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Abstract—Details of a numerical model and the results of calculation are presented for the interphase heat
and mass transfer in the two-phase f low produced by nozzle spraying of a liquid into a gas. The proposed
mathematical model is based on the unsteady-state differential equations of f low of a compressible medium,
supplemented with the equations of heat and mass transfer from the drops to the gas. Difference analogs of
the equations of continuity and motion of the phases are created using the known Lax–Wendroff explicit
scheme. The axial and radial profiles of the velocities and temperatures of the drops and the gas in the free
nozzle spray cone, and also in the two-phase f low through the cylindrical apparatus, are calculated taking
into account the early drag crisis of the drops and the crisis of the heat-and-mass transfer inter the phases,
and also the specific features of the turbulent friction in the gas, which were detected in previous experiments.
In the calculations, in particular, the dependences of the temperatures of the drops and the gas, averaged over
the outlet section of the apparatus, on the gas f low rate through the apparatus are characterized.
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INTRODUCTION: SPECIFIC FEATURES
OF THE FLUID DYNAMICS 

OF A SPRAY CONE OF A NOZZLE
Liquid spraying into a gas, e.g., by nozzles, is used

in power and chemical engineering to intensify (by
increasing the interfacial area) such processes as com-
bustion or pyrolysis of liquid hydrocarbons, wet air
scrubbing to remove dust and harmful gaseous impu-
rities, and drying and granulation of polymers.

Methods of calculation of such heat- and mass-
transfer processes are based on the concepts of the pat-
tern of the formed two-phase f low in the spray cone,
the forces of interaction of the drops with the gas, and
elementary heat and mass transfer processes between
the gas and a single drop [1, 2].

Methods of satisfactory calculation of the f luid
dynamics of a spray cone and the interphase heat and
mass transfer in it have not until recently been devel-
oped. This emphasizes the topicality of this work,
which is a continuation of the previous studies [1–3].

Interphase heat and mass transfer processes are
very often simultaneous and parallel, which compli-
cates modeling and calculation of integrated transfer
processes. The purpose of the current work is to model
an integrated process comprising evaporation and
cooling of water drops sprayed in air with taking into

account the crisises of drag of the drops and the inter-
phase heat and mass transfer.

Previously [2], a simpler process of interphase mass
transfer (without heat transfer) was modeled and cal-
culated, specifically, wet air scrubbing to remove
harmful gaseous impurities, e.g., SO2.

Two-phase f lows are mathematically modeled
using two main approaches: the method of interpene-
trating continua [4] and the theory of turbulent jets
[5]. Using the former approach, each of the phases is
considered as a continuum distributed continuously
throughout space with a variable density averaged over
a small volume, and the velocities of the phases are
believed to be different. Using the latter approach, the
concentration of the dispersed phase is assumed to be
low and the velocities of the phases are assumed to be
approximately equal, with the turbulence of the gas
phase being taken into account.

An example of one of the first applications of the
continual approach to calculating a gas–drop two-
phase f low is the one-dimensional model of f low
dynamics of a nozzle spray cone [6]. Subsequently,
this model was used many times as a basis for model-
ing a number of heat- and mass-transfer chemical
engineering processes with liquid spraying, in particu-
lar, evaporation of liquid hydrocarbon feedstock in
339
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carbon black production [7]. This approach should be
further developed by the creation of a two-dimen-
sional model of an axisymmetric spray cone. A num-
ber of the following important features must be taken
into account.

As has been experimentally determined, the gas
flow in a nozzle spray cone is a turbulent jet [1], which
originates at the spray cone vertex because of the inter-
action of the phases. Well away from the nozzle, the jet
develops independently of the drop flow and differs
from a single-phase gas jet by the f low pattern and the
characteristics of the turbulent friction. In particular,
it has been shown that the dimensionless profiles of
the axial velocity of the gas are shallower than those in
a single-phase jet; a noticeable difference between the
velocities of the phases has been observed, and gas
pressure differences on the order of 1–10 Pa along the
radius and axis of the spray cone have been detected.

Thus, in the two-dimensional model of the spray
cone, it is necessary and advisable to use the continual
approach, taking into account the turbulence of the jet
gas f low.

Moreover, experiments have shown a significant
feature of the interaction between the phases, which
has been called the early crisis of drag [1] (see below).
This feature must also be taken into account in calcu-
lating the spray cone and consists in the following.

The known classical drag crisis in a sphere moving
in a viscous medium is a phenomenon in which the
drag force and the drag coefficient of the medium at a
Reynolds number of Re = Recr ≈ (2–3) × 105 decrease
by a factor of approximately 4–5 times [8–12]. This is
due to a transition of the laminar boundary layer near
the surface of a streamlined body to a turbulent one, a
shift of the f low separation line downstream the f low,
and improvement of the streamlining of the body with
decreasing drag [11].

