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Abstract—Analytical solutions of the non-steady-state Brinkman equation that describes the f low of a f luid
inside a porous spherical shell with a solid impermeable core immersed into it, which makes translational
oscillatory motions, and of the Navier–Stokes equation in the Stokes approximation outside the shell are
obtained. The fields of the filtration rates in the porous medium and velocities of the free f luid outside the
porous shell are determined. The force acting on the control spherical surface around the porous shell is
determined. An analysis of the solutions is presented. Different particular cases, including the case of uniform
motion of the porous shell in the viscous f luid, are considered.
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INTRODUCTION
As is known, hydrodynamic equations in a generic

form cannot be accurately solved. In connection with
this, the search for and study of the most important
case when the equations of motion of a f luid have
accurate analytical solutions appear to be of utmost
interest. Some such accurate solutions of hydrody-
namic equations have been obtained and studied in
detail in [1–4].

The situation is similar for equations of motion of
viscous f luids through porous media; thus, these
equations in a generic form cannot be accurately
solved either.

The theory of motion of f luids through porous
media has been recently intensively developing in con-
nection with various applications in the modeling of
technology processes, as well as when studying natural
phenomena. Many technological processes in the
chemical industry and in engineering are closely
related to the motion of f luids through porous media.
The motion of f luids inside and outside porous bodies
is determined by hydrodynamic equations. Hydrody-
namic regularities determine the character of occur-
rence of the processes of heat and mass transport tak-
ing into account chemical reactions in scaled indus-
trial apparatuses. Multiple applications stimulate the
study of the f lows of a f luid inside and outside porous
bodies limited by various surfaces, the simplest among
which are a plane, spherical, and cylindrical surfaces.
For them, analytical solutions of the corresponding

boundary problems can be found under special
assumptions.

Work [5] presents a review of the practical applica-
tions of hydrodynamics at small Reynolds numbers for
studying natural phenomena and technology pro-
cesses.

Works [6, 7] present solutions to the problems of
motion of continuous (impermeable) solid bodies in a
viscous f luid. In particular, work [6] considers the
internal transverse waves that appear during the
motion of a continuous solid sphere immersed into a
fluid which makes oscillatory and translational
motions. In [8], the problem of the f low of a viscous
fluid around a porous sphere located in another
porous medium has been solved using the Brinkman
filtration model. In [9, 10], problems of the f low
around a porous spherical surface limited by two con-
centric spherical shells have been solved using the
Darcy filtration equation. In [11], the motion of a vis-
cous f luid induced by the rotational oscillatory motion
of a porous sphere immersed into it has been deter-
mined upon using the non-steady-state Brinkman
equation.

In [12], a problem of the translational oscillatory
motion of a porous sphere in a viscous f luid within the
Brinkman filtration model has been solved.

In [13], the f lows of a viscous f luid induced by the
oscillatory motions of a porous spherical shell
immersed into it have been determined. Analytical
solutions of the non-steady-state Brinkman equation
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in the region inside a porous shell and the Navier–
Stokes equation outside the shell have been obtained
in the Stokes approximation. The moment of friction
forces acting on the control spherical surface around
the porous body has been determined.

In [14], the problem of oscillatory motions of a vis-
cous f luid in contact with a f lat layer of a porous
medium has been solved.

Works [15–19] present the derivation of the motion
equations of a f luid in a porous medium and an anal-
ysis of the limits to applicability of these equations.
Works [16, 20, 21] present the derivation and analysis
of the boundary conditions on a f lat immobile inter-
face of a porous medium and a free f luid. In this work,
these boundary conditions are generalized for a
mobile spherical interface of a porous medium and a
fluid.

The aim of this work is to study the effect of the
translational oscillatory motion of a porous spherical
shell with a solid impermeable core in a viscous f luid
on the f low of the f luid inside and outside this shell.

