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Abstract—An analysis of various types of f lame retardants in polymer nanocomposites is presented. The
mechanisms of action of fire retardants and their influence on the thermal stability and fire resistance of poly-
mer composites are considered. The use of nanoparticles of inorganic compounds as f lame retardants is
shown to be promising. The synergistic effect of the use of nanoparticles together with traditional f lame retar-
dants is noted.
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INTRODUCTION
The fire resistance and thermal stability of poly-

meric materials is an urgent problem. The combustion
of polymers is a complex physical and chemical pro-
cess, including chemical reactions of polymer decom-
position in the condensed phase and heat and mass
transfer processes. Polymeric materials, when exposed
to heat, can decompose to form combustible gases,
which mix with ambient oxygen to form a combustible
mixture. Ignition occurs either impulsively if the tem-
perature is sufficient for self-ignition (defined as the
temperature at which the activation energy of the com-
bustion reaction is reached) or at a lower temperature
(flash point) due to an external source (f lame or
spark) [1].

This article discusses the influence and mecha-
nisms of action of various f lame retardants on the fire
and heat resistance of polymeric materials. Particular
attention is paid to inorganic nanoparticles.

1. PRINCIPLES OF REDUCING THE FIRE 
HAZARD OF POLYMERIC MATERIALS

The main risk factor for people during the combus-
tion of polymeric materials is the release of gaseous
toxic products, including carbon monoxide, acrolein,
benzene derivatives, and other toxic substances [2–4].
The formation of smoke and the release of toxic gases
during combustion is the main cause of deaths [5]. In
practice, successful strategies for improving the per-
formance of a polymeric material are achieved either

by mechanically mixing a suitable f lame retardant
compound with the polymeric material, or by chemi-
cally incorporating f lame retardants into the polymer
during synthesis (by copolymerization), or by chemi-
cally modifying the preformed polymer (using reactive
component). On the one hand, the first category of
flame retardants, which are called additive f lame
retardants, are not designed to interact with the poly-
mer in the mixing stage at higher temperatures at the
start of a fire. On the other hand, reactive f lame retar-
dants, which constitute the second category of f lame
retardants, are integrated into polymer chains. This
method has several advantages over those that are sim-
ply additives. Due to the fact that their incorporation
occurs during polymerization, they can be homoge-
neously dispersed, preventing the formation of a sepa-
rate phase, which would cause problems when pro-
cessing the polymer into the final product. In addi-
tion, reactive f lame retardants are inherently less
susceptible to loss during service. These losses can
occur due to migration of the f lame retardant on the
polymer surface or due to solvent leaching [6–8].

The mechanism of action of fire retardants (addi-
tive and reactive) can be associated with physical or
chemical processes. The main physical mechanisms
preventing combustion are the following:

— endothermic reactions (heat removal), which
cool the substrate to a temperature below that required
to maintain combustion;

— release of inert gases that weaken the supply of
oxygen to the surface of the burning polymer, which
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leads to a weakening of the f lame and its reduction due
to an insufficient amount of oxidizing agent;

— formation of a protective coating that reduces
the amount of heat transferred to the polymer, pre-
vents the diffusion of oxygen into the decomposition
zone and the release of volatile f lammable gases
formed during the decomposition of the polymer.

There is also a chemical mechanism in which the
flame retardant works.

• Inhibition of oxidation reactions that occur in
the gas phase by scavenging free radical particles
(especially H and OH) that develop as a result of poly-
mer degradation. Hydrogen radicals are responsible
for the chain branching reaction that promotes fuel
combustion (  + O2 →  + ), while hydroxyl
radicals are involved in the exothermic reaction
( O + CO →  + CO2) of polymer decomposi-
tion, which provides most of the energy needed to keep
the f lame going. These highly reactive substances
react with specific radicals released by f lame retar-
dants to form less reactive or even inert molecules.

