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Abstract—We study the geometry of compact complex manifolds M equipped with a maximal
action of a torus T = (S1)k. We present two equivalent constructions that allow one to build
any such manifold on the basis of special combinatorial data given by a simplicial fan Σ and a
complex subgroup H ⊂ TC = (C∗)k. On every manifold M we define a canonical holomorphic
foliation F and, under additional restrictions on the combinatorial data, construct a transverse
Kähler form ωF . As an application of these constructions, we extend some results on the
geometry of moment–angle manifolds to the case of manifolds M .
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1. INTRODUCTION

Since the 1970s, toric varieties VΣ have played a particularly important role in algebraic geom-
etry [1–3]. Due to the existence of large groups of symmetries, toric varieties could be explicitly
described in terms of combinatorial geometry. Numerous results that relate the geometric properties
of toric varieties to the characteristics of the underlying combinatorial objects provide powerful tools
for enumerative algebraic geometry, combinatorial geometry [4], number theory [5], and algebraic
topology [6].

Until recently, the situation in the complex-analytic category was far less well studied. There
were very few explicit examples of complex-analytic manifolds that admit torus actions and no
formal notion of a “large group of symmetries.” However, since the early 2000s, several new families
of complex manifolds have been discovered that admit a compact action of a torus T = (S1)m

(see [7–9]) and results about their complex geometry have been obtained [10–12]. In 2010, in [13]
the authors constructed a large family of compact complex manifolds equipped with a torus action;
this family includes all previous examples as special cases. Finally, in 2013, in [14] the notion of
a maximal torus action was introduced and a construction that yields all compact complex manifolds
equipped with a maximal torus action was presented.

In this paper we prove that the family of manifolds presented in [13] coincides with the set of
compact complex manifolds proposed in [14]. Moreover, the approach of [13] turns out to be a
complex-analytic analog of the Cox–Batyrev construction of toric varieties [3].

Despite the new explicit construction of compact complex manifolds equipped with a maximal
torus action, there are very few results on their geometry. Since almost all of them are non-Kähler,
most of the methods of complex geometry are not applicable. We introduce a canonical holomorphic
foliation F on the manifolds under consideration and, under some restrictions on the underlying
combinatorial data, construct a differential form ωF that is transverse Kähler with respect to the
foliation F . Thus, we generalize the results of [11] on the complex geometry of moment–angle
manifolds. As an application of this construction, we prove some results on meromorphic functions
and analytic subsets of compact complex manifolds equipped with a maximal torus action.
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2. MAXIMAL TORUS ACTIONS

Let M be a smooth compact manifold without boundary equipped with a smooth effective action
of the torus T = (S1)k. In this section we are interested in certain topological constraints arising
due to the existence of a torus action on the manifold M .

Theorem 2.1 [15] (see also [14]). Let T be a torus acting effectively and smoothly on a smooth
manifold M . Then for every x ∈ M one has

dimM ≥ dimT + dim Tx, (2.1)

where Tx ⊂ T is the stabilizer of x.
Theorem 2.1 justifies the introduction of the notion of a maximal torus action on a smooth

manifold M (see [14]).
Definition 2.2 [14, Definition 2.1]. An effective action of a torus T on a smooth manifold M

is said to be maximal if there exists an x ∈ M such that inequality (2.1) turns into the equality:

dimM = dimT + dim Tx. (2.2)

The following proposition is the direct consequence of Theorem 2.1:
Proposition 2.3 [14, Lemma 2.2]. Let T be a torus acting smoothly and effectively on a

connected smooth manifold M . Assume that the induced action of a toric subgroup T0 ⊂ T is
maximal. Then T0 = T .

Proposition 2.3 implies that a maximal action T : M could not be extended to an action of a
larger torus T ′ ⊃ T . Let us provide several examples of manifolds equipped with a maximal torus
action.

Example 2.4. There are two possible extreme cases in equation (2.2):

(i) dim Tx = 0 for some (and hence for any) point x ∈ M ;
(ii) dim Tx = dim T for some point x.

1. In case (i) one obtains only tori T acting on themselves by translations T × T → T . This
action is free, i.e., for any point x ∈ T the stabilizer Tx is trivial, dimTx = 0, and inequality (2.1)
turns into the equality.