The critical Reynolds value Recr depends on the
degree of turbulence of the viscous medium flowing
past the sphere and decreases with increasing degree of
turbulence. Cases of the drag crisis of a sphere have
been described even at Recr ≈ 400–2200 [10].

Nozzle liquid spraying produces drops with Sauter
mean diameter d on the order of 10–4 m. At such sizes
and with a significant difference between the dynamic
viscosities of the liquid of the drops and the gas f low-
ing past them (for water and air, by a factor of approx-
imately 60 times), one can ignore the deformation of
the drops and the internal f low of the liquid in them
and consider them as solid balls.

The drag force on a drop past which a gas f lows is
typically calculated as

(1)

where V = u – w is the relative velocity of the drop in
the gas, Cd is the drag coefficient, s is the central-sec-
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tion area of the spherical drop, ρ is the gas density, and
μ is the dynamic viscosity of the gas.

In the case of a laminar f low past a ball at low
Reynolds numbers Re = Vdρ/μ  1, the Stokes for-
mula Cd = 24/Re is used, and in a transition range of
2 < Re < 700, the Klyachko formula

(2)
approximates well the experimental data generalized
by the standard Raileigh curve [9, 8].

It has been experimentally demonstrated [1] that,
in the developed turbulent f low of a nozzle spray cone
at Re = Recr ≈ 100, Cd of the drops decreased by a fac-
tor of 4–7 in comparison with the values given by the
Klyachko formula (2). This is the earliest crisis of drag.

In particular, for the drops moving along the axis of
the spray cone, a good approximation at 40 < Re < 110
was proposed in [1]:

(3)
A subsequent analysis of experimental data showed

that formula (3) is valid not only for the drops in the
axis of the spray cone, but also for all of the drops in
the volume of the spray cone at z > 0.1 m. Further-
more, to simplify calculations, one can take into
account that, in the self-similar f low zone of the free
spray cone, at z > 300 mm and Re > 110,

(4)
with an approximate deviation of ±0.05.

The same early drag crisis was observed in a gas
flow in a convergent tube past a single solid ball [3,
Sect. 5.1].

As one of the possible causes of the early crisis of
drag of a spherical particle, a hypothesis of the effect
of the high turbulence of the gas f low was considered:
this turbulence was additionally increased by the con-
vergent tube in comparison with a free jet and was suf-
ficient to induce the early crisis in a single solid ball [3,
Sect. 5.1].

This assumption was confirmed by numerical
modeling of both laminar and highly turbulent gas
flow past a ball [3, Sect. 5.3].

The above suggested that, for mathematical and
numerical modeling of a spray cone as a two-phase
flow, taking into account all its features, to describe
the motion of both phases in the same manner, it is
reasonable to use a combination of the method of
interpenetrating continua [4] and the theory of turbu-
lent jets [5]. This idea was used in the two-dimensional
model of the f low dynamics of the free spray cone and
the two-phase f low bounded by the walls of a cylindri-
cal apparatus [3, Sect. 7.2].

For more information on the subject of investiga-
tion, including the consideration of the early crisis of
drag in the interaction between the phases in the spray
cone, and also the description of the foundations of

!
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CALCULATION OF THE INTERPHASE HEAT AND MASS TRANSFER 341
the mathematical model used in this work, the reader
is referred to the previous works [2, 3]

MODELING OF THE HEAT AND MASS 
TRANSFER IN A FREE SPRAY FLOW 

PRODUCED BY A NOZZLE
The model under consideration is based on the

equations of the f luid dynamics of a two-phase f low.
For example, in the previous work [2], along with for-
mula (1), such equations are Eqs. (4)–(14). The last
two of them takes into account the early drag crisis in
the drops in their interaction with the highly turbulent
gas f low by using the experimentally determined
dependence Cd(r, z). Note that, in this work, along
with them, the formulas (3) and (4) are also used.

To calculate the interphase mass transfer (without
considering heat transfer), this system of f luid-
dynamic equations (4)–(14) was supplemented [2]
with Eqs. (15)–(19), which take into account the con-
vective transfer of the impurity gas component in the
flow and from the gas to the liquid drops.

Similarly, in this work, the system of Eqs. (4)–(19)
from the previous work [2] was supplemented with the
below equations of convective heat transfer in each of
the phases and convective mass transfer of the vapor as
one of the components of the gas phase, and also with
relations describing the heat and mass transfer from
the liquid drops into the gas f low.