• Formation of a carbonaceous (or glassy) layer on
the surface of the polymer by inducing low-energy
solid-state reactions that lead to the carbonization of
the polymer instead of the formation of volatiles. This
layer acts as a physical insulating barrier between the
gas phase and the condensed phase.

• The flame retardant can contribute to the
destruction and flow of the polymer and, as a conse-
quence, the release of the polymer from the zone of
action of the f lame [9–12].

2. TYPES OF FLAME RETARDANTS
The choice of the composition and concentration

of f lame retardants is a complex task, the solution of
which depends on the material and its operating con-
ditions. We will consider the best-known flame retar-
dants.

2.1. Halogen Compounds
Flame retardants based on halogen-containing

compounds are one of the most diverse types of addi-
tives. They function in the gas phase, removing free radi-
cals and thus reducing the heat release rate [13, 14].

Typical representatives of halogenated f lame retar-
dants are chlorine-, bromine-, f luorine-, and iodine-
containing compounds, with chlorine and bromine
being the most widely used representatives of this
group. This is because efficiency and stability depend-
ing on the type of halogen are the two main factors
that determine the type of compound that can be used
as a fire retardant. Compounds based on fluorine and
iodine are not used because of their inability to inter-
fere with the combustion process of the polymer, since
fluorinated organic substances are more stable than

iH iOH iO

iOH iH
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most commercial polymers and do not emit f luorine
or hydrogen fluoride radicals at the temperature of
polymer decomposition [15–17]. Halogen-containing
compounds are used with other f lame retardants,
which are synergists that improve the characteristics of
the f lame retardant. There are a significant number of
such synergists, for example phosphorus-based f lame
retardants [18], and the most common ones with anti-
mony trioxide-halogen synergism-based composi-
tions are widely used to increase the fire resistance of
various polymers, such as polyolefins, polystyrene,
polyesters, polyamides, polyurethanes, etc. Antimony
trioxide mainly works in the gas phase. During pyrol-
ysis, hydrogen halides, which are released during self-
decomposition of the halogenated compound or
during interaction with antimony trioxide and/or
polymer, react with antimony halides Sb2O3 [19]. Due
to environmental concerns and toxicity concerns, the
use of halogen compounds has been limited. As an
example, polybrominated diphenylesters are classified
as persistent organic contaminants that can accumu-
late in dangerous concentrations in the human body
and exhibit hepato-, nephro-, gonadotoxic properties
[20], and brominated dibenzofurans are modulators of
gene expression associated with the nuclear X-steroid
receptor responsible for the biosynthesis of sex hor-
mones [21]. Chlorine-containing f lame retardants can
form toxic products during combustion. In [22–24], it
was shown that halogen compounds separate a large
amount of toxic substances formed both during com-
bustion and during operation. Halogen-containing
flame retardants not only do not solve the main prob-
lem of the fire hazard of polymer materials associated
with the toxicity of combustion products, but even
aggravate it.