2. Case (ii) already provides a lot of interesting examples, including, in particular, compact
symplectic manifolds equipped with a Hamiltonian action of a half-dimensional torus, which were
classified by Delzant [16]. For instance, let T = U(1)n be a torus acting on a complex projective
space CPn via coordinatewise multiplication in homogeneous coordinates:

(t1, . . . , tn) · [z0 : z1 : . . . : zn] = [z0 : t1z1 : . . . : tnzn].

In this case the point x = [1 : 0 : . . . : 0] is fixed, i.e., Tx = T , so dimCPn = dim T + dim Tx and the
action is maximal.

3. Let S2n−1 = {z ⊂ C
n : |z| = 1} be a unit sphere in C

n. The torus T = U(1)n acting on C
n via

coordinatewise multiplication preserves the sphere. The stabilizer of the point x = (1, 0, . . . , 0) is
the coordinate subtorus Tx = {(1, z2, . . . , zn) ∈ T}, and inequality (2.1) again turns into an equality.

Note that the class of smooth manifolds equipped with a maximal torus action is very large and
apparently does not have a complete description. In particular, given a manifold M equipped with
a maximal torus T action and any manifold N with an effective torus T action, one can construct
a new manifold M #T ·y N by taking the equivariant connected sum along a free T orbit:

M #T ·y N =
(
M \ U(T · y)

)
∪∂U(T ·y)

(
N \ U(T · y)

)
, (2.3)
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where U(T · y) is an equivariant tubular neighborhood. Since the maximality of a torus action
is provided by conditions at one point x ∈ M , the action of the torus T on M #T ·y N is again
maximal.

As we will see further, the situation in the complex-analytic category is fundamentally different.
In particular, the results of [14] imply that all compact complex manifolds equipped with a maximal
torus action have an explicit description similar to the description of smooth complete toric vari-
eties [2]. We present the construction from [14] and an analog of the Cox–Batyrev construction [3]
for manifolds equipped with a maximal torus action.

3. COMPLEX MANIFOLDS

Definition 3.1. A smooth action of a group G on an almost complex manifold M is said
to preserve an almost complex structure J if for any g ∈ G the differential of the multiplication
mg : M → M by g commutes with the operator of almost complex structure:

dmg ◦ J = J ◦ dmg.

In what follows, all groups act on complex analytic manifolds while preserving the corresponding
almost complex structure.

A torus action T : M defines a homomorphism from the Lie algebra t of T to the Lie algebra of
vector fields on the manifold, ρ : t → L(M). This homomorphism could be complexified by means
of the almost complex structure operator, ρC : tC = t ⊕ it → L(M). In [14] it is proved that the
integrability of the almost complex structure guarantees that ρC is a homomorphism of Lie algebras.
Consequently, the group tC acts on M via the exponential map. Since the lattice N ⊂ t dual to
the character lattice of T acts trivially on M , the action of tC descends to an action of tC/N . This
implies the following proposition:

Proposition 3.2 [14, Sect. 3]. Let T be a torus acting on a complex manifold M . The action
T : M can be extended to a complexified action of the algebraic torus TC 
 (C∗)dim T on M .

Note that the action TC : M is not necessarily effective. Thus let us introduce the following
group:

H := {h ∈ TC | hx = x ∀x ∈ M}. (3.1)

Since the torus action preserves the complex structure, H is a commutative complex subgroup.
Moreover, since the compact part T ⊂ TC acts effectively, it follows that H ∩ T = {e} and H 
 C

k

for some k ∈ Z.
Let an action T : M be maximal. In this case the subgroup H ⊂ TC allows one to construct

a canonical holomorphic foliation F on M , which turns out to be an extremely effective tool for
studying the complex geometry of M .

Construction 3.3 (canonical holomorphic foliation). The results of [14] imply that the sub-
group TC/H acts effectively on the manifold M with a dense open orbit on which the action is free.
Let h ⊂ tC be the Lie algebra of H and h be the complex conjugate of the Lie algebra h with respect
to the decomposition tC = t ⊕ it. Note that both h, h ⊂ tC are complex Lie algebras.