To take into account the heat transfer within the gas
phase, the mathematical model can and must be sup-
plemented with the “heat balance equation” [11, p. 436],
which has also been called the “total heat transfer
equation” [12, p. 277] and was before [3, Sect. 6.1]
presented under number (6.8) in the form

(5)

In formula (5), the last term Φd describes the dissi-
pation of the mechanical energy of the gas into heat. It
has been reported [11, 12] that, at low flow velocities
and low gas compression ratio, this term can be repre-
sented as

(6)

At small differences between the temperatures of
the sphere (drop) and the gas f lowing past it, the vis-
cosity μ and thermal conductivity λ of the gas (air) dif-
fer little. As calculations have shown [3, Sect. 6.2], in
this case, the effect of the term Φd on the distributions
of the velocities and temperatures of the gas can also
be ignored. Then, Eq. (5) can be transformed to the
form

(7)
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In the transition from formula (5) to formula (7),
the relation P/(ρc

v
) = RT/(Mc

v
) ≈ 0.4T was used,

which follows from the ideal gas law using data on air;
the heat f lux Q from all the drops to the gas per unit
volume of spray was also taken into account.

The notation in formulas (5)–(17) is the following:
α is the liquid volume fraction; ρl is the physical den-
sity of the drops; wz and wr are the axial and radial
components of the gas velocity, respectively; uz and ur
are the same for the liquid, respectively; ρsv is the den-
sity of the saturated water vapor near the surface of the
drop; ρ

v
 = ρ

v
(r, z) is the density of the water vapor in

air far from the drop; с
v
 is the specific heat at constant

volume; сp is the specific heat at constant pressure; cl
is the specific heat of the drops; a = λ/(ρсp) is the ther-
mal diffusivity of the gas; Pr = ν/a = 0.71 is the Prandtl
number; ν = μ/ρ is the kinematic viscosity of the gas;
D is the diffusion coefficient of the water vapor in the
gas; PrD = ν/D = 0.64 is the diffusion Prandtl number
(sometimes called the Schmidt number Sc); Vd is the
drop volume; L is the specific heat of evaporation of
the liquid drops; R = 8.31 J/(mol K) is the universal
gas constant; and M is the molar mass of the gas. The
presented numerical estimates were made using data
on air at a temperature of tg = 20°C.

Using the previous results [3, Sect. 6.3], to simplify
the interphase heat transfer model, the temperatures
at all the points within the drop and on its surface can
be taken as equal to each other (Tl = Tl(r, z)) and
dependent only on the coordinates r and z of the drop
in the spray cone. This gives an external problem of
interphase heat transfer. Then, the density of the heat
flux from a single drop with the surface temperature Tl
to its surrounding gas with the temperature Tg = Tg(r,
z) can be described by Newton’s law of cooling

(8)
with the heat-transfer coefficient

(9)
The Nusselt number can be found from the Ranz-

Marshall correlation [13]

(10)
Then, using formula (9), the heat f lux from all the
drops to the gas per unit spray cone volume can be rep-
resented as

(11)

To take into account the mass transfer of the vapor
in the gas f low and its mass transfer from the liquid
drops to the gas by analogy with the previous work [2],
where Eqs. (15)–(19) considered the interphase mass
transfer of the impurity gas component, the above sys-
tem of Eqs. (5)–(11) was also supplemented with
Eqs. (12)–(16).

( )= −t l gq k T T
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342 SIMAKOV
Keeping in mind the analogy between the phenom-
ena of interphase heat and mass transfer [11], for the
density of the mass f lux of the vapor from a single drop
to the gas, the mass-transfer equation can be written:

(12)

which is similar to Newton’s law of cooling (8) for the
heat f lux density. Also by analogy with the heat-trans-
fer coefficient, the mass-transfer coefficient from the
drop to the gas can be defined:

(13)

and the diffusion Nusselt number can be defined by
analogy with Ranz-Marshall correlation (10)

(14)
which is well known in heat-transfer studies.

Then, using Eq. (12), the vapor mass f lux from all
the drops to the gas per unit spray volume can be rep-
resented by the relations

(15)

The equation of convection–diffusion transfer of
the vapor in the gas f low with taking into account its
mass transfer from the liquid drops to the gas can be
written as

(16)

To the right-hand side of the continuity equation
(4) for the gas from the previous work [2], the same
term J should be added, as the last term of Eqs. (15)
and (16) here. To the right-hand side of Eq. (5) from
the previous work [2], to change the axial velocity wz of
the gas, the term uz J/ρ should be added, which
describes the thrust (momentum flux) due to the
vapor inflow at the rate of evaporating drops in to the
gas f low; to the right-hand side of Eq. (6) of the same
system of Eq. (4)–(9) from the previous work [2], the
similar term ur J/ρ should be added.

Furthermore, to take into account the heat transfer
in the dispersed phase, the mathematical model
should be supplemented with an equation similar to
Eq. (7), but simpler:

(17)

The numerator of the fraction on the right-hand
side of Eq. (17) characterizes the decrease in the heat
of the liquid drops due to the heat transfer to the gas
(Q) and the evaporation from their surface (JL).