2.2. Phosphorus-Containing Compounds

Phosphorus-based f lame retardants are widely
used with thermoplastics and thermosetting materials
[25]. Phosphorus-based fire retardants include vari-
ous products, such as elemental red phosphorus, inor-
ganic phosphates, phosphites, phosphates, phosphine
oxides, and organochlorine phosphates, which are
active in the condensed and/or gas phase [26]. Phos-
phorus compounds can function in the condensed
polymer or in the gas phase, and possibly in both
phases simultaneously. With regard to condensed
phase operation, it is generally accepted that phospho-
rus f lame retardants are markedly more effective in
oxygen-containing or nitrogen-containing polymers,
which can be either heterochain polymers or polymers
with these elements in pendant groups. By generating
phosphoric anhydrides of phosphoric and related
acids, which act as dehydrating agents, phosphorus
compounds react with these polymers to promote the
formation of coke (dehydration reactions lead to the
formation of double bonds, which at elevated tem-
peratures lead to cross-linked or carbonized struc-
 CHEMICAL ENGINEERING  Vol. 56  No. 4  2022
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Fig. 1. The chemical structures of organic phosphorus
flame retardants [36].
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tures) [1]. In general, the chemical reactions involved
in the decomposition of the matrix are redirected to
form carbon rather than CO or CO2. Thus, the phos-
phorus charring process can be used even in the case of
weak char-forming polymers such as polyolefins and
styrenes, which form coke by adding an additive. Acids
released during the decomposition of phosphorus-
based chemicals can form a thin glassy or liquid pro-
tective coating on the condensed phase, thereby
reducing oxygen diffusion as well as heat and mass
transfer between the gas and the condensed phase.
This glassy residue can also coat the coke, making it
stronger and cohesive, thereby delaying its destruction
[27, 28]. In addition to slowing the spread of fire in the
condensed phase, phosphorus additives can work well
in the gas phase, exhibiting free radical scavenging
properties. Volatile phosphorus compounds are
among the most effective f lame retardants. They con-
tain products that reduce the concentration of hydro-
gen atoms in the f lame, thereby extinguishing it.

In fact, at the same molar concentration, phospho-
rus is a much more effective radical scavenger than
bromine and chlorine, since they control the gas-
phase action of phosphorus-based additives [29–31]:

Phosphorus compounds can be inorganic or
organic. The most commonly used inorganic com-
pounds are red phosphorus, ammonium polyphosphate,
ammonium dihydrophosphate, phosphine, phosphorus
oxides, etc. [32, 33]. Ammonium polyphosphate is used
in intumescent compositions [34, 35].

There are many organic phosphorus-containing
compounds that have f lame retardant properties, but
few have achieved commercial success. The three
main groups of organic phosphorus fillers that are
commonly used are:

(1) phosphinates, (2) phosphonates, and (3) phos-
phate esters (Fig. 1) [36].

Inorganic phosphorus-containing f lame retar-
dants include: ammonium polyphosphate, red phos-
phorus, ammonium dihydrogen phosphate, phos-
phine, phosphorus oxides, etc. Examples of phospho-
rus-containing fire retardants can be alkyl
phosphonates, esters of phosphoric acids (tricresyl
phosphate, cresyl diphenyl phosphate, etc.), triaryl
phosphates [37, 38]. Every year an increasing number
of phosphorus-containing f lame retardants appear,
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this is a consequence of the desire to more effectively
reduce the f lammability of polymeric materials. At the
same time, there is a clearly expressed tendency
towards the complication of substances that combine
these elements [39, 40]. It is important that this ten-
dency is not always effective, since it is still impossible
to avoid the isolation of low-molecular-weight reac-
tion products. It is also not possible to completely
exclude the deterioration of the physical and mechan-
ical characteristics and the increase in the corrosion
aggressiveness of the compositions.

