Even if N/Γ supports a complex structure, it does not follow that M is biholomorphic to N/Γ.
However, N has a central extension 1 → C → N → ̂N → 1 in this case. Assume inductively
that ̂M is biholomorphic to a holomorphic infranil-manifold ̂N/̂Γ. Then we can find a nilpotent Lie
group N ′ isomorphic to N . The group N ′ admits an E(N ′)-invariant complex structure J for which
the central extension 1 → C → N ′ → ̂N → 1 becomes a principal holomorphic bundle. Moreover,
N ′ is biholomorphic to the complex space C

n; indeed, this fact is due to Oka’s principle that
the universal covering (N ′, J) is biholomorphic as a principal holomorphic bundle to the product
(C × ̂N,J0 × ̂J) inductively. Speculating on the cohomology exact sequence induced from a short
exact sequence 1 → Z

2 i−→ C

j−→ T 1
C
→ 1,

. . . → H1
φ(̂Γ; hol( ̂N, C))

j−→ H1
φ(̂Γ; hol( ̂N,T 1

C)) δ−→ H2
φ(̂Γ; Z2) → . . . ,

we can show that M is biholomorphic to a holomorphic infranil-manifold N ′/Γ′ where Γ′ ≤ EJ(N ′)
which is the semidirect product N ′

� K ′ invariant under the complex structure J . There we
construct a deformation N ′/Γ′ of N/Γ (see Theorem 5.1 below). Of course, N ′/Γ′ is nothing
but N/Γ topologically.

The paper consists of the following sections. In Section 2 we introduce a notion of holomor-
phic torus-Bott tower and prove some topological results. We construct complex structures on
holomorphic infranil-manifolds in Section 3. We study holomorphic infranil actions and holomor-
phic Seifert actions in Section 4. In Section 5, we prove the following Theorem 5.1, which is a
key tool to prove Theorem 6.1. Suppose that there is an equivariant holomorphic Seifert action
(Z2, C) → (Γ, N) → (̂Γ, ̂N) such that ̂N/̂Γ is an infranil-manifold.

Let (N,Γ) be a holomorphic Seifert action. Then there exists a nilpotent Lie group N ′ and a
discrete subgroup Γ′ ≤ EJ(N ′) for which the quotient N/Γ is biholomorphic to the holomorphic
infranil-manifold N ′/Γ′.

In Section 6 we prove the above Theorem 6.1. As an application, each holomorphic fiber bundle
T 1

C
→ Mi → Mi−1 of (1.1) gives rise to a group extension of the fundamental groups: 1 → Z

2 →
πi → πi−1 → 1. This group extension represents a cocycle in H2

φ(πi−1; Z2). A holomorphic torus-
Bott manifold is said to be of finite type if each cocycle has finite order ; otherwise it is said to
be of infinite type (cf. Definition 7.1). In Section 7, we apply Theorem 6.1 to show the following
Theorem 7.2:

A holomorphic torus-Bott manifold M of finite type is biholomorphic to a complex euclidean
space form C

n/Γ with holonomy group L(Γ) lying in
∏n

i=1 Hi where Hi is either {1}, Z2, Z4 or Z6.
An example of finite type is a Kähler Bott tower, i.e. each Mi is a Kähler manifold such that

T 1
C
→ Mi → Mi−1 is a Kähler submersion (see Subsection 7.2). It is shown in Theorem 7.5 that every

Kähler Bott manifold M is biholomorphic to a complex euclidean space form C
n/Γ of Theorem 7.2.

In Section 8 we study holomorphic torus-Bott manifolds of infinite type. As the fundamental group
of such a manifold is virtually nilpotent (but not virtually abelian), it is a non-Kähler manifold.
It would be difficult to obtain a holomorphic classification of holomorphic torus-Bott manifolds of
infinite type. We shall consider what non-Kähler geometric structures exist on holomorphic torus-
Bott manifolds of infinite type. In Theorem 8.4, we provide two classes of geometric structures:

(i) a (2n + 2)-dimensional locally homogeneous locally conformal Kähler manifold M = R×N/Γ
where N is the Heisenberg nilpotent Lie group and Γ ≤ R × (N � U(n)) is a discrete uniform
subgroup;

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 286 2014



ON THE HOLOMORPHIC TORUS-BOTT TOWER 255

(ii) a complex (2n + 1)-dimensional locally homogeneous complex contact manifold L/Γ where
L = L2n+1 is a complex (2n + 1)-dimensional complex nilpotent Lie group and Γ is a discrete
uniform subgroup of L � (Sp(n) · S1).

In particular, L3 is the Iwasawa nilpotent Lie group.

2. HOLOMORPHIC TORUS-BOTT TOWER

Suppose that there is a tower of fiber bundles (1.1),

M = Mn → Mn−1 → . . . → M1 → {pt}.

Each (Mm, Jm) is a complex manifold such that

T 1
C → Mm → Mm−1 (2.1)

is a holomorphic fiber bundle (m = 1, . . . , n) which induces a group extension

1 → Z
2 → πm → πm−1 → 1. (2.2)

For m = 1, M1 = T 1
C

with π1 = Z
2. Let (Xm, Jm) be the universal covering space of Mm

(m = 1, . . . , n) such that X1 = C.
Definition 2.1. The holomorphic torus-Bott tower is a tower (1.1) which satisfies the following

conditions:

(1) There is an equivariant holomorphic principal bundle

(Z2, C) → (πm,Xm, Jm)
pm−−→ (πm−1,Xm−1, Jm−1) (2.3)

associated with the group extension (2.2).
(2) Each πm normalizes the holomorphic action of C.

We call the top space M (= Mn) a holomorphic torus-Bott manifold (of depth n).
There are several remarks. Condition (2) for m is equivalent to say that T 1

C
→ Mm → Mm−1 is a

Seifert fiber space in the smooth case. It is not necessarily true that the universal covering Xm is bi-
holomorphic to the product C × Xm−1. So, contrary to the smooth case, holomorphic Seifert actions
are not described explicitly on the product C × Xm−1 in general. However, our holomorphic Seifert
actions on the universal covering of a holomorphic torus-Bott manifold can be described. In fact,
let (X,J) (= (Xn, Jn)) be the universal covering of a holomorphic torus-Bott manifold M = Mn.
Put (Xn−1, Jn−1) = ( ̂X, ̂J).

Proposition 2.2. (X,J) is biholomorphic as a holomorphic principal bundle to the product
(C × ̂X,J0 × ̂J).