Without taking into account the mass-transfer cri-
sis similar to the heat-transfer crisis [3, Sect. 6.2], for-
mulas (10) and (14) give the values Nu ≈ NuD > 2. To
take into account the heat- and mass-transfer crisis,
which, like the drag crisis of the drops, is caused by the
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high turbulence of the gas flow, the values Nu = NuD = 2
should be used.

The system of Eqs. (1) and (4)–(12) from the pre-
vious work [2], supplemented with formulas (3)–(17)
presented here, enables one to calculate the changes in
the temperatures T(r, z) and Tl(r, z) of the phases in
the two-phase f low of the nozzle spray cone both with
and without taking into account the drag crisis in the
drops and the heat- and mass-transfer crisis in the
phases.

In the numerical model of the spray cone, before
replacing the differential equations by their difference
analogs, it is worth nondimensionalizing the variables
by dividing the coordinates r and z by the initial (min-
imum) radius r0 = z0tanϕ of the spray cone in the com-
putational domain (z0 = 100 mm is the distance from
the upper boundary of the computational domain to
the nozzle hole); the velocities w, u, V, and ws, by the
initial velocity u0 of the drops (liquid jet); the density ρ
of air (and also water vapor), by the density ρ0 of the
quiescent gas far from the spray cone; the time τ, by
τ0 = r0/u0; and the temperatures T and Tl, by, e.g.,
T0 = 293 K. The form of Eqs. (4)–(9) from the previ-
ous work [2], and also Eqs. (7), (16), and (17) in this
work remains unchanged, and at the terms on the
right-hand sides of these equations, the corresponding
additional coefficients emerge.

As in the previous work [2], in the transition from
the above differential equations to their difference
analogs using Eqs. (1) and (10)–(12) from the previ-
ous work [2] and Eqs. (3)–(4) and (8)–(15) in this
work for approximating the convective terms on rect-
angular spatial computational grid (i, j), the Lax–
Wendroff two-step explicit difference scheme was
used [14]. This scheme is time-centered; therefore, the
numerical effects of viscosity and diffusion on it are
much weaker than in the Lax one-step scheme, and
consequently, the velocity profiles of each of the
phases are closer to the true ones.

For the Lax–Wendroff scheme to be stable, the
Courant–Friedrichs–Lewy condition should be met
[14], which, at equal grid steps Δz = Δr, has the form

(18)

The diffusion terms of Eqs. (7) and (16) were
approximated using an explicit scheme of the first
order of accuracy [14, p. 107], for which the stability
condition on a two-dimensional grid has the form

(19)

For the stability of the entire difference scheme,
both conditions (18) and (19) should simultaneously
be met, of which the first turned out to be stronger.

( )
ΔΔτ ≤
+ +2 2 2

.
2 s z r

z
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ΔΔτ ≤
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CALCULATION OF THE INTERPHASE HEAT AND MASS TRANSFER 343
An advantage of the proposed numerical model is
that it allows one to calculate all the variables using a
simple explicit scheme.

A certain difficulty in constructing the numerical
model was to impose suitable boundary conditions,
which preserve the stability of the difference scheme.
The difference scheme at the boundary points of the
grid has a different form in comparison with that at
internal points, because the spatial derivatives in the
former case are approximated by one-sided, rather
than two-sided, differences. Moreover, at the axis of
symmetry (at r = iΔr = 0), the radial velocities of the
phases are wr = ur = 0, and the derivatives of some vari-
ables with respect to r can also become zero.

Using experimental data, at the upper (inlet)
boundary of the computational domain (j = 0), the pro-
file of the liquid volume fraction should be set, e.g., in
the triangular shape α(r, z0) = 3(rn/r0)2(1 – r/r0), where
rn is the nozzle hole radius, and r0 = z0tanϕ. The radial
profiles of the components uz(r, z0) and ur(r, z0) of the
liquid velocity should also be specified. The shape of
the first of them can be taken as rectangular, trapezoi-
dal, or more complex, whereas the second, with the
consideration of the pattern of the liquid outflow from
the nozzle hole, should be given as a function of the
radius: ur(r, z0) = uz(r, z0)r/z0.

In the case of a free spray of a nozzle, the gas density
at the lateral (external) boundary of the computational
domain can be found from the Bernoulli’s equation

and the gas temperature is taken to be equal to its ini-
tial value T0 = 293 K.

In the calculation of the two-phase f low in a cylin-
drical spraying apparatus, on its wall, which is the lat-
eral boundary of the computational grid, the condi-
tions under which the components of the gas velocity
are zero are set: wz = wr = 0; the temperatures of the gas
and the liquid can be considered equal (T = Tl) at z ≥
zw = Rapp/tanϕ because of the wetting of the apparatus
wall with the liquid f lowing down as a film.