PROBLEM SETTING, EQUATIONS, 
AND BOUNDARY CONDITIONS

The flows of a viscous f luid upon the translational
oscillatory motion of a spherical shell immersed into it
with the internal and external radii equal to a and b
(a < b), respectively, are considered. The radius of the
solid impermeable core that is permanently bound to
the porous shell is equal to a. The porous medium is
supposed to be nondeformable, uniform, and isotro-
pic. It is supposed that the porous medium has quite
high porosity Γ close to unity and high permeability K.
Under such conditions, the velocity of the f luid in the
porous matrix can noticeably differ from the velocity
of the matrix.

Let us write the velocity of the shell together with
the core as a harmonic function of time t* of the form
υ* = υ0exp (−iωt*), where υ0 is the real vector and ω is
the oscillation frequency. Let us denote the dimen-
sional variables (but not parameters) using * to distin-
guish them from the dimensionless variables denoted
by the same symbols. Since all the mathematical oper-
ations under consideration in this work are linear, the
drawing of the real parts from the corresponding com-
plex expressions can be executed in the final results.
The quantities referring to the regions occupied by the
porous shell and free f luid outside the shell are
denoted by indices 1 and 2, respectively.

The motion of a f luid immobile at infinity is con-
sidered in an Ox*y*z* fixed system of coordinates, the
origin O of which coincides with the geometric center
of the spherical shell at this time point. The z* axis and
vector υ0 = υ0e (υ0 > 0, |e| = 1) are parallel.
THEORETICAL FOUNDATIONS OF CHEMICAL ENGIN
Let us write the equations of the non-steady-state
motion of the f luid in regions 1 and 2 in the Stokes
approximation in the form [6, 15–18]

(1)

Here,  is the filtration rate, Γ is the porosity,  is
the pressure in the porous medium, ρ is the density of
the f luid, η' is a quantity with the dimensionality of
viscosity, η is the viscosity of the free (outside the
porous body) f luid, K is the permeability coefficient of

the porous medium, u* = Γυ*, and  and  are the
velocity and pressure of the free f luid. Assuming that
the porosity is close to unity, let us further set η' = η
[15, 18].

In connection with the symmetry of the problem, it
is more convenient to consider its solution in a r*, θ, ϕ
spherical system of coordinates, the polar axis of
which is brought into coincidence with the z* axis,
from which angle θ is counted off. Because of the
assumed axial symmetry, the quantities do not depend
on angle ϕ.

The boundary conditions are as follows [16, 20, 21]:
on the surface of the solid core at r* = a:

(2)

on the external surface of the spherical shell at r* = b:

(3)

The conditions at infinity at r* → ∞ are as follows:
  The conditions of finiteness of the

quantities everywhere in the regions of their determi-
nation should be added to these boundary conditions.

First boundary condition (2) expresses the condi-
tion of impermeability of the f luid on the immobile
solid surface of the core. The second condition is a
condition of sliding of the f luid in the porous medium
along the solid surface of the core [5]. Quantity B is
called a coefficient of sliding friction. The sliding of
the f luid is absent at B = 0. At B → ∞, we have the
absence of tangential stresses (a gas bubble instead of a
solid core).
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The first two conditions (3) express the conditions
of continuity of the velocity at the interface of the
porous medium and free f luid. The third condition
expresses the continuity of pressure at the interface.
Constant Λ in the fourth condition (3) is determined
by the equality  where τ is a dimensionless
parameter depending on the properties of the porous
matrix [16, 21]. At Λ = 0 (which is tantamount to K =
0, i.e., the porous medium is impermeable for the
fluid), the fourth condition (3) acquires the form

 At Λ → ∞ (τ → 0), the fourth con-
dition acquires a form formally similar to the condi-
tion of continuity of the tangential stresses at the inter-
face of two viscous f luids with the same viscosity.