Proof. By Definition 2.1, X1 = C. We assume inductively that ̂X = Xn−1 is biholomorphic
to C

n−1. By condition (2) of Definition 2.1, C → X → ̂X is a holomorphic principal bundle.
When Ah is the sheaf of germs of (local) holomorphic functions on ̂X, Oka’s principle says that
H1( ̂X,Ah) = 0 (see [9, pp. 167–168]). Thus (X,J) is holomorphically bundle isomorphic to the
product (C × ̂X,J0 × ̂J). �

2.1. Holomorphic Seifert action. As a consequence of Proposition 2.2, the holomorphic
action of π on (X,J) is a holomorphic action of π on (C × ̂X,J0 × ̂J). Assume that (π̂, ̂X, ̂J) is
a holomorphic action. Let (Z2, C) → (π, C × ̂X,J)

p−→ (π̂, ̂X, ̂J) be an equivariant holomorphic
principal bundle as in condition (1) of Definition 2.1.
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• The group extension 1 → Z
2 → π → π̂ → 1 represents a cocycle f : π̂ × π̂ → Z

2 such that
each element γ ∈ π is viewed as (n, α) ∈ Z

2 × π̂ with the group law

(n, α)(m,β) =
(

n + φ(α)(m) + f(α, β), αβ
)

.

Here φ : π̂ → Aut(Z2) is the homomorphism induced by the conjugation of π.

Since π normalizes the left translations C on C × ̂X by condition (2) of Definition 2.1, we can
describe the action of π explicitly:

• There is a holomorphic map χ(α) : ( ̂X, ̂J) → (C, J0) for each α ∈ π̂ such that the action
(π, C × ̂X) is described as

(n, α)(x,w) =
(

n + φ̄(α)(x) + χ(α)(αw), αw
)

(2.4)

for all (n, α) ∈ π and (x,w) ∈ C × ̂X . Here φ̄ : π̂ → Aut(C) is a unique extension of φ.

By the definition, (π,X) is a holomorphic Seifert action (cf. [6, 14, 3]).

2.2. Topology of a holomorphic torus-Bott manifold. From (2.2) there is a homomor-
phism induced by conjugation, φ : πm−1 → Aut(Z2). Since each element of πm is almost complex
and normalizes C, there exists a matrix P ∈ GL(2, R) such that

P−1 · φ(πm−1) · P ≤ U(1).

If we let P−1 · φ(α) · P =
(

cos θ − sin θ
sin θ cos θ

)

for α ∈ πm−1, then the trace condition shows that cos θ =
0,±1/2,±1. It follows that respectively

φ(α) =
(

0 −1
1 0

)±1

,

(

1 1
−1 0

)±1

,

(

±1 0
0 ±1

)

. (2.5)

So φ extends uniquely to an automorphism φ̄ : πm−1 → AutJ(C) = C
∗ such that

φ̄(α) = ±i, e±iπ/3 or ±1 ∀α ∈ πm−1, (2.6)

respectively. In particular, φ̄(πm−1) is a cyclic group of order 1, 2, 4 or 6.
Lemma 2.3. Each πm is virtually nilpotent.
Proof. As Z

2 = π1, we suppose inductively that πm−1 is virtually nilpotent. Since φ(πm−1) ≤
Aut(Z2) is a finite cyclic group, we choose a finite index normal nilpotent subgroup Δm−1 of πm−1

such that φ(Δm−1) = {1}. Then the group extension of (2.2) induces a central extension:

1 −−−−→ Z
2 −−−−→ πm −−−−→ πm−1 −−−−→ 1

||
�

⏐

⏐

�

⏐

⏐

1 −−−−→ Z
2 −−−−→ Δm −−−−→ Δm−1 −−−−→ 1

(2.7)

And hence Δm is nilpotent, which proves the induction step. �
For a holomorphic torus-Bott manifold M , there is a holomorphic fiber bundle T 1

C
→M →Mn−1.

As the fundamental group π of M is virtually nilpotent, there exists a simply connected nilpotent
Lie group N and a discrete faithful homomorphism ρ : π → Γ ≤ E(N) such that the quotient N/Γ is
an infranil-manifold (cf. [1] for instance). Seifert rigidity for nil-fiber [11] (see also [10, 14]) implies
the following

Proposition 2.4. Any holomorphic torus-Bott manifold M is diffeomorphic to an infranil-
manifold N/Γ.
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Moreover, the diffeomorphism h between them preserves the fiber, i.e. there is a commutative
diagram of equivariant diffeomorphisms:

(Z2, C) −−−−→ (π,X)
p−−−−→ (π̂, ̂X)

id

⏐

⏐



˜h

⏐

⏐



̂h

⏐

⏐




(Z2, C) −−−−→ (Γ, N)
p−−−−→ (̂Γ, ̂N)

(2.8)

3. INVARIANT METRIC ON A NILPOTENT LIE GROUP

3.1. Holomorphic infranil-manifolds. Let N be a simply connected nilpotent Lie group
with left invariant complex structure J . Denote by AutJ(N) the group of automorphisms of N
which preserve J , i.e. α∗ ◦ J = J ◦ α∗ on T1N . Choose a maximal compact subgroup K from
AutJ(N) and put EJ(N) = N � K. Each element h = (a, α) ∈ EJ(N) acts on N as h(x) = a · α(x)
for all x ∈ N . Then EJ(N) = N � K acts holomorphically on N . If Γ is a discrete (torsion-
free) uniform subgroup of EJ(N), the quotient N/Γ is said to be a holomorphic infranil-orbifold
(infranil-manifold). It is well known that a finite cover of N/Γ is a nilmanifold.

3.2. Construction of an E(N)-invariant complex structure. Let N be a simply con-
nected nilpotent Lie group which has a central group extension 1 → C → N

π−→ ̂N → 1. Let
E(N) = N � K be the semidirect product. As C is normal in E(N), π induces an equivariant
(continuous) homomorphism

π : (E(N), N) → (E( ̂N ), ̂N ). (3.1)

As K ≤ Aut(N) normalizes C, there is a homomorphism ρ : K → GL(2, R). In order to be
holomorphic on C, we require that ρ(K) ≤ U(1) ≤ GL(1, C) = Aut(C). Equivalently, for all k ∈ K,

k∗ ◦ J0 = J0 ◦ k∗ on TC. (3.2)

Suppose that ̂J is a left invariant complex structure on the (2n − 2)-dimensional nilpotent Lie
group ̂N . As before, E

̂J( ̂N) denotes the holomorphic semidirect product ̂N �
̂K of ̂N with a

compact group ̂K ≤ Aut
̂J( ̂N).

Proposition 3.1. There exists an E(N)-invariant complex structure on N under the require-
ment (3.2). Moreover,

(C, J0) → (N,J) π−→ ( ̂N, ̂J)

is a principal holomorphic bundle.