RESULTS OF THE CALCULATION
OF THE HEAT AND MASS TRANSFER

OF THE PHASES IN THE FREE 
SPRAY CONE OF A NOZZLE 

The above algorithm was implemented using the
Delphi software for calculating the f luid dynamics and
the heat and mass transfer in the vertically axisymmet-
ric spray cone of a centrifugal spray nozzle with a hole
diameter of dh = 2 mm.

The free spray cone was calculated using from work
[2]  the dependence (11) for the Reynolds stress of the
gas and dependences (13) and (14) for the drag coeffi-

 +ρ = ρ − 
 

2 2

0 2
0

1 .
2
z r

s

w w
w
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cient of the drops. In the calculation of the two-phase
flow in the apparatus, instead of the last two depen-
dences, formulas (3) and (4) of this work were used.

As a unit of the dimensionless spatial scale of the
grid, the radius r0 = z0tanϕ of the spray cone at the
upper boundary of the computational domain was
taken (ϕ = 32.5° is the spray cone half-angle, and z0 =
100 mm) and as a unit of velocity scale, the initial
velocity u0 = 0.75(2Рl/ρl)1/2 of the liquid leaving the
nozzle. As d, the volume-surface mean diameter d32 =
0.14 mm of the drops was used, which was measured at
a water pressure at the nozzle of Рl = 5 × 105 Pa. The
thermophysical characteristics of the gas were taken as
for air, those of the liquid as for water. The initial tem-
perature of the air was taken to be T0 = 293 K, that of
the water drops, as Tl = 1.1T0 = 322 K.

The computations were made on a rectangular spa-
tial domain with physical sizes rmax = hmax(i), zmax –
z0 = hmax(j), and h = 4 mm. The number of grid
points in the calculation of the free spray cone was var-
ied to max(i) = max(j) = 200 at a dimensionless grid
step of Δr = Δz = 1/16, which ensured sufficient
approximation of the difference scheme.

The (quasi-)steady-state f low of interest was
reached by the evolution of the unsteady-state solution
in the “grid” time that was approximately 15–20 times
longer than the characteristic time τs = (zmax − z0)/u0,
in which the drops could move from the upper to the
lower boundary of the computational domain without
taking into account their deceleration in the gas.

Figures 1–6 present the results of the calculations
of the interphase heat and mass transfer in the axisym-
metric free nozzle spray cone using the proposed
model.

Figure 1 shows the axial profiles of the velocities of
the phases and the reduced temperatures of the gas
(tg[0, j] = 10(T[0, j]/T0 – 1)) and the drops (tl[0, j] =
10(Tl[0, j]/T0 – 1)) on the axis of the free spray cone
with and without taking into account the drag crisis in
the drops and the interphase heat- and mass-transfer
crisis. One can see that the drag crisis noticeably
affects the profiles of the velocities of each of the
phases: the gas f lows more slowly, whereas the drops
move more rapidly because of the weaker interphase
momentum transfer. A similar effect is produced by
the heat- and mass-transfer crisis on the temperatures
of the phases near the axis of the spray cone: the gas is
heated (by 10 K), and the drops are cooled (by 9 K) to
a lesser extent than without the crisis (by 17 and 12 K,
respectively).

Figures 2–5 present the radial profiles of the reduced
temperatures of the gas (tg[i, j] = 10(T[i, j]/T0 – 1)) and
the drops (tl[i, j] = 10(Tl[i, j]/T0 – 1)) at various dis-
tances z = 100 + 4j mm from the nozzle, which were
calculated with and without taking into account the
EERING  Vol. 56  No. 3  2022



344 SIMAKOV

Fig. 1. Calculated dependences of the velocities of the gas (wz[0, j]) and the drops (uz[0, j]) and their temperatures (tg[0, j] and
tl[0, j], respectively) in the axis of the free spray cone. The open symbols represent the results of the calculation without taking
into account the drag crisis by Klyachko formula (2) and the heat- and mass-transfer crisis using formulas (10) and (14) at Nu ≈
NuD > 2. The filled symbols represent the results of the calculation with taking into account the drag crisis by formulas (13) and
(14) from the previous work [2] and the heat- and mass-transfer crisis at Nu = NuD = 2.
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drag crisis of the drops and the crisis of the heat- and
mass-transfer of the phases.

It is seen that the drag crisis approximately doubles
the width of the temperature profiles of the drops at j =
100–150, whereas the heat- and mass-transfer crisis
approximately halves the maximum height of the tem-
perature profiles of the gas. Without taking into
account the heat- and mass-transfer crisis, the
reduced temperatures of the phases near the axis of the
spray cone far from the nozzle are close, and with tak-
ing into account this crisis, they differ by about half.
The qualitative effect of both crises is quite expectable:
because of the drag crisis, the drops move more rap-
idly, and the gas f lows more slowly than without the
crisis, and because of the heat- and mass-transfer cri-
sis, the drops are cooled, and the gas is heated to a
lesser extent than without this crisis.