PROBLEM SOLVING

Let us introduce dimensionless variables 

  =   and

 (j = 1, 2).
Equations of motion of the f luid (1) in the dimen-

sionless form

(4)

Here,  (α < 1) and 
The dimensionless boundary conditions are as fol-

lows:
at r = α: u1r − Γe–itcos θ = 0,

(5)

Here,  and  Also, conditions of
finiteness of all quantities everywhere in the regions of
their determination should be added to these bound-
ary conditions. In connection with the axial symme-
try, we adopt u1ϕ ≡ 0 and u2ϕ ≡ 0.

Let us search for the velocities of the f luid in a form
proportionate to e−it, because of which 
(j = 1, 2).

It follows from the continuity equations that the
components of the velocities of f luid u1 and u2 can be
expressed through the f low functions ψ1 and ψ2 for an
axisymmetrical f low, to which, in particular, the f low
around a porous spherical shell with a solid imperme-
able core belongs. The expressions of the velocity
components through the f low functions in spherical
coordinates have the form [6]

(6)

Dimensionless equations of motion (4) in a spher-
ical system of coordinates are as follows:

in region 1 (α < r < 1):

(7)

in region 2 (r > 1):

(8)

Here,  + 
Excluding pressures p1 and p2 from Eqs. (7) and (8),

respectively, and using (6), we find the differential
equations for determining f low functions ψ1 and ψ2:
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(9)

Here,  

  

 

 is the differential

operator [5].
To satisfy boundary conditions (5), we will search

for the f low functions in the form ψj(r, θ, t) =
e−itfj(r)sin2 θ (j = 1, 2).

Substituting the expressions for ψ1 and ψ2 into
Eqs. (9), we will obtain ordinary differential equations
for the determination of the functions f1(r) and f2(r).

The boundary conditions to these differential
equations are as follows:

(10)

The condition of finiteness of the solutions in the
regions of their determination is also added here.

The equation for f1(r) is as follows:

(11)

Using the substitution  = ,

fourth-order ordinary differential equation (11) is
reduced to the second-order differential equation

(12)

the general solution of which is as follows:

Here,  is the Bessel function of the first kind,  is
the Bessel function of the second kind [22], and A1 and
B1 are indefinite coefficients.

Therefore, we obtain a second-order linear inho-
mogeneous differential equation for determining the
function f1(r):

(13)

The general solution of Eq. (13) is

where C1 and D1 are indefinite coefficients.
According to [22], Bessel functions  and  can

be written as

(14)

Taking into account equalities (14), the general
solution of Eq. (13) will acquire the following form:

(15)

The equation for f2(r) is as follows:

(16)

Similarly, the general solution of Eq. (16) is

Here, A2, B2, C2, and D2 are indefinite coefficients.
The solution of Eq. (16) is finite at r → ∞ and, tak-

ing into account equalities (14),

(17)

Substituting Eqs. (15) and (17) into boundary con-
ditions (10), we will obtain a system of six algebraic
equations for determining coefficients A1, B1, C1, D1,
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Fig. 1. Dependence of Re ur (the dashed lines) and Re uθ (the solid lines) on r: t = 0; α = 0.3; β = 0; λ = 1; Γ = 0.95; b/δ1 = 10;
b/δ2 = 10; and θ = (1) π/8, (2) π/4, and (3) 3π/8.

0.5

0.5

0
1.00.5

Re (ur, uθ)

r

1

2

3

1 1
2

3

3

A2, and D2. In view of the cumbersomeness of these
coefficients, we do not present them in this work.

The components of the filtration rate and velocity
of the free f luid outside the porous medium are as fol-
lows:

In a particular case at α  0, a solution of the prob-
lem of the f low of a viscous f luid induced by the trans-
lational oscillatory motion of a porous sphere is
received from the results [12]. In turn, a solution to the
problem of the f low of a viscous f luid induced by the
translational oscillatory motion of a solid impermeable
sphere follows from this solution (at K → 0, λ → 0)
[6, §24].
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The motion of the f luid is non-steady-state. In
connection with this, the fields of the filtration rates
and velocities of the free f luid in the internal and exter-
nal regions of a porous spherical shell with a solid
impermeable core continuously change with time.
Figure 1 shows the profiles of the filtration rates and
velocities of the free f luid in regions 1 and 2 at a time
point t = 0.