Proof. Choose an N -invariant Riemannian metric on N and average it by the compact
group K. Since K normalizes N , this gives an E(N)-invariant Riemannian metric g on N . Let
TC

⊥ = {X ∈ TN | g(X,A) = 0 ∀A ∈ TC}. As g is E(N)-invariant and C is normal in E(N), it is
easy to see that TC

⊥ is E(N)-invariant. Then the projection π : N → ̂N induces an isomorphism
π∗ : TC

⊥ → T ̂N at each point of N . Define an almost complex structure J on TC
⊥ by the following

correspondence at each point of N :

π∗JX = ̂Jπ∗X. (3.3)

Let J0 be the standard complex structure on C
k (k ≥ 1). If we note that TN = TC ⊕ TC

⊥, then
we define

J(A + X) = J0A + JX, A ∈ TC, X ∈ TC
⊥. (3.4)
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It follows that J is an almost complex structure on N . Since E(N) leaves TC
⊥ invariant and

normalizes C, the decomposition is preserved by any element h ∈ E(N); h∗A + h∗X ∈ TC ⊕ TC
⊥.

In view of (3.1), the hypothesis that ̂J is E( ̂N)-invariant shows that

π∗(h∗JX) = π(h)∗π∗(JX) = π(h)∗ ̂Jπ∗(X) = ̂Jπ(h)∗π∗(X) = ̂Jπ∗(h∗X) = π∗(Jh∗X),

and so h∗JX = Jh∗X for all X ∈ TC
⊥. As C is the center of N , x∗J0 = J0x∗ on TC for all

x ∈ N . Each α ∈ K satisfies α∗J0 = J0α∗ on TC by our requirement (3.2). In particular, if
h = (x, α) ∈ E(N), then h∗J0 = J0h∗ on TC. Taking into account these equalities, we have

Jh∗(A + X) = J0h∗A + Jh∗X = h∗J0A + h∗JX = h∗J(A + X),

and hence J is E(N)-invariant. Obviously (C, J0) → (N,J) π−→ ( ̂N, ̂J) is an almost complex principal
fiber bundle with respect to J . Let ϕ : (π−1(U), J) → (U × C, J0 × ̂J) be a local trivialization
isomorphism for this bundle. As ̂J is a complex structure by the hypothesis, so is J on N . �

3.3. Trivialization. Let (C, J0) → (N,J) π−→ ( ̂N, ̂J) be a principal holomorphic bundle from
Proposition 3.1. We assume that ( ̂N, ̂J) is biholomorphic to (Cn−1, J0). By Proposition 2.2 we have

Corollary 3.2. (N,J) is biholomorphic as a holomorphic principal bundle to the product
(C × ̂N,J0 × ̂J).

Let EJ(N) = N � K be the holomorphic semidirect product. Choose a torsion-free discrete
cocompact subgroup Γ from EJ(N) so that N/Γ is a holomorphic infranil-manifold.

4. HOLOMORPHIC INFRANIL ACTION

4.1. Seifert infranil-manifold. We observe that a holomorphic infranil-manifold N/Γ will
be a holomorphic Seifert manifold.

The central group extension 1 → C → N
π−→ ̂N → 1 is viewed as a holomorphic principal bundle

by Proposition 3.1. Under the hypothesis in Subsection 3.3, Corollary 3.2 shows that N = C × ̂N
biholomorphically with the group law

(x, z) · (y,w) = (x + y + f(z,w), z · w). (4.1)

Here f : ̂N × ̂N → C is a 2-cocycle. Put E(N) = EJ(N) for brevity. Since E(N) normalizes C, there
is a commutative diagram of exact sequences:

1 −−−−→ C −−−−→ N
π−−−−→ ̂N −−−−→ 1

||
⏐

⏐




⏐

⏐




1 −−−−→ C −−−−→ E(N) π−−−−→ ̂N ◦ K −−−−→ 1

(4.2)

where we put E(N)/C = ̂N ◦ K. As E(N) is the semidirect product N � K, ̂N ◦ K has the group
law; for α = a ◦ k, β = b ◦ h ∈ ̂N ◦ K,

α · β = ak(b) ◦ kh.

As K ≤ Aut(N), there is a homomorphism ρ̂ : K → Aut( ̂N). If we recall that ̂K is the maximal
compact subgroup of Aut( ̂N), ρ̂(K) ≤ ̂K up to conjugation. It follows that

̂N ◦ K = ̂N � ρ̂(K) ≤ E( ̂N). (4.3)
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Let φ : ̂N ◦ K → Aut(C) be a homomorphism induced by the conjugation from (4.2). Then E(N)
is viewed as the set C × ( ̂N ◦ K) with the group law

(x, α) · (y, β) =
(

x + φ(α)(y) + f̄(α, β), α · β
)

(4.4)

in which f̄ : ̂N ◦ K × ̂N ◦ K → C is a 2-cocycle extending f on ̂N × ̂N of (4.1). The action of E(N)
on N is interpreted in terms of group law (4.4): E(N) × E(N) → E(N) → N ; let α = a ◦ k ∈ ̂N ◦ K
with (x, α) ∈ E(N) and b ∈ ̂N with (y, b) ∈ N . Then

(x, α) · (y, b) = (x + φ(α)(y) + f̄(α, b), ak(b) ◦ k) 	→ (x + φ(α)(y) + f̄(α, b), ak(b)) ∈ N. (4.5)

As in Subsection 3.1, E(N) normalizes C, so the holomorphic action of E(N) on N induces a
holomorphic action of ̂N ◦ K on ̂N by αb = ak(b) for all α = a ◦ k ∈ ̂N ◦ K and b ∈ ̂N . By the
definition of Subsection 2.1, we obtain a holomorphic Seifert fibration associated with the group
extensions of (4.2):

(C, C) → (E(N), N) π−→ ( ̂N ◦ K, ̂N )

where N = C × ̂N biholomorphically. Let (y,w) ∈ N . If h = (x, α) ∈ E(N) with α (= a · k) ∈
̂N ◦ K, then as in (2.4) the holomorphic Seifert action implies that there is a holomorphic map
μ(α) : ( ̂N, ̂J) → (C, J0) such that

h(y,w) =
(

x + φ(α)(y) + μ(α)(αw), αw
)

. (4.6)

Using μ (cf. [14]), one can describe f̄ : ̂N ◦ K × ̂N ◦ K → C as f̄(α, β) = δ1μ(α, β)(w) for all
w ∈ ̂N , i.e.

f̄(α, β) = φ(α)(μ(β)(α−1 · w)) + μ(α)(w) − μ(αβ)(w) ∀α, β ∈ ̂N ◦ K, ∀w ∈ ̂N. (4.7)

Here the set hol( ̂N, C) is an ( ̂N ◦ ̂K)-module defined by

(α · g)(w) = φ(α)(g(α−1 · w)) ∀ g ∈ hol( ̂N, C), ∀α ∈ ̂N ◦ K. (4.8)