Figure 6 shows the dependences calculated with
taking into account each of the crises for the centi-
grade temperatures of the phases, tg[i, j] and tl [i, j],
averaged over a section of the two-phase f low, as func-
tions of the distance z = 100 + 4j mm to the nozzle.

As one can see, despite both crises, the warm water
sprayed by the nozzle in air in a free jet 1.5 m long is
cooled by 22.7°C, or 77.5% of the initial difference
Δt = 29.3°C of the temperatures of the phases.
THEORETICAL FOUNDATIONS OF
CALCULATION OF THE INTERPHASE HEAT- 
AND MASS-TRANSFER IN A SPRAYING 

APPARATUS
Figure 4 in the previous work [2] shows a schematic

used in the calculations of an injection sprayer con-
taining a nozzle forming a spray cone, a cylindrical
chamber coaxial with the nozzle for mixing the
phases, and a separator tank for their separation. The
common axis of the nozzle and the mixing chamber is
vertical. The mixing chamber is open-top, and the gas
flow rate is controlled by a valve at the outlet of the gas
from the apparatus. The liquid collected at the bottom
of the separator tank is removed through a valve.

The cylindrical chamber for mixing the phases lim-
its the radius (r ≤ Rapp) and height (H) of the two-phase
flow. The height H is related to the position jmax = n of
the lower boundary of the computational domain by
the formula H = zmax = (z0 + n h). The internal surface
of the chamber wall is the lateral boundary of the com-
putational domain, imax = m = RAPP/h, at which both
components of the gas velocity are zero: wr(m, j) =
wz(m, j) = 0.

The drops reaching the wall fall on it, wetting the
internal surface below the coordinate zw = Rapp/tanϕ.
On the temperature of the liquid flowing as a film down
the internal surface of the apparatus (at r = Rapp), the
boundary condition was imposed: Tl(Rapp, z) = T0 at
 CHEMICAL ENGINEERING  Vol. 56  No. 3  2022
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Fig. 2. Radial profiles of the temperatures of the phases at various distances z = (100 + 4j) mm from the nozzle in the free spray
cone with taking into account the drag crisis in the drops and their heat- and mass-transfer crisis with the gas. The filled and open
symbols represent the reduced temperatures of the gas (tg[i, j]) and the drops (tl[i, j]) respectiveiy.
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Fig. 3. The same as in Fig. 2 with taking into account the drag crisis in the drops by formulas (13) and (14) from the previous work
[2], but without taking into account the heat- and mass-transfer crisis at Nu ≈ NuD > 2. The notation is the same as in Fig. 2.
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z < zw as the initial temperature of the gas and
∂Tl(Rapp, z)/∂r = 0 at z ≥ zw as the temperature of the
drops reaching the wall at given height z.
THEORETICAL FOUNDATIONS OF CHEMICAL ENGIN
In the proposed model of the two-phase f low, the
computational domain 0 < j < n is completely within
the mixing chamber.
EERING  Vol. 56  No. 3  2022
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Fig. 4. The same as in Fig. 2 without taking into account the drag crisis in the drops using formula (2), but with taking into account
the heat- and mass-transfer crisis of the phases at Nu = NuD = 2. The notation is the same as in Fig. 2.
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Fig. 5. The same as in Fig. 2 without taking into account the drag crisis of the drops and their heat- and mass-exchange crisis with
the gas. The notation is the same as in Fig. 2.
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In the calculations, the gas pressure difference ΔP
was set and maintained between the lowermost and
uppermost sections of the mixing chamber—the hori-
THEORETICAL FOUNDATIONS OF
zontal boundaries of the computational domain. From
the calculated values of the axial velocity of the gas, its
volumetric f low rate V through the apparatus was cal-
 CHEMICAL ENGINEERING  Vol. 56  No. 3  2022
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Fig. 6. Changes in the centigrade temperatures tg[i, j] and tl[i, j] of the phases, averaged over a section of the two-phase f low,
with distance z = 100 + 4j mm from the nozzle.
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culated. The variants of the calculation of the appara-
tus differed in gas pressure difference ΔP and in radius
Rapp and height H of the mixing chamber of the apparate.

Figure 7 presents the calculated radial profiles of
the reduced temperatures tg[i, j] and tl[i, j] in the spray-
ing apparatus with taking into account of both crises:
the drag crisis of the drops and the heat- and mass-
transfer crisis inter the phases.

The temperature difference between the phases
near the axis of the apparatus (at i = 0) is seen to be
noticeably higher than that near the apparatus wall (at
i = n = 36).