The orbits of H ′ = exp h ⊂ TC define a holomorphic foliation F on M , which is further referred
to as canonical. Since h ∩ t = {0}, the vector spaces h and h are transverse; thus the group H ′ ∩ H
is discrete and the leaves of F inside the open TC/H orbit are isomorphic to H ′/(H ∩ H ′) 

C

dimC H/Λ, where Λ ⊂ C
dimC H is some discrete subgroup. The dimension of the foliation F is

dimC F = dimC H = dimC TC − dimC M =
1
2
(dim T − dim Tx).

Note that the leaves of the foliation F are not necessarily closed.
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Example 3.4 (Hopf surface). Let A : C
2 → C

2 be a semisimple linear operator with eigenval-
ues λ1 = e2πiq1 and λ2 = e2πiq2 such that |λ1|, |λ2| > 1. A Hopf surface is a manifold

H := (C2 \ {0})/Γ,

where Γ 
 Z is a group acting on C
2 generated by A. It is straightforward to check that H is a

complex manifold diffeomorphic to S3 × S1.
The group G = (C∗)2/Γ 
 (S1)3 × R acts on H with a dense open orbit, and the toric subgroup

T 
 (S1)3 ⊂ (C∗)2/Γ, (e2πit1 , e2πit2 , e2πit3) → (e2πi(t1+q1t3), e2πi(t2+q2t3)),

acts maximally: the stabilizer Tz of z = [(1, 0)] ∈ H is {(1, e2πit2 , 1)}, so

dim T + dim Tz = dimR H = 4.

In this case TC 
 (C∗)3 and, under the above identification T 
 (S1)3, the kernel of the action
TC : H is the subgroup H = {(ewq1 , ewq2, e−w) | w ∈ C} and G = TC/H.

4. QUOTIENTS OF NONSINGULAR TORIC VARIETIES

In this section we discuss in detail two equivalent constructions providing all compact complex
manifolds equipped with a maximal torus action. Since both of them are closely related to the
construction of toric varieties, we start with some basic facts required for their description and
classification. A detailed introduction into the theory of toric varieties can be found in [2, 1].

4.1. Toric varieties.
Definition 4.1. Let a1, . . . ,ak ∈ NR 
 R

n be a set of vectors. A polyhedral cone spanned by
the vectors a1, . . . ,ak is the set

σ = {μ1a1 + . . . + μkak | μi ≥ 0}.

A cone σ is strictly convex if it does not contain a line. A strictly convex cone is simplicial if it
is spanned by linearly independent vectors. A cone σ is regular if it is spanned by a part of a basis
of some fixed lattice N ⊂ NR, N 
 Z

n.
The dual cone for a cone σ ⊂ NR is the set

σ̌ = {u ∈ N∗
R | 〈u,a〉 ≥ 0 ∀a ∈ σ}.

Definition 4.2. A fan is a set of cones Σ = {σi}i such that

(1) any face of each cone is an element of the set;
(2) the intersection of any pair of cones is a face of each of them.

A fan Σ is regular if all its cones are regular, and is complete if
⋃

i σi = NR.
Definition 4.3. A toric variety is a normal irreducible algebraic variety V containing an

algebraic torus TC as an open dense subset such that the action of the torus on itself extends to the
whole variety.

Examples of toric varieties are C
n, CPn, and C

n \ {0}.
The main result of the theory of toric varieties establishes a one-to-one correspondence between

nonsingular toric varieties and regular fans in the Lie algebra t of a compact torus T ⊂ TC. Namely,
every smooth toric variety V can by obtained via the following construction:

Construction 4.4 (toric varieties). Let Σ be a fan in the Lie algebra t of a compact torus T .
Suppose the fan Σ is nonsingular with respect to the lattice N ⊂ t dual to the character lattice.
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For each cone σ ∈ Σ we define an algebra C[σ̌ ∩ N∗] and an open chart Uσ = SpecC[σ̌ ∩ N∗]. The
set of all charts Uσ is partially ordered by inclusion in the same way as the set of cones of Σ. Let
us introduce the scheme

VΣ := lim←−
σ∈Σ

Uσ.