4.2. Holomorphic Seifert manifold. Consider a torsion-free discrete uniform subgroup Γ
lying in E(N) = EJ(N):

1 −−−−→ Z
2 −−−−→ Γ π−−−−→ ̂Γ −−−−→ 1
∩ ∩ ∩

1 −−−−→ C −−−−→ E(N) π−−−−→ ̂N ◦ K −−−−→ 1

(4.9)

Here Z
2 = C ∩ Γ and ̂Γ = π(Γ). Then the group extension of Γ is represented by a 2-cocycle

[f ] ∈ H2
φ(̂Γ; Z2) where φ = φ|̂Γ : ̂Γ → Aut(Z2) is a homomorphism restricted to ̂Γ. Note that Z

2 is

a ̂Γ-module through φ. In view of (4.6), we have shown that
Proposition 4.1. Given a holomorphic infranil action of ̂Γ (i.e. ̂Γ ≤ E

̂J
( ̂N )), a holomorphic

infranil action of Γ on (N,J) is a holomorphic Seifert action of Γ on (C × ̂N,J0 × ̂J) which can
be determined by a holomorphic map μ(α) : ̂N → C for each α ∈ ̂Γ such that

(n, α)(x,w) = (n + φ(α)(x) + μ(α)(αw), αw) ∀ (n, α) ∈ Γ, ∀ (x,w) ∈ N. (4.10)

Moreover, the cocycle f representing the group extension of Γ in (4.9) satisfies δ1μ = f as in (4.7).
Comparing (4.5) with (4.10) implies that

f̄(α,w) = μ(α)(αw) ∀α ∈ ̂Γ, ∀w ∈ ̂N. (4.11)

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 286 2014



260 Y. KAMISHIMA, M. NAKAYAMA

5. DEFORMATION OF NILPOTENT LIE GROUPS

Let hol( ̂N, C) be the set of all holomorphic maps from ( ̂N, ̂J) to C. It is endowed with a
̂Γ-module as in (4.8), and similarly for hol( ̂N,T 1

C
) and Z

2 (cf. Subsection 4.2).

Recall that a short exact sequence 1 → Z
2 i−→ C

j−→ T 1
C
→ 1 induces a long cohomology exact

sequence (cf. [14, 3])

. . . → H1
φ(̂Γ; Z2) i−→ H1

φ(̂Γ; hol( ̂N, C))
j−→ H1

φ(̂Γ; hol( ̂N,T 1
C)) δ−→ H2

φ(̂Γ; Z2) → . . . . (5.1)

Put μ̂ = j ◦ μ : ̂N → T 1
C

for a holomorphic function μ of Proposition 4.1. Then (4.10) implies that
δ[μ̂] = [f ] by the definition. For any element [ν] ∈ H1(̂Γ; hol( ̂N, C)), we have an element j[ν] · [μ̂]
such that δ(j[ν] · [μ̂]) = [f ]. Note that j maps μ + ν to jν · μ̂. From Proposition 4.1, δ1μ = f and
so it follows that δ1(μ + ν) = f , which still defines the same group extension 1 → Z

2 → Γ → ̂Γ → 1.
We study a holomorphic Seifert action of Γ by this replacement μ + ν which is given by

(n, α)(x,w) =
(

n + φ(α)(x) + μ(α)(αw) + ν(α)(αw), αw
)

, n ∈ Z
2, α ∈ ̂Γ, (x,w) ∈ N. (5.2)

Theorem 5.1. There exists a nilpotent Lie group N ′ isomorphic to N such that the complex
structure J is invariant under E(N ′). The above action (Γ, N) is equivariantly biholomorphic to an
infranil action of Γ′ on N ′ (i.e. Γ′ ≤ EJ(N ′)). Here Γ′ is a discrete uniform subgroup isomorphic
to Γ. Specifically the quotient N/Γ is biholomorphic to the holomorphic infranil-manifold N ′/Γ′.
(In particular, Δ′ = Γ′ ∩ N ′ is a finite index subgroup of Γ′ such that N ′/Δ′ is a holomorphic
nilmanifold.)

Proof. First, when we take a ̂Γ-module Map( ̂N, C) consisting of smooth maps from ̂N to C

instead of hol( ̂N, C), we note that

Hq
φ

(

̂Γ;Map( ̂N, C)
)

= 0, q ≥ 1

(see [4, 14]).
If [ν] ∈ H1

φ(̂Γ; hol( ̂N, C)) is relaxed to be in H1
φ(̂Γ;Map( ̂N, C)), then there is an element

λ ∈ Map( ̂N, C) such that δ1λ = ν, i.e. ν(α)(αw) = δ1λ(α)(αw) = α ◦ λ(αw) − λ(αw); hence
(cf. (4.8))

ν(α)(αw) = φ(α)(λ(w)) − λ(αw) ∀α ∈ ̂Γ, ∀w ∈ ̂N. (5.3)

A function f ′ : ̂N × ̂N → C is defined to be

f ′(z,w) = f(z,w) + δ1λ(z,w), z, w ∈ ̂N. (5.4)

As 1 → C → N → ̂N → 1 is a central extension, δ1λ(z,w) = z · λ(w) − λ(z · w) + λ(z) =
λ(z) + λ(w) − λ(z · w). It is easy to see that δ1f ′ = 0, so f ′ is a 2-cocycle in H2( ̂N ; C). Let
N ′ = C × ̂N be the product with the group law

(x, z) ◦ (y,w) = (x + y + f ′(z,w), z · w).

N ′ becomes a Lie group. Moreover, if ϕ : N → N ′ is a map defined by

ϕ(x, z) = (x − λ(z), z), (5.5)

then
ϕ((x, z) · (y,w)) = ϕ(x + y + f(z,w), z · w) = (x + y + f(z,w) − λ(z · w), z · w)

= (x + y + f(z,w) + δ1λ(z,w) − λ(z) − λ(w), z · w)

= (x + y + f ′(z,w) − λ(z) − λ(w), z · w)

= (x − λ(z), z) ◦ (y − λ(w), w) = ϕ(x, z) ◦ ϕ(y,w). (5.6)

Thus ϕ : N → N ′ is a Lie group isomorphism.
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Let λ : ̂N → C be the map as above. We extend λ to ̂N ◦ K. Let α = a · k ∈ ̂N ◦ K. Since
K ≤ Aut(N), evaluated at 1 ∈ N , we simply put

λ̄(α) = λ(a). (5.7)

We can define a 2-cocycle f̄ ′ : ( ̂N ◦ K) × ( ̂N ◦ K) → C to be

f̄ ′(α, β) = f̄(α, β) + δ1λ̄(α, β), α, β ∈ ̂N ◦ K, (5.8)

where
δ1λ̄(α, β) = φ(α)(λ̄(β)) − λ̄(αβ) + λ̄(α). (5.9)