Figure 8 presents the calculated dependences on
the volumetric gas f low rate V through the apparatus
for the reduced temperatures of the gas tg[i, n] and
the liquid tl[i, n], averaged over the outlet section
(a different one for each of the phases) of the mixing
chamber. At V > 0, the gas and liquid f lows are co-cur-
rent, and at V < 0, they are counter-current.

Figure 8 shows that, with increasing V, the liquid
temperature approximately linearly decreases, as does
the gas temperature at V < 0, whereas at V > 0, there is
a maximum (about 30%). The position of the maxi-
mum of the gas temperature agrees with the assump-
tion made in the previous work [1, Sect. 7.2], that the
maximum efficiency of the heat and/or mass transfer
of the phases in the co-current mode of a spraying
apparatus can be reached at a gas f low rate close to the
THEORETICAL FOUNDATIONS OF CHEMICAL ENGIN
optimal value Vopt, which meets the condition
Vopt/Vmax = 3–1/2.

Figure 9 presents the calculated dependences on
the cross-sectional area S of the mixing chamber for
the maximum gas f low rate Vmax (i.e., at a low pressure
difference of ΔP = 0.7 Pa across the apparatus), the
average reduced temperatures tg[i, n] and tl [i, n] of
the phases, and also the ratio ml(n)/ml(0) of the mass
flux of the liquid at the outlet section of the apparatus
(i.e., the liquid that has not fallen on the apparatus
wall) to the mass f lux of the liquid at the inlet section.

The graphs in Fig. 9 show that, with increasing S,
the average temperatures of both phases at the outlet of
the mixing chamber decrease, the gas f low rate Vmax
and the fraction of the liquid that has not fallen on the
chamber wall increase, but more than 65% of drops
have reached the wall.

Figure 10 presents the calculated dependences of
the same quantities as in Fig. 9 on the apparatus height H,
but at a gas pressure difference across the apparatus of
ΔP = 7 Pa.

One can see that, with an increase in H by a factor
of 3, the volumetric f low rate V of the gas decreases no
more than by a factor of 2, and the average tempera-
ture of the gas at the outlet of the mixing chamber
increases approximately linearly, whereas the last
quantity for the liquid changes insignificantly and
irregularly, and the fraction of the liquid that has not
EERING  Vol. 56  No. 3  2022
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Fig. 7. Calculated radial profiles of the reduced temperatures tg[i, j] of the gas (filled symbols) and tl [i, j] of the liquid (open sym-
bols) at various distances z = 100 + 4j mm from the nozzle in the spraying apparatus with taking into account the drag crisis of
the drops and the heat- and mass-transfer crisis of the phases. Rapp = 144 mm, H = 1100 mm, and the gas pressure difference
across the apparatus is ΔP = 7 Pa.
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Fig. 8. Calculated dependences on the volumetric gas f low rate V through the apparatus for the reduced temperatures of the gas
tg[i, n] and the liquid (tl[i, n]), averaged over the outlet section (a different one for each of the phases) of the mixing chamber,
at Rapp = 140 mm and H = 1100 mm.
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Fig. 9. Calculated dependences on the cross-sectional area S of the apparatus for the maximum gas f low rate Vmax through the
apparatus, the average reduced temperatures tg[i, n] and tl[i, n] of the phases, and also the ratio ml(n)/ml(0) of the liquid mass
flux at the outlet section of the apparatus to the liquid mass f lux at the inlet section at H = 1100 mm and gas pressure difference
across the apparatus of ΔP = 0.7 Pa.
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Fig. 10. Calculated dependences of the same quantities as in Fig. 9 on the apparatus height H at Rapp = 140 mm and gas pressure
difference across the apparatus of ΔP = 7 Pa.
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yet fallen on the apparatus wall decreases approxi-
mately inversely proportional to H.

CONCLUSIONS
The previously proposed [2, 3] model of a nozzle

spray cone with taking into account the early crisis of
drag for drops and the interphase mass transfer crisis
has been developed in this work by taking into account
the crisis of heat and mass transfer from the drops to
the gas, which is similar to the crisis of heat transfer
between a ball and a gas f low [3, Sect. 6.2].

Building on the results obtained in the previous
works [2, 3], in this work, new results are obtained. In
particular, for a free spray cone of height H to 1.5 m,
not only the axial and radial profiles of the velocities of
the phases, but also the distributions of the tempera-
tures Tg(r, z) and Tl(r, z) of the phases have been cal-
culated with and without taking into account the drag
crisis in the drops and the crisis of heat and mass
transfer from them to the gas.

According to the data in Fig. 6, although the model
takes into account both crises, the water in a free spray
jet at distance 1.5 m from a nozzle is cooled signifi-
cantly, namely, by 23°C, i.e., almost 80% of the initial
difference Δt = 29°C of the temperatures of the phases.