The scheme VΣ turns out to be a nonsingular variety equipped with an action of the algebraic torus
TC = (t/N)C, which acts with an open dense orbit. The variety VΣ is compact if and only if the
fan Σ is complete (see [2]).

4.2. Compact complex manifolds with maximal torus actions. There is a similar clas-
sification of compact complex manifolds equipped with a maximal torus action. We start with the
construction from [13].

Construction 4.5 (quotient construction I). Let K be a simplicial complex on the set of
vertices [m] = {1, . . . ,m}, i.e., a family of subsets of [m] closed under the operation of taking
subsets. Let ΣK be a simplicial fan in R

m:

ΣK =
⋃

I∈K
〈ei | i ∈ I〉R≥ , (4.1)

where e1 . . . , em is the fixed basis of R
m, I runs over all simplices of K, and 〈ei | i ∈ I〉R≥ is the

cone spanned by the vectors ei. Let U(K) := VΣK be the corresponding toric variety equipped with
the action of the torus TC 
 (C∗)m, and let t be the Lie algebra of the compact torus T ⊂ TC. It is
easy to check that U(K) is the complement of the arrangement of coordinate subspaces of C

m:

U(K) = C
m \

⋃

J �∈K
{zj = 0 | j ∈ J}.

Let h ⊂ tC = t ⊕ it be a complex subspace satisfying the following two conditions:

(a) the group H = exp h ⊂ TC 
 (C∗)[m] intersects trivially the coordinate subtori of the form
(C∗)I for I ∈ K;

(b) the projection q : t → t/p(h), where p : tC → t is the natural projection on the real part,
maps bijectively the fan ΣK to the complete fan q(ΣK).

As proved in [13], the conditions on the subspace h guarantee that the group H acts freely and
properly on U(K) and the orbit space M = U(K)/H is a compact complex manifold equipped with
a maximal torus action.

Another construction providing a large family of manifolds equipped with a maximal torus action
is presented in [14]:

Construction 4.6 (quotient construction II). Let VΣ be a nonsingular toric variety equipped
with an action of a torus TC; t is the Lie algebra of the compact torus T ⊂ TC. Let h ⊂ tC = t ⊕ it
be a complex subspace satisfying the following two conditions:

(a) h ∩ t = {0}, i.e., the restriction p|h of the projection p : tC → t is the inclusion;
(b) the projection q : t → t/p(h) maps bijectively the fan Σ to the complete fan q(Σ).

Consider the group H := exp h ⊂ TC. It can be proved that conditions (a) and (b) imply that
the group H acts on VΣ freely and properly and the orbit space

M(Σ, h) := VΣ/H

is a compact complex manifold equipped with a maximal torus T action.
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A remarkable result of [14] is as follows:
Theorem 4.7 [14, Corollary 6.7]. Any compact complex manifold equipped with a maximal

torus action can be obtained via Construction 4.6.
Note that the second construction operates with a larger family of toric varieties, while the first

construction considers more general subgroups H ⊂ TC. Below we show that these two approaches
are in fact equivalent.

Theorem 4.8. Any compact complex manifold equipped with a maximal torus action can be
obtained via Construction 4.5.

Theorem 4.8 allows one to separate combinatorial (simplicial complex K) and geometric (sub-
space h ⊂ C

m) data from the data (Σ, h) defining the manifold M(Σ, h). Thus, Construction 4.5 is
essentially an analog of the Cox–Batyrev construction of toric varieties [3].

Proof of Theorem 4.8. Let M be an arbitrary compact complex manifold equipped with a
maximal torus action. According to Theorem 4.7 the manifold M is the quotient M(Σ, h) = VΣ/H
for some fan Σ ⊂ t and subspace h ⊂ tC.

It follows from the Cox–Batyrev construction [3] that any nonsingular toric variety VΣ with an
action of TC is a G-quotient of U(K) for some algebraic subgroup G ⊂ (C∗)m, where K is the partially
ordered set of cones of Σ (which is a simplicial complex since Σ is regular) and TC = (C∗)m/G:

VΣ = U(K)/G.