Then we have a group G as the set C × ( ̂N ◦ K) with the group law

(x, α) ◦ (y, β) =
(

x + φ(α)(y) + f̄ ′(α, β), αβ
)

. (5.10)

By construction, there is an exact sequence 1 → N ′ → G
π−→ K → 1. As N ′ is a simply

connected nilpotent Lie group, it follows that G = N ′
� K ′ for which π maps K ′ isomorphically

onto K. In particular, G = E(N ′). As in (5.6), if we define ϕ : E(N) → E(N ′) = G to be

ϕ(x, α) = (x − λ̄(α), α), (5.11)

then

ϕ((x, α) · (y, β)) =
(

x + φ(α)(y) + f̄(α, β) − λ̄(αβ), αβ
)

=
(

x + φ(α)(y) + f̄(α, β) + δ1λ̄(α, β) − φ(α)(λ̄(β)) − λ̄(α), αβ
)

=
(

x + φ(α)(y) + f̄ ′(α, β) − φ(α)(λ̄(β)) − λ̄(α), αβ
)

= (x − λ̄(α), α) ◦ (y − λ̄(β), β) = ϕ(x, α) ◦ ϕ(y, β). (5.12)

Hence ϕ : E(N) → E(N ′) is an isomorphism. By formula (5.11), ϕ|C = id and the induced homo-
morphism ϕ̂ : ̂N → ̂N of ϕ is id on ̂N ◦ K. This induces the following exact sequences:

1 −−−−→ C −−−−→ E(N) π−−−−→ ̂N ◦ K −−−−→ 1

id

⏐

⏐



ϕ

⏐

⏐


 id

⏐

⏐




1 −−−−→ C −−−−→ E(N ′) π−−−−→ ̂N ◦ K −−−−→ 1

(5.13)

We recall the infranil action of E(N ′) on N ′. As in (4.5), for α = a ◦ k ∈ ̂N ◦ K with
(x, α) ∈ E(N ′) and w ∈ ̂N with (y,w) ∈ N ′, it follows that

(x, α) ◦ (y,w) =
(

x + φ(α)(y) + f̄ ′(α,w), ak(w) ◦ k
)

	→
(

x + φ(α)(y) + f̄ ′(α,w), αw
)

∈ N ′ (5.14)

where αw = ak(w). So we put this infranil action (E(N ′), N ′) to be

(x, α) ◦′ (y,w) =
(

x + φ(α)(y) + f̄ ′(α,w), αw
)

. (5.15)

Let Γ ≤ E(N) be as above. As in (4.9), there is a commutative diagram

1 −−−−→ Z
2 −−−−→ Γ π−−−−→ ̂Γ −−−−→ 1

id

⏐

⏐



ϕ

⏐

⏐


 id

⏐

⏐




1 −−−−→ Z
2 −−−−→ ϕ(Γ) π−−−−→ ̂Γ −−−−→ 1
∩ ∩ ∩

1 −−−−→ C −−−−→ E(N ′) π−−−−→ ̂N ◦ K −−−−→ 1

(5.16)
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In view of (4.11), (5.3) and (5.8), (5.9), the action (5.2) becomes

(n, α)(x,w) =
(

n + φ(α)(x) + μ(α)(αw) + ν(α)(αw), αw
)

=
(

n + φ(α)(x) + f̄(α,w) + φ(α)(λ̄(w)) − λ̄(αw), αw
)

=
(

n + φ(α)(x) + f̄(α,w) + δ1λ̄(α,w) − λ̄(α), αw
)

=
(

n + φ(α)(x) + f̄ ′(α,w) − λ̄(α), αw
)

= (n − λ̄(α), α) ◦′ (x,w) = ϕ(n, α) ◦′ (x,w), (5.17)

where ◦′ is defined in (5.14). Hence the action of (Γ, N) is equivalent to the infranil action of ϕ(Γ)
on N ′ defined in (5.15).

On the other hand, there is an E(N ′)-invariant complex structure J ′ on N ′ by Proposition 3.1
such that (N ′, J ′) is biholomorphic to (C × ̂N,J0 × ̂J) by Corollary 3.2. By Proposition 4.1, for
every α ∈ ̂Γ there exists an element μ′(α) ∈ hol( ̂N, C) for which a holomorphic infranil action
of ϕ(Γ) on (N ′, J ′) is obtained as

ϕ(n, α) ◦′ (x,w) =
(

n + φ(α)(x) + μ′(α)(αw), αw
)

. (5.18)

Comparing this with (5.17), we obtain

μ(α)(αw) + ν(α)(αw) = μ′(α)(αw). (5.19)

For arbitrary A ∈ TC and V ∈ T ̂N , calculate

(n, α)∗J(A,V ) = (n, α)∗(J0A, ̂JV ) =
(

φ(α)(J0A) + μ(α)∗(α∗ ̂JV ) + ν(α)∗(α∗ ̂JV ), α∗ ̂JV
)

=
(

J0φ(α)(A) + J0μ(α)∗(α∗V ) + J0ν(α)∗(α∗V ), ̂Jα∗V
)

=
(

J0φ(α)(A) + J0μ
′(α)∗(α∗V ), ̂Jα∗V

)

= J ′(φ(α)(A) + μ′(α)∗(α∗V ), α∗V
)

= J ′ϕ(n, α)∗(A,V ). (5.20)

As (n, α)∗J = J(n, α)∗ on TN , it follows that J ′ = J on C × ̂N = N = N ′. And hence the holo-
morphic action (Γ, N, J) is equivariantly biholomorphic to (ϕ(Γ), N ′, J). Equivalently the quotient
N/Γ is biholomorphic to the holomorphic infranil-manifold N ′/ϕ(Γ). �

6. HOLOMORPHIC CLASSIFICATION

Let M be a holomorphic torus-Bott manifold of dimension 2n. By Definition 2.1, X1 = C.
We assume inductively that Xn−1 is biholomorphic to C

n−1. By condition (2) of Definition 2.1,
C → X = Xn → ̂X = Xn−1 is a holomorphic principal bundle. Thus by Corollary 3.2, (X,J) is
biholomorphic to the product (C × ̂X,J0 × ̂J) as a holomorphic bundle. Hence the action on the
universal covering (X,π, J) is identified with a holomorphic Seifert action (C × ̂X,π, J0 × ̂J) as
in (2.4).