2.3. Nitrogen Compounds

Nitrogen-containing compounds are one of the
most environmentally friendly classes of f lame retar-
dants that produce a small amount of smoke and do
not contain by-products of dioxin and/or halogen
during combustion [41]. Melamine and melamine
derivatives are the most important fire retardants
based on nitrogen compounds. Nitrogen-containing
flame retardants have been used to increase the fire
resistance of, firstly, polyamides and, secondly, poly-
olefins (and polyurethanes), but they are usually not
very effective for other polymers [42]. Melamine is a
thermostable product containing 67% nitrogen by
weight. It has high thermal stability and is used in
polyurethane foams and intumescent coatings [43].
Melamine decomposes the released ammonia (which
dilutes oxygen and combustible gases) and leads to the
formation of a thermally stable condensate melem
(2,5,8-triamino-1,3,4,6,7,9,9b-heptaazaphenalene),
melam ((N-4,6-diamino-1,3,5-triazin-2-yl)-1,3,5-
triazine-2,4,6-triamine) and melon (Poly (8-amino-
1,3,4,6,7,9,9b-heptaazaphenalene-2,5-diyl)imino).
The evolution of melam, melem, and melon is accom-
panied by the formation of residues in the condensed
phase, leading to the occurrence of endothermic pro-
cesses, and is also effective for slowing combustion
[44]. Melamine flame retardant is used as a blowing
agent and f lame retardant in intumescent coatings,
elastomers and plastic formulations, and in f lexible
polyurethane foams [45]. Melamine is a weak base
that can form well-defined heat-resistant salts with
both organic and inorganic acids. These salts, such as
melamine cyanurate, melamine phosphate and
melamine pyrophosphate, have been found to have
EERING  Vol. 56  No. 4  2022
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f lame retardant characteristics and for this reason are
commonly used in practice to improve the f lame
retardance of a polymer. Melamine phosphate and
melamine pyrophosphate act as intumescent com-
pounds upon combustion [46]. Melamine cyanurate,
oxalate and melamine phthalate are polyamides that
decompose under combustion conditions, promote
enhanced droplet f low of noncombustible liquid;
therefore, the polymer is removed from the f lame
source without providing fuel to feed the fire. It also
has a physical effect on the combustion cycle, acting as
a heat sink and source of inert gas. More specifically,
its initial endothermic dissociation followed by subli-
mation of the resulting melamine and subsequent
decomposition of the melamine vapor absorbs the
heat generated, cooling the substrate. In addition, the
formed inert gases additionally contribute to the retar-
dation of combustion due to the dilution of oxygen and
combustible gases [47–49]. Most melamine salts work
in the condensed phase. Another nitrogen-containing
composition exhibiting flame retardant properties is oxa-
zene resin; it can be used as a homopolymer or as a reac-
tive additive in epoxy resins. Polyisocyanurate also has a
certain fire resistance. It is most effective in combination
with phosphorus-containing epoxy resins [50].

2.4. Intumescent Flame Retardants

An intumescent fire retardant system is another
popular class of fire retardant additives that functions
by creating swollen coke that acts as an insulating bar-
rier. This barrier reduces heat transfer between the
polymer and the heat source. An intumescent system
typically consists of three components, namely a
charmer or carbonizer, an acid source, and a blowing
agent. During combustion, acids catalyze the dehy-
dration reaction, which leads to the formation of coke
[51]. The foaming agent (melamine, urea, or guani-
dine) decomposes and foam is released [52]. The
development of swollen coke occurs through a multi-
stage physical and chemical process. Noncombustible
gases released during the decomposition of the blowing
agent form a foam and a carbonized layer [53, 54]. Sev-
eral synergistic agents have been proposed to enhance the
fire properties of intumescent formulations. As an exam-
ple, it has been found that by adding it together with
ammonium polyphosphate (APP)/pentaerythritol
(PER) a small amount of zeolite in polyolefins, their
f lame retardant properties can be significantly
improved. Zinc borate or a combination of zinc oxide
and borate also improve the protection provided by
typical intumescent systems. In addition, intumescent
coatings can be made more effective in terms of pro-
tective properties by incorporating Ti or Zr or other
metal borides, nitrides or carbides [55–58].
THEORETICAL FOUNDATIONS OF
2.5. Metal Compounds
Metal compounds are used as f lame retardants and

belong to the group of inert additives; they can be
divided into two types [59, 60]:

— substances resistant up to a temperature of
1000°C (carbon black, silicates, inorganic glass, metal
oxides, etc.);

— substances that decompose at temperatures
below 400–500°C, while absorbing heat with the
release of CO2, NH3 or water vapor (carbonates,
hydroxides, ammonium phosphate, metal hydrogen
carbonates, etc.).

To date, antimony oxide is the most effective f lame
retardant. As mentioned earlier, antimony oxide has
synergistic activity with halogens and other types of
fire retardants. The hypothesized mechanism of
action is as follows [61]:

At the final stage, the formation of antimony oxide
makes an additional contribution to the retardation of
combustion, creating obstacles to f lame propagation.
Gaseous antimony trichloride limits the supply of oxy-
gen to the combustion zone [62].