Let π : (C∗)m → (C∗)m/G be the natural projection. Then the manifold M is the orbit space of
π−1(H) ⊂ (C∗)m acting on U(K). This description almost coincides with Construction 4.5 except
for the fact the group π−1(H) is not necessarily connected, i.e., it has the form H ′ × Γ, where H ′

is connected and Γ is a finite abelian group. To correct this deficiency, we use the following simple
proposition:

Proposition 4.9. Let the group C
∗ act on a manifold M . Suppose that the subgroup Gk ⊂ C

∗

of k-th roots of unity acts freely on M . Then

M/Gk 
 (M × C
∗)/C

∗,

where the group C
∗ acts on the manifold M × C

∗ in the following manner :

w · (m, z) = (w · m,wkz).

It follows from Proposition 4.9 that for some r the H ′ × Γ quotient of U(K) coincides with the
H ′ × (C∗)r quotient of U(K) × (C∗)r:

M = VΣ/H = U(K)/(G × H) = (U(K) × (C∗)r)/(H ′ × (C∗)r).

Since the group actions H : VΣ and G : U(K) are free, the group H ′′ = H ′ × (C∗)r acts freely as well;
thus condition (a) of Construction 4.5 is satisfied. Condition (b) is also satisfied, since according
to the Cox–Batyrev construction the fan ΣK projects bijectively onto the fan Σ, which, in turn,
according to condition (b) of Construction 4.6 projects bijectively onto the complete fan. �

In the example below, Constructions 4.5 and 4.6 coincide.
Example 4.10 (Hopf surface). Let Σ ⊂ R

3 be a fan with two one-dimensional cones spanned
by the vectors (1, 0) and (0, 1). The corresponding toric variety VΣ is C

2 \ {0} × C
∗.

Consider a complex subspace h ⊂ tC 
 C
3. It follows from conditions (a) and (b) of Construc-

tion 4.6 that dimC h = 1, i.e., h = {(α1z, α2z, α3z) | z ∈ C} for some αi ∈ C. It is easy to check
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that h satisfies conditions (a) and (b) if and only if the imaginary parts Im(α1/α3) and Im(α2/α3)
have the same sign.

Given Σ and H = exp h as above, the manifold M(Σ, h) is

M(Σ, h) = VΣ/H = (C2 \ {0} × C
∗)/{(eα1z, eα2z, eα3z) | z ∈ C} = (C2 \ {0})/Γ,

where the generator of the group Γ 
 Z acts on C
2 \ {0} via the coordinatewise multiplication

by (e2πiα1/α3 , e2πiα2/α3). Therefore, the manifold M(Σ, h) is a Hopf surface, and the conditions
imposed on h are equivalent to the conditions imposed on λi in Example 3.4.

5. COMPLEX GEOMETRY OF MANIFOLDS M(Σ, h)

It follows from the general results on the cohomology ring of manifolds M(Σ, h) (see [17, The-
orem 8.39; 7]) that almost all of them do not admit a symplectic structure: the top power of
any element α ∈ H2(M(Σ, h)) is zero. Thus, most of the manifolds M(Σ, h) are non-Kähler. In
this section we prove that despite the nonexistence of a Kähler structure, many of the manifolds
M(Σ, h) admit a transverse Kähler structure ωF , which vanishes along the canonical foliation F and
is positive in the transverse directions. The form ωF turns out to be a powerful tool for studying
the complex geometry of manifolds M(Σ, h). For example, in [11] the existence of the form ωF
made it possible to describe all analytic subsets on certain moment–angle manifolds, i.e., manifolds
M(Σ, h) corresponding to Σ = ΣK.

5.1. Transverse Kähler forms.
Definition 5.1. Let M be a complex manifold. A differential form ω ∈ Λ1,1(M) is transverse

Kähler with respect to the holomorphic foliation F if
(a) ω is closed, dω = 0;
(b) ω is nonnegative, i.e., ω(X,JX) ≥ 0 for any vector X;
(c) ω(X,JX) = 0 if and only if the vector X is tangent to the foliation, X ∈ TF .

Example 5.2 (Hopf surface). Let H be a Hopf surface from Example 3.4 with identical λ1

and λ2. In this case the group Γ generated by (λ1, λ2) is a subgroup of C
∗ acting on C

2 diagonally;
therefore, H fibers over CP1 with the fiber C

∗/Γ:

C
2 \ {0} Γ−→ H C∗/Γ−−−→ CP1.