Consider the associated group extension 1 → Z
2 → π → π̂ → 1, which represents a 2-cocycle

[f ] ∈ Hφ(π̂; Z2). As (π, C × ̂X) is a holomorphic Seifert action, there is a holomorphic map χ(α) :
̂N → C for each α ∈ π̂ such that

(n, α)(x,w) = (n + φ̄(α)(x) + χ(α)(αw), αw) ∀ (n, α) ∈ π, ∀ (x,w) ∈ C × ̂N, (6.1)

which satisfies
δ[χ̂] = [f ]. (6.2)
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By Corollary 2.4, X/π is diffeomorphic to an infranil-manifold N/π. Suppose that ( ̂X, π̂, ̂J) is equiv-
ariantly biholomorphic to ( ̂N, π̂, ̂J) for which π ≤ E(N) = N � K. Since φ : π̂ → Aut(Z2) satisfies
φ(π̂) ≤ U(1) from (2.6), we may assume that K satisfies the requirement (3.2) of Proposition 3.1.
(In fact, as N centralizes C and N � K normalizes C, the conjugation map ρ : N � K → GL(2, R)
satisfies ρ(N � K) = ρ(K) ≤ O(2) in general. Taking U(1) ≤ O(2), we choose K0 ≤ K such that
ρ(K0) ≤ U(1) instead of K. As ρ(π) = φ(π̂) ≤ U(1), it follows that π ≤ N � K0, which satisfies
the requirement obviously.)

By Proposition 3.1, there exists an E(N)-invariant complex structure J such that π ≤ EJ(N),
i.e. the action (N,π) is a holomorphic infranil action. As (N,J) is biholomorphic to (C × ̂N,J0 × ̂J)
by Corollary 3.2, Proposition 4.1 implies that there is a holomorphic map μ(α) : ̂N → C such that

(n, α)(x,w) =
(

n + φ̄(α)(x) + μ(α)(αw), αw
)

. (6.3)

It also follows that
δ[μ̂] = [f ]. (6.4)

As both [χ̂] and [μ̂] belong to H1
φ(π̂,hol( ̂N, C)), there exists an element [ν] ∈ H1

φ(π̂,hol( ̂N, C))
such that

[μ̂]−1[χ̂] = [ν̂]. (6.5)

This implies that j(χ(α)(w)) = j(μ(α)(w) + ν(α)(w)) ∈ T 1
C

for all w ∈ ̂N . We may assume that
(up to a constant)

χ = μ + ν : π̂ → hol( ̂N, C). (6.6)

Theorem 6.1. Let M be a holomorphic torus-Bott manifold of dimension 2n and (X,π, J)
be its universal covering. There exists a nilpotent Lie group N ′ with E(N ′)-invariant complex
structure J such that the action (X,π, J) is equivariantly biholomorphic to a holomorphic infranil
action (N ′, π′, J) (π′ ≤ EJ(N ′)). Specifically, a 2n-dimensional holomorphic torus-Bott manifold M
is biholomorphic to a holomorphic infranil-manifold N ′/π′.

Proof. Suppose inductively that ( ̂X, π̂, ̂J) is equivariantly biholomorphic to ( ̂N, π̂, ̂J). Then
the action (X,π) is equivariantly biholomorphic to a holomorphic action (N,π, J) such that

(n, α)(x,w) =
(

n + x + μ(α)(αw) + ν(α)(αw), α · w
)

.

Applying Theorem 5.1 to this action, we find that there is a holomorphic infranil geometry
(EJ(N ′), N ′) such that the complex quotient N/π is biholomorphic to a holomorphic infranil-
manifold N ′/Γ′ for a torsion-free discrete subgroup Γ′ ≤ EJ(N ′). �

7. APPLICATION

Let M = Mn → Mn−1 → . . . → M1 → {pt} be a holomorphic torus-Bott tower as in (1.1). Each
holomorphic fiber bundle induces a group extension 1 → Z

2 → πm → πm−1 → 1 which represents
a 2-cocycle in H2

φ(πm−1; Z2), m = 1, . . . , n (see (2.2)).
Definition 7.1. A holomorphic torus-Bott tower is of finite type if each 2-cocycle has finite

order in H2
φ(πm−1; Z2). Otherwise (i.e. there exists a cocycle of infinite order), a holomorphic

torus-Bott tower is said to be of infinite type.

7.1. Holomorphic torus-Bott manifold of finite type. Since U(n) is the maximal com-
pact unitary subgroup in GL(n, C), the affine group AC(n) = C

n
� GL(n, C) has the complex

euclidean subgroup EC(n) = C
n

� U(n). If Γ is a torsion-free discrete uniform subgroup in EC(n),
then the quotient C

n/Γ is a compact complex euclidean space form. The group Γ is said to be a
Bieberbach group.
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Theorem 7.2. If M is a 2n-dimensional holomorphic torus-Bott manifold of finite type, then
M is biholomorphic to a complex euclidean space form C

n/Γ (Γ ≤ EC(n)). Moreover, the holonomy
group L(Γ) ≤ U(n) is isomorphic to the product

⎛

⎜

⎜

⎜

⎝

H1

H2

. . .
Hn

⎞

⎟

⎟

⎟

⎠

where Hi is either {1}, Z2, Z4 or Z6.
Proof. Put (π,X) = (πn−1,Xn) and (π̂, ̂X) = (πn−1,Xn−1). Let

(Z2, C) → (π,X)
p−→ (π̂, ̂X) (7.1)

be an equivariant principal holomorphic bundle (cf. (2.3)). Inductively suppose that ̂X/π̂ is biholo-
morphic to a complex euclidean space form C

n−1/̂Γ (̂Γ ≤ EC(n − 1)). As π̂ ∼= ̂Γ, π̂ has a normal
free abelian subgroup Z

2(n−1) of finite index. Consider the commutative diagram as in (4.9):

1 −−−−→ Z
2 −−−−→ π −−−−→ π̂ −−−−→ 1
|| ∪ ∪

1 −−−−→ Z
2 −−−−→ Δ −−−−→ Z

2(n−1) −−−−→ 1

(7.2)

Note that φ(π̂) ≤ Aut(Z2) is a finite cyclic group. Taking a finite index subgroup if necessary,
we may assume that the lower sequence is a central group extension. The cocycle of H2

φ(π̂; Z2)
restricts to an element of a free abelian group H2(Z2(n−1); Z2). Since the cocycle representing (7.2)
is a torsion in H2

φ(πm−1; Z2) by the hypothesis, it is zero in H2(Z2(n−1); Z2), i.e. the lower group
extension splits; Δ ∼= Z

2 × Z
2(n−1) = Z

2n.
On the other hand, M is biholomorphic to a holomorphic infranil-manifold N/Γ for some Γ ≤