Metal hydroxides remove heat by liberating a large
amount of water in the same temperature range or at a
temperature lower than that at which the polymer
decomposes. Thus, by absorbing heat, they slow the
polymer pyrolysis process. In addition, the resulting
water vapors dilute the combustible gases of polymer
decomposition, thereby preventing exothermic radical
reactions in the combustion zone. Moreover, a non-
combustible layer is formed on the surface of the
material, which protects the substrate [63, 64]. Smoke
suppression is another contribution of metal hydrox-
ides to fire resistance. Studies have shown that the
amount of carbon monoxide released during the com-
bustion of polymers containing inorganic hydroxides
is usually lower than in a pure matrix. The most likely
explanation for the mechanism of action of hydroxide-
based fire retardants is that the carbon formed as a
result of polymer decomposition is deposited on the
resulting oxide by hydroxide decomposition, and then
it evaporates in the form of carbon dioxide without
emitting smoke. As well, because water is their only
decomposition product, inorganic hydroxides do not
significantly increase the corrosive nature of the
smoke emitted during the combustion of polymers
containing them.
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The two most commonly used mineral f lame retar-
dants are aluminum and magnesium hydroxides.
More than 40% of the production of industrial fire
retardants are metal hydroxides. This is due to their
low cost and low toxicity compared to halogen-con-
taining additives [65]:

The main disadvantage of both aluminum and
magnesium hydroxide is that at least 60 wt % of these
substances must be included in the polymer to achieve
good flame retardant properties. However, an increase
in the efficiency of the produced material negatively
affects the mechanical properties of the resulting
material [66]. To increase their effectiveness, metal
hydroxides are often used in combination with other
types of fire retardants. As an example, aluminum
hydroxide, together with antimony oxide, is used for
fire-resistant f lexible PVC wires and cables. PVC-
based materials exhibit improved flame retardant
properties when mixed with inorganic hydroxides and
molybdenum-containing compounds [67–69]. More
recently, it has been shown that an improvement in fire
resistance at significantly lower loads on the additive
can also be achieved using nanoparticles (aluminum
and magnesium hydroxides) [70].

Borates, namely zinc borates, constitute another
group of inorganic additives that have been found to
improve the combustion characteristics of polymeric
materials. There are two forms of zinc borates that
have good thermal stability, which allows them to be
used as f lame retardants: 4ZnO⋅6B2O3⋅7H2O and
2ZnO⋅2B2O3⋅3H2O. Zinc borate, in the second cate-
gory, is the most used. It operates predominantly in
the condensed phase, promoting coke formation, but
also acts as a smoke suppressor [71]. The main use of
zinc borate is in PVC and halogenated polyester, either
as a complete or, more commonly, partial replacement
for antimony oxide. Unlike antimony oxide, which is a
flame retardant in the vapor phase, zinc borate signifi-
cantly increases the amount of coke formed during the
combustion of the polymer. In particular, it reacts with
hydrogen chloride released during the decomposition
of PVC to form zinc hydroxychloride and zinc chlo-
ride, as well as boron oxide and boron trichloride [72].
Zinc borate is often used in combination with other
flame retardants, such as magnesium hydroxide, caus-
ing the formation of a porous ceramic layer during
polymer combustion, which insulates the substrate
[73, 74]. It is also used as a synergist to phosphorus-
and halogen-containing compounds. One great
advantage is that zinc borate retains water of crystalli-
zation up to a temperature of 300°C, due to which it is
used to create compositions based on a copolymer of
ethylene and vinyl acetate [75], polyvinyl chloride,
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polypropylene [76], polyester resins, and polyure-
thane [77].