Consider the differential form ω = π∗ωFS ∈ Λ1,1(H), where π : H → CP1 is the projection and ωFS
is the Fubini–Study form on CP1. Since the form ωFS is positive, the form ω is transverse Kähler
with respect to the foliation by the fibers of π.

Prior to constructing transverse Kähler forms on manifolds M(Σ, h), let us introduce some
notions from convex geometry.

Definition 5.3. Let Σ be a complete fan in the vector space NR. Let us fix vectors v1, . . . ,vm

generating one-dimensional cones of Σ and a set of real numbers b1, . . . , bm. Consider m linear
inequalities in the dual space N∗

R
:

〈vi,u〉 + bi ≥ 0, i = 1, . . . ,m, (5.1)

where u ∈ N∗
R
. For every cone σ ∈ Σ of maximal dimension, let us define a vertex uσ ∈ N∗

R
as the

solution of the system of dim NR linear equations

〈vi,uσ〉 + bi = 0, vi ∈ σ, (5.2)

where vi runs over the generators of the cone σ. It follows from the completeness of Σ that
system (5.2) has a unique solution.
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A complete fan Σ is said to be normal if there exists a collection of numbers {bi}m
1 such that

for every vertex uσ and linear form 〈vi,u〉 + bi

(a) 〈vi,uσ〉 + bi ≥ 0;
(b) 〈vi,uσ〉 + bi = 0 if and only if vi ∈ σ.

In this case the fan Σ is also referred to as the normal fan of a polytope given by the system of
inequalities (5.1).

A complete fan Σ is said to be weakly normal if there exists a collection of numbers {bi}m
1 such

that for every vertex uσ and linear form 〈vi,u〉 + bi

(a) 〈vi,uσ〉 + bi ≥ 0;
(b) the set defined by the system of inequalities (5.1) has the maximal dimension dim N∗

R
.

Clearly, any normal fan is weakly normal. As follows from the example below, the converse is
not true.

Example 5.4. In the vector space V 
 R
3 with the basis (e1, e2, e3), consider the fan Σ

whose one-dimensional cones are spanned by the seven vectors v1 = −e1, v2 = −e2, v3 = −e3,
v4 = e1 + e2 + e3, v5 = e1 + e2, v6 = e2 + e3, and v7 = e1 + e3. It has ten maximal cones spanned
by the following tuples of vi’s: {1, 2, 3}, {1, 2, 6}, {1, 3, 5}, {1, 5, 6}, {2, 3, 7}, {2, 6, 7}, {3, 5, 7},
{4, 5, 6}, {4, 5, 7}, and {4, 6, 7}.

This fan is presented in [2, Sect. 3.4] as an example of a nonnormal fan. Let us prove that it is
weakly normal. Consider the collection of numbers b1 = b2 = b3 = 0 and b4 = b5 = b6 = b7 = 1. It
is easy to check that the vertices are 0,−e∗1,−e∗2,−e∗3 ∈ V ∗ and every linear form u → 〈u,vi〉 + bi

is nonnegative on every vertex

The following important result in the theory of toric varieties holds:

Theorem 5.5 [2, Sect. 3.4]. A nonsingular toric variety VΣ is projective if and only if the
fan Σ is normal.

Theorem 5.5 implies that if a fan Σ is normal, then the manifold VΣ admits a Kähler form ω,
which is the curvature form of the line bundle O(1). As we will show below, a similar result holds
for transverse Kähler forms on M(Σ, h).

Theorem 5.6. Let M(Σ, h) be a manifold defined by Construction 4.6. Suppose that the
fan q(Σ) is weakly normal. Then for any k ∈ N there exists a Ck-smooth form ωF transverse
Kähler with respect to the canonical foliation F on a dense open TC/H orbit.

Remark 5.7. Since the kernel spaces of the form ωF are required to coincide with the tangent
spaces TF to the foliation F only on a dense open set, the normality condition in Theorem 5.5 can
be relaxed to the weak normality.