EJ(N) by Theorem 6.1. In particular, Γ has a finite index subgroup Γ′ isomorphic to Z
2n. As Γ′

is a discrete uniform subgroup of N, the Mal’cev uniqueness property implies that N is isomorphic
to C

n. (Note that N is isomorphic to a vector space R
2n. The complex structure J on N is equivalent

to the standard complex structure J0 = J0 × J0 on C
n = C × C

n−1 by Corollary 3.2. Thus (N, J)
is holomorphically isomorphic to C

n.) If we note that K belongs to Aut(Cn) = GL(n, C) in this
case, it follows that K = U(n), so that EJ(N) = EC(n). Since Γ ≤ EC(n), M is biholomorphic to a
complex euclidean space form C

n/Γ.
We may identify M = C

n/Γ. Let L : AffC(n) = C
n

� GL(n, C) → GL(n, C) be the holonomy
homomorphism. It remains to describe the structure of the holonomy group L(Γ) of C

n/Γ. First
of all note that L(Γ) ≤ U(n). The (Bieberbach) group Γ has an extension as in (7.2):

1 → Z
2 → Γ

p−→ ̂Γ → 1 (7.3)

where C
n−1/̂Γ is a 2(n − 1)-dimensional complex euclidean space. As Γ normalizes C (≥ Z

2), we
have

L((n, α)) =
{(

φ̄(α) 0
0 Bα

)}

≤ U(n) ∀ (n, α) ∈ Γ. (7.4)

If we recall that ̂Γ ≤ EC(n − 1) = C
n

� U(n − 1), then the action of Γn−1 on C
n−1 is described as

α(y) = (bα, Bα)(y) = bα + Bα(y), α ∈ ̂Γ, y ∈ C
n−1.

By the induction hypothesis we assume that L(̂Γ) = {Bα} ≤
∏n

i=2 Hi where each Hi is isomorphic
to one of {1}, Z2, Z4 or Z6.
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Noting that H1 = φ({α}) = {±1}, {±i} or {e±iπ/3} from (2.6), we find from (7.4) that
L(Γ) ≤

∏n
i=1 Hi. This proves the induction step. �

Remark 7.3. By the hypothesis [f ] ∈ H2
φ(̂Γ; Z2) has finite order, say �. Let � · f = δ1

˜λ for
some function ˜λ : ̂Γ → Z

2. Putting λ = �/˜λ : Γn−1 → C, we obtain

f = δ1λ. (7.5)

We have another holomorphic Seifert action of Γ on C
n associated with the extension (7.3):

(n, α)(x, y) = (n + φ(α)(x) + λ(α), αy) ∀ (n, α) ∈ Γ, ∀ (x, y) ∈ C
n. (7.6)

Then for (n, α) ∈ Γ, the Seifert action (7.6) of Γ on C × C
n−1 = C

n is identified with the euclidean
action:

(n, α)
[

x
y

]

=
([

n + λ(α)
bα

]

,

(

φ(α) 0
0 Bα

))[

x
y

]

. (7.7)

If we put

ρ((n, α)) =
([

n + λ(α)
bα

]

,

(

φ(α) 0
0 Bα

))

, (7.8)

then this gives a faithful homomorphism ρ : Γ → EC(n). We obtain a compact complex euclidean
space form C

n/ρ(Γ). By the Bieberbach theorem, Γ is conjugate to ρ(Γ) by some element f ∈
A(2n) = R

2n
� GL(2n, R). Two complex euclidean space forms C

n/Γ and C
n/ρ(Γ) are affinely

diffeomorphic. In general they are different holomorphic Bieberbach classes.
Remark 7.4. We have a similar result for an S1-fibered nilBott manifold of finite type. In fact,

it is diffeomorphic to a euclidean space form with holonomy group isomorphic to (Z2)s, 0 ≤ s ≤ n
(cf. [16]).

7.2. Kähler Bott tower. An example of finite type is a Kähler torus-Bott manifold, i.e. a
torus-Bott manifold which admits a Kähler structure. More precisely, let T 1

C
→ Mm

pm−−→ Mm−1 be
a holomorphic torus-Bott tower as in (2.1). Suppose that

(1) each Mm supports a Kähler form Ωm;

(2) C → Xm
pm−−→ Xm−1 is the equivariant principal holomorphic bundle in which pm is a Kähler

submersion;
(3) C leaves Ωm invariant (m = 1, . . . , n).

Then (2.1) is said to be a Kähler Bott tower. The top space M = Mn is said to be a Kähler Bott
manifold.

The following theorem is inspired by the result of Carrell [3] (see also [12]).
Theorem 7.5. Let (M,Ω) be a Kähler Bott manifold. Then M is biholomorphic to the complex

euclidean space form C
n/Γ where L(Γ) =

∏n
i=1 Hi.

Proof. To apply Theorem 7.2, it suffices to show that each cocycle [f ] representing (2.2) is
of finite order in H2

φ(πm−1; Z2). In fact, there is a central group extension 1 → Z
2 → Δm

pm−−→
Δm−1 → 1 from (2.7). Put T 1

C
= C/Z

2, Ym = Xm/Δm and Ym−1 = Xm−1/Δm−1. Then Mm has a
finite covering Ym which admits a principal holomorphic fibration

T 1
C → Ym

qm−−→ Ym−1. (7.9)

Then it is proved in [3] (see also [12, Corollary 2.5]) that the Kähler isometric action of T 1
C

is
homologically injective, i.e. the orbit map ev(t) = ty at a point y ∈ Ym induces an injective ho-
momorphism ev∗ : H1(T 1

C
; Z) = Z

2 → H1(Ym; Z). This implies that Δm has a finite index normal

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 286 2014



266 Y. KAMISHIMA, M. NAKAYAMA

splitting subgroup, so the representative cocycle of πm in H2
φ(πm−1; Z2) has finite order (see [5] for

details). By Theorem 7.2, M is biholomorphic to a complex euclidean space form C
n/Γ with the

holonomy group L(Γ) =
∏n

i=1 Hi. �
Remark 7.6. It follows from the result of Hasegawa [7] and Baues and Cortés [2] that a

compact aspherical Kähler manifold with virtually solvable fundamental group is biholomorphic to
a complex euclidean space form. As the fundamental group of a Kähler Bott manifold is virtually
nilpotent by Lemma 2.3, the above theorem is obtained from this result except for the holonomy
group characterization.

8. HOLOMORPHIC TORUS-BOTT TOWER OF INFINITE TYPE

We study a holomorphic torus-Bott tower of infinite type. It is hard to determine a holomorphic
classification of holomorphic torus-Bott manifolds of infinite type in higher dimension. Recall the
following facts about holomorphic torus-Bott manifolds of infinite type:

• The fundamental group is virtually nilpotent (but not abelian).
• A holomorphic torus-Bott manifold of infinite type is a non-Kähler manifold.