2.6. Nanoparticles of Metal Compounds
Recently, nanoparticles of metal compounds have

attracted great attention as f lame retardants [78–80].
Nanoparticles of zinc borate [81], magnesium hydrox-
ide [82], zinc oxide [83], aluminum oxide [84],
iron(III) oxide [85, 86], and layered double hydrox-
ides [87, 88] are used as fire retardants.

Zinc borate nanoparticles have been used as f lame
retardants for polyvinyl chloride [89], polyurethane [90],
polyethylene [91], and polyethylene terephthalate. The
effect of zinc borate is associated with the formation of a
protective layer on the surface of the polymer, which pro-
tects the material from combustion [92].

Magnesium hydroxide nanoparticles are used as an
additive that reduces the f lammability of polymeric
materials [93–96]. They are attractive because of their
relatively low cost. Magnesium hydroxide mainly acts
by cooling the polymer due to the reaction of endo-
thermic decomposition of magnesium oxide [97].

In a number of works [98–100], the use of zinc
oxide nanoparticles as a f lame retardant in polymeric
materials was presented. In [101], the use of aluminum
oxide nanoparticles to reduce the combustibility of a
polymer was studied. It was found that, on the one
hand, aluminum oxide nanoparticles catalyze the pro-
cesses of thermal-oxidative degradation and accelerate
the process of decomposition of macromolecules; on
the other hand, they form a protective layer that
increases the thermal stability of the polymer.

Polymer composites with inorganic nanoparticles
have great potential as materials with high fire and
heat resistance. Nanoparticles in polymer nanocom-
posites demonstrated a simultaneous decrease in the
heat release rate and an increase in thermal stability
[102, 103]. The combustion characteristics of polymer
nanocomposites due to the addition of nanofillers are
due to a dual mechanism, namely, the effect of a phys-
ical barrier and the effect of catalytic charring [104].
The physical barrier effect, also known as the surface
ceramization process, is observed during combustion
when the nanoparticles form a network of f lakes.
These f lakes are combined with a small portion of car-
bonaceous coke. This coke or ceramic layer is ther-
mally stable and acts as a barrier, preventing heat
transfer between the material and the f lame, and also
serves as a screen between combustion and decompo-
sition products [104].

3. SYNERGISTIC EFFECTS OF FLAME 
RETARDANTS

The concept of synergy is very often used in the
optimization of f lame retardant formulations. The
term synergy refers to the combined effect of two or
EERING  Vol. 56  No. 4  2022



550 HARHOOSH et al.
more additives. Synergistic phenomena can be
obtained either by a combination of f lame retardant
mechanisms, such as char formation by a phosphorus
flame retardant in combination with gas phase action
by a halogenated f lame retardant, or by a combination
of f lame. Fire retardants that enhance the same mech-
anism, such as nanoclays and phosphorus fire retar-
dants, act in the condensed phase. [105] studied the
effect of using nanosized oxides and ammonium poly-
phosphate synergistically with polystyrene and poly-
methyl methacrylate. The result of the cone calorime-
ter showed a reasonable reduction in the maximum
heat release rate, a reduction in opaque smoke, and an
increase in the limiting oxygen index value. In [106],
the effect of the synergistic use of ammonium poly-
phosphate, melamine phosphate, and aluminum
oxide trihydrate with a layered silicate polyester resin
was studied. In [107], using the example of plasticized
polyvinyl chloride and polymethyl methacrylate, the
effect of particle size on the fire-resistant characteris-
tics of composites was shown. Based on the presented
works, it can be concluded that synergism between
various f lame retardants can increase the fire-resistant
properties of polymer composites.

CONCLUSIONS
The paper considers various groups of f lame retar-

dant additives in polymeric materials, such as halo-
gen-containing, phosphorus-containing, metal com-
pounds, which are used to increase the fire resistance
of polymeric materials. The mechanisms of action of
flame retardants are discussed, and the concept of a
physical barrier of nanoparticles is described. The
prospects of using nanoparticles of metal compounds
are noted.
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