Proof of Theorem 5.6. To prove the theorem, we use the following scheme:

(1) on every chart Uσ ⊂ VΣ, we construct a Ck+2-smooth function Φσ : Uσ → R>;
(2) on every chart Uσ ⊂ VΣ, we define the form ωσ = ddc log Φσ, where dc = J ◦ d ◦ J is a real

differential operator (J is the operator of the almost complex structure);
(3) we check that the forms ωσ1 and ωσ2 coincide on Uσ1 ∩ Uσ2 , thus providing a nonnegative

form ω on VΣ;
(4) we check that the form ω descends to the from ωF on VΣ/H;
(5) we prove that ker ωF = TF on TC/H.

1. Consider the character lattice N∗ ⊂ t∗, and let a1, . . . am be the primitive generators of
one-dimensional cones of Σ. Let us fix the cone σ spanned by the vectors ai1 , . . . ,ait . By definition,
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an integral character w ∈ σ̌ ∩ N∗ defines a regular function χw : Uσ → C. Similarly, any character
w ∈ σ̌ defines a continuous function

χR
w : Uσ → R≥.

Extending arbitrarily the set of vectors {ai1 , . . . ,ait} to an integral basis {a′
1, . . . ,a

′
dim N} of the

lattice N (this can be done since VΣ is nonsingular and, hence, the fan Σ is regular), we can write
the functions χw and χR

w in the coordinates z = (z1, . . . , zdim N ) on Uσ 
 Cdimσ × (C∗)dimN−dim σ:

χw : (z1, . . . , zdim N ) →
∏

i

z
〈w,a′

i〉
i , χR

w : (z1, . . . , zdim N ) →
∏

i

|zi|〈w,a′
i〉.

Note that the function χR
w is Ck-smooth if all the values 〈w,aij 〉 are equal to 0 or greater than k.

Recall that q : t → t/p(h) is a natural projection. By the hypothesis of the theorem the fan q(Σ)
is weakly normal. Let vi = q(ai) be the generators of its one-dimensional cones and b1, . . . , bm be
a collection of numbers defining the weakly normal structure. For the cone σ we fix a character
bσ ∈ t∗ such that the equality 〈bσ ,aij 〉 = bij holds for all generators aij of σ.

For every vertex uτ ∈ (t/p(h))∗, where τ ∈ Σ is a maximal cone, we define the character

wτ = q∗(uτ ) + bσ.

Lemma 5.8. The character wτ belongs to the cone σ̌ ⊂ t∗.
Proof. We have to check that for every vector a ∈ σ the value 〈wτ ,a〉 is nonnegative. Since

the cone σ is spanned by the vectors ais , it suffices to check this for its generators:

〈wτ ,ais〉 = 〈q∗(uτ ) + bσ,ais〉 = 〈uτ , q(ais)〉 + bis = 〈uτ ,vis〉 + bis ≥ 0,

where the last inequality holds due to the weak normality of q(Σ). �
So, every character wτ defines a nonnegative function χR

wτ
on Uσ. Moreover, if σ ⊂ τ , then

the function is strictly positive, since the values 〈wτ ,ais〉 corresponding to the zero coordinates of
z ∈ Uσ vanish. Thus, the function

Φσ =
∑

τ

χR
wτ

is strictly positive on Uσ. Multiplying, if necessary, all characters wτ by a positive constant, one
can guarantee that Φσ has any preassigned smoothness class.

2. Let us define the form ωσ = ddc log Φσ. According to the general result of [18, Theorem I.5.6],
the function log Φσ is plurisubharmonic; i.e., the form ωσ is nonnegative.

3. Consider two functions log Φσ1 and log Φσ2 on Uσ1 ∩ Uσ2 = Uσ1∩σ2 . The definition of the
functions Φσi implies that log Φσ1 − log Φσ2 = log

∑
τ (χ

R

b) = log CχR

b, where C is the number of
vertices and b = bσ1 − bσ2 . Since the left-hand side is a well-defined function, the function χR

b = |z|b
does not vanish on Uσ1 ∩ Uσ2 . It follows from the Poincaré–Lelong formula [18, Theorem II.2.15]
that ddc log χR

b = 0; therefore, the forms ωσ1 and ωσ2 coincide on Uσ1 ∩ Uσ2 . Consequently, all the
forms ωσ are glued into a global form ω on VΣ: ω|Uσ = ωσ.