8.1. Four-dimensional holomorphic torus-Bott manifolds. It follows from the classifica-
tion of complex surfaces that a four-dimensional holomorphic torus-Bott manifold is finitely covered
by either T 2

C
or S1 ×N/Δ where N is a three-dimensional Heisenberg Lie group isomorphic to the

3 × 3 upper triangular unipotent matrices with lattice Δ.
Proposition 8.1. A four-dimensional holomorphic torus-Bott manifold is biholomorphic to

either T 2
C
/F or S1 ×N 3/Δ where F is a finite group of U(2) and Δ is a discrete uniform subgroup

of N � U(1).

8.2. Six-dimensional examples of infinite type. As a special case of six-dimensional holo-
morphic torus-Bott manifolds of infinite type, there is a nontrivial holomorphic principal torus
bundle over a complex 2-torus which is a holomorphic principal nilmanifold: T 1

C
→ N3/Γ

q3−→ T 2
C
.

Here N3 is a two-step nilpotent Lie group with a left invariant complex structure. There is a clas-
sification of six-dimensional nilpotent Lie algebras with left invariant complex structure in [18, 19].
As b1 is either 4 or 5 in this case except for C

3, the classification gives
Proposition 8.2. A six-dimensional holomorphic torus-Bott manifold over a four-dimensional

complex euclidean space form is biholomorphic to the quotient of the following nilpotent Lie group
by a cocompact subgroup acting properly discontinuously :

• C
3;

• N 3 ×N 3 (Lie algebra h2);
• R

+ ×N 5 (Lie algebra h3);
• the Iwasawa Lie group L3 (Lie algebra h5);
• the Nilpotent Lie group corresponding to h4;

• the Nilpotent Lie group corresponding to h6;
• R

3 ×N 3 (Lie algebra h8).

Remark 8.3. Here N8 = R
3 × N 3 is viewed as R × R → N8 → R

2 × C. There is another
exact sequence 1 → C → N8 → R

+ × N 3 → 1 such that [N8,N8] = R ≤ C. Note that this is a
splitting exact sequence N8 = C × (R+ ×N 3) but the base space R

+ ×N 3 is not C
2.

It is interesting to find what non-Kähler geometric structure exists on a holomorphic torus-Bott
manifold of infinite type. We have found two such classes in general dimension. The following result
is obtained in [8, 13].
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Theorem 8.4. (i) A (2n + 2)-dimensional compact infranil-manifold M admits a locally con-
formal Kähler structure if and only if M = R ×N/Γ where N is the Heisenberg nilpotent Lie group
and Γ ≤ R × (N � U(n)) is a discrete cocompact subgroup. In this case M has the holomorphic
torus fibration over the complex euclidean orbifold :

T 1
C → M → C

n/Γ.

Some finite cover M ′ of R ×N/Γ is a holomorphic torus-Bott manifold of infinite type:

M ′ T 1
C−→ T n

C → . . . → {pt}.
(ii) There exists a 2(2n + 1)-dimensional complex nilpotent Lie group L = L2n+1 and a

torsion-free discrete cocompact subgroup Γ of the semidirect product L � (Sp(n) · S1) such that
a 2(2n + 1)-dimensional complex infranil-manifold L/Γ admits a complex contact structure. The
infranil-manifold L/Γ supports a holomorphic torus bundle over the quaternionic euclidean orbifold :

T 1
C → L/Γ → H

n/Δ.

Moreover, some finite cover M ′ of L/Γ is a holomorphic torus-Bott manifold of infinite type:

M ′ T 1
C−→ T 2n

C → . . . → {pt}.

Here L3 is the Iwasawa complex nilpotent Lie group.

REFERENCES
1. O. Baues, “Infra-solvmanifolds and rigidity of subgroups in solvable linear algebraic groups,” Topology 43 (4),

903–924 (2004).
2. O. Baues and V. Cortés, “Aspherical Kähler manifolds with solvable fundamental group,” Geom. Dedicata 122,

215–229 (2006).
3. J. B. Carrell, “Holomorphically injective complex toral actions,” in Proc. 2nd Conf. on Compact Transformation

Groups (Springer, Berlin, 1972), Part II, Lect. Notes Math. 299, pp. 205–236.
4. P. E. Conner and F. Raymond, “Actions of compact Lie groups on aspherical manifolds,” in Topology of Manifolds:

Proc. Univ. Georgia, 1969 (Markham, Chicago, 1971), pp. 227–264.
5. P. E. Conner and F. Raymond, “Injective operations of the toral groups,” Topology 10 (4), 283–296 (1971).
6. P. E. Conner and F. Raymond, “Holomorphic Seifert fibering,” in Proc. 2nd Conf. on Compact Transformation

Groups (Springer, Berlin, 1972), Part II, Lect. Notes Math. 299, pp. 124–204.
7. K. Hasegawa, “A note on compact solvmanifolds with Kähler structures,” Osaka J. Math. 43, 131–135 (2006).
8. K. Hasegawa and Y. Kamishima, “Compact homogeneous locally conformally Kähler manifolds,”

arXiv: 1312.2202 [math.CV].
9. F. Hirzebruch, Topological Methods in Algebraic Geometry (Springer, Berlin, 1966), Grundl. Math. Wiss. 131.

10. Y. Kamishima, K. B. Lee, and F. Raymond, “The Seifert construction and its applications to infranilmanifolds,”
Q. J. Math., Oxford, Ser. 2, 34, 433–452 (1983).

11. Y. Kamishima and M. Nakayama, “Topology of nilBott tower of aspherical manifolds” (in preparation).
12. Y. Kamishima and M. Nakayama, “Torus actions and the Halperin–Carlsson conjecture,” arXiv: 1206.4790v1

[math.GT].
13. Y. Kamishima and A. Tanaka, “On complex contact similarity manifolds,” J. Math. Res. 5 (4), 1–10 (2013).
14. K. B. Lee and F. Raymond, Seifert Fiberings (Am. Math. Soc., Providence, RI, 2010), Math. Surv. Monogr.

166.
15. S. Murakami, “Sur certains espaces fibrés principaux holomorphes admettant des connexions holomorphes,”

Osaka Math. J. 11, 43–62 (1959).
16. M. Nakayama, “On the S1-fibred nilBott tower,” Osaka J. Math. 51, 67–89 (2014); arXiv: 1110.1164 [math.AT].
17. S. Rollenske, “Geometry of nilmanifolds with left-invariant complex structure and deformations in the large,”

Proc. London Math. Soc., Ser. 3, 99 (2), 425–460 (2009).
18. S. M. Salamon, “Complex structures on nilpotent Lie algebras,” J. Pure Appl. Algebra 157, 311–333 (2001).
19. L. Ugarte, “Hermitian structures on six-dimensional nilmanifolds,” Transform. Groups 12 (1), 175–202 (2007).

This article was submitted by the authors in English

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 286 2014