Along with a free spray cone, the interphase heat and
mass transfer has also been calculated in a gas–drop flow
through a cylindrical apparatus, including the depen-
dences of the average temperatures Tl and Tg of the
phases at the outlet of the apparatus on the volumetric
gas flow rate V through the apparatus.

The proposed numerical model enables one to cal-
culate the dependences of the operating characteristics
V, Tl, and Tg of the spraying apparatus on its design
parameters S and H and the gas pressure difference ΔP
across the apparatus.

According to the data in Figs. 8–10, because of the
heat- and mass-transfer crisis in the spraying appara-
tuses, the warm water sprayed by the nozzle into air is
cooled insignificantly: under the studied conditions, it
does not exceed 17.5 K, i.e., about 60% of the differ-
ence of the initial temperatures of the water and air.

The problem of determining the degree of cooling
of the water f lowing down the wall of the mixing
chamber remains incompletely solved. A preliminary
estimation of the contribution of the heat and mass
transfer between the gas and the liquid f lowing down
as a film has shown that it is about 8% of the heat and
mass transfer between the gas and the drops in the bulk
of the apparatus.

NOTATION

a = λ/(ρсp) thermal diffusivity of gas, m2/s

Cd drag coefficient of drop
THEORETICAL FOUNDATIONS OF
c specific heat, J/(kg K)

D diffusion coefficient of water vapor in gas, 
m2/s

d = d32 volume-surface mean diameter of drops, m

dh nozzle hole diameter, mm

H apparatus height, mm

h computational grid spacing, mm

i, j nos. of computational grid points along radius 
and axis of f low

J vapor mass f lux from all drops to gas per unit 
volume, kg/(m3 s)

j
v

density of vapor mass f lux from single drop to 
gas, kg/(m3 s)

kt heat-transfer coefficient from drop to gas, 
W/(m2 K)

km mass-transfer coefficient from drop to gas, 
m/s

L specific heat of evaporation of liquid drops, 
J/kg

M molar mass of gas, kg/mol

m, n maximum values of i and j, respectively

ml liquid drops mass f lux through cross section 
of apparatus, kg/s

Pl gauge pressure of water in nozzle, Pa

P gas pressure, Pa

Q heat f lux from all drops to gas per unit vol-
ume, W/m3

q density of heat f lux from single drop to gas, 
W/m2

R = 8.31 universal gas constant, J/(mol K)

Rapp apparatus radius, mm

r radial coordinate of points in spray cone, m

S cross-sectional area of apparatus, m2

s central-section area of spherical drop, mm2

T, Tl temperatures of gas and liquid, respectively, K

t same on Celsius scale, °C

tg, tl reduced temperatures of gas and liquid, 
respectively

u liquid velocity, m/s

V = u – w relative drop velocity in gas, m/s

V volumetric gas f low rate through apparatus, 
m3/s

Vd volume of drop, m3

Δx change in quantity x
 CHEMICAL ENGINEERING  Vol. 56  No. 3  2022
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Translated by V. Glyanchenko

x average value of quantity x

z axial coordinate of points in spray cone, m

w, ws gas velocity and sound velocity in gas, respec-
tively, m/s

α liquid volume fraction at given point of spray 
cone

λ thermal conductivity of gas, W/(m K)

μ dynamic viscosity of gas, Pa s

ν = μ/ρ kinematic viscosity of gas

ρ, ρl, ρv
, ρsv densities of gas, liquid, vapor, and saturated 

vapor, respectively, kg/m3

τ and τs time and characteristics time, respectively, s

Φd heat release due to dissipation of mechanical 
energy of gas, W/m3

ϕ nozzle spray cone half-angle, deg

Nu = ktd/λ, 
NuD = 
kmd/D

Nusselt number diffusion Nusselt number

Pr = ν/a,
PrD = ν/D

Prandtl number diffusion Prandtl number

Re = Vdρ/μ, 
Recr

Reynolds number critical Reynolds number.

0 initial value
g Gas
l Liquid
max maximum value
opt optimum value
p or v constant pressure or volume
r component of vector along radius of f low
z component of vector along axis of f low
THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING  Vol. 56  No. 3  2022


	INTRODUCTION: SPECIFIC FEATURES OF THE FLUID DYNAMICS OF A SPRAY CONE OF A NOZZLE
	MODELING OF THE HEAT AND MASS TRANSFER IN A FREE SPRAY FLOW PRODUCED BY A NOZZLE
	RESULTS OF THE CALCULATION OF THE HEAT AND MASS TRANSFER OF THE PHASES IN THE FREE SPRAY CONE OF A NOZZLE
	CALCULATION OF THE INTERPHASE HEAT- AND MASS-TRANSFER IN A SPRAYING APPARATUS
	CONCLUSIONS
	REFERENCES

		2022-06-29T19:41:02+0300
	Preflight Ticket Signature