4 and 5. The proof of these steps follows the proof of Theorem 4.6 in [11].
Lemma 5.9. Let us consider a point z in the open part TC ⊂ VΣ. The kernel of ω in TzVΣ =

TzTC 
 t ⊕ Jt is ker q ⊕ J ker q.
Proof. Consider the function Φ = Φσ. Since the function is constant along the toric part t

of tC, we have ω(t, Jt) = 0. Moreover, the form ω is J-invariant, J ker ω|t = ker ω|Jt; therefore,
ker ω = ker ω|t ⊕ J ker ω|t.
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To compute the kernel ker ω|t, we find for every v ∈ t

d2

dλ2
log Φ(exp λv · z)|λ=0.

Similarly to [11, Lemma 4.7] one obtains

d2

dλ2
log Φ(exp λv · z)|λ=0 =

1
Φ2(z)

(
∑

τ1,τ2

χR

τ1(z)χR

τ2(z)〈wτ1 − wτ2 ,v〉2
)

.

The right-hand side vanishes if and only if the values of all characters wτ1 − wτ2 on the vector v
are zero, or, equivalently, 〈uτ1 − uτ2 , q(v)〉 = 0. Condition (b) in Definition 5.3 of a weakly normal
fan implies that this happens if and only if q(v) = 0. Hence, for z ∈ TC we have ker ω|t = ker q and
ker ω = ker q ⊕ J ker q = h ⊕ h̄. �

It follows from the lemma that the form ω is basic with respect to the orbits of the H-action
on the open part TC ⊂ VΣ; i.e., for any vector v ∈ h and the corresponding fundamental vector
field V we have LV ω|TC

= iV ω|TC
= 0. For continuity reasons, ω is basic on the whole VΣ; thus it

descends to a form on VΣ/H; i.e., there exists a form ωF on M(Σ, h) = VΣ/H such that ω = π∗ωF ,
where π : VΣ → M(Σ, h) is the natural projection. The kernels of the form ωF at the points of
TC/H coincide with the tangent spaces to the orbits of the group H ′ (see Construction 3.3). Thus
the form ωF is transverse Kähler with respect to the foliation F . The proof of Theorem 5.6 is
complete. �

5.2. Meromorphic functions and analytic subsets. As an application of Theorems 4.8
and 5.6 we prove some results on the complex geometry of manifolds M(Σ, h).

Theorem 5.10. Let M be a compact complex manifold equipped with a maximal torus action
obtained via Construction 4.5: M = U(K)/H with H ⊂ TC. Assume that

(i) U(K) is simply connected ;

(ii) the only liner function u ∈ N∗ ⊂ t∗ vanishing identically on p(h) is zero (here N∗ is the
character lattice of T ).

Then there are only finitely many analytic subsets of codimension 1 on M .

Corollary 5.11. There are no nonconstant meromorphic functions on the manifolds satisfying
the hypothesis of Theorem 5.10.

The proof of both statements follows literally the proof of Theorem 4.15 and Corollary 4.16
in [11].

For a fixed Σ, the set of complex subspaces h ⊂ tC satisfying conditions (a) and (b) of Con-
struction 4.6 forms an open (in the ordinary topology) subset MΣ of the complex Grassmannian
Gr(h, tC). The condition of normality of the fan q(Σ) is, clearly, also open.

Definition 5.12. Some statement S is said to be true for the general complex structure on
M(Σ, h) if the set of those subspaces h ⊂ MΣ for which S does not hold has zero Lebesgue measure.

Theorem 5.13. Let M(Σ, h) be a complex manifold endowed with a general complex structure
such that the fan q(Σ) is normal. Let Y ⊂ M(Σ, h) be an analytic subset. Then there are two
possibilities:

(i) Y is the closure of an orbit, Y = TC/H · x;

(ii) Y is a compact torus contained in a leaf of the canonical foliation F .
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Proof. According to the remark above, the set of h ∈ MΣ such that the fan q(Σ) is normal is
open. Hence, for the general complex structure such that the fan q(Σ) is normal, the hypothesis of
Theorem 4.18 in [11] holds and we can repeat the proof. �
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