Figure 1 presents graphs of the dependence of Re
ujr and Re ujθ (j = 1, 2) on r for three values of the angle
θ (π/8, π/4, 3π/8) at α = 0.3, β = 0, λ = 1, Γ = 0.95,
b/δ1 = 10, and b/δ2 = 10.

It is seen from Fig. 1 that Re ujr > 0 (j = 1, 2). The
values of Re u1r and Re u2r monotonically decrease in
regions 1 and 2. The values of Re u1θ < 0 and Re u2θ >
0 are nonmonotone in the regions inside and outside
the porous spherical shell. With the increase in the val-
ues of the angle θ, the velocities Re ujr (j = 1, 2) and Re
u1θ decrease at each set value of r; here, the velocities
Re u2θ increase.

Figures 2 and 3 present the patterns of the f low
lines at time point t = 0. The flow lines in the internal
and external regions of a porous spherical shell with a
solid impermeable core are a family of curves: ψ1 =
const and ψ2 = const.

The equations of the f low lines in regions 1 and 2
(at t = 0) are as follows:

Figure 2 presents the f low lines constructed at α =
0.3; β = 0; λ = 1; Γ = 0.95; b/δ1 = 10; b/δ2 = 10; and
const = (1–8) 0.001, 0.01, 0.03, 0.05, 0.07, 0.1, 0.13,
and 0.15.

ψ θ = θ =
= < θ < π

2Re ( , ) Re ( )sin const
( 1,2; 0 ).

j jr f r
j
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Fig. 2. Flow lines: t = 0; α = 0.3; β = 0; λ = 1; Γ = 0.95; b/δ1 = 10; b/δ2 = 10; and const = (1) 0.001, (2) 0.01, (3) 0.03, (4) 0.05,
(5) 0.07, (6) 0.1, (7) 0.13, and (8) 0.15.
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Fig. 3. Flow lines: t = 0; α = 0.5; β = 0; λ = 1; Γ = 0.95; b/δ1 = 50; b/δ2 = 20; and const = (1) 0.001, (2) 0.01, (3) 0.03, (4) 0.05,
(5) 0.1, (6) 0.15, (7) 0.2, (8) 0.25, (9) 0.3, (10) 0.35, and (11) 0.4.
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In Fig. 3, the f low lines are constructed at α = 0.5;
β = 0; λ = 1; Γ = 0.95; b/δ1 = 50; b/δ2 = 20; and const =
(1–11) 0.001, 0.01, 0.03, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3,
0.35, and 0.4.

The presence of discontinuities of the graphs at the
interface of the porous medium and free f luid is asso-
ciated with the fact that the filtration rate is not the
velocity of the f luid particles. These discontinuities
disappear at Γ → 1.

THE FORCE ACTING ON THE CONTROL 
SURFACE

The dimensionless force acting from the side of the
free f luid on the control spherical surface enveloping
the external surface of a porous shell with a solid
THEORETICAL FOUNDATIONS OF CHEMICAL ENGIN
impermeable core, which makes a translational oscil-
latory motion in a viscous f luid, is determined by the
equality

Here, dS = 2π sinθ dθ is the area element, the integra-
tion is performed over the entire surface of the sphere

r = 1 ( ), and  and  are the dimension-
less viscous stress tensors in the external area. Quantity
Fz is the force acting on the porous shell with the f luid
present in it.

( )= − θ + σ θ − σ θ

∂∂ ∂σ = σ = + −
∂ ∂θ ∂

 2 2 2 θ

2θ 2θ2 2
2 2 θ

' 'cos cos sin ,

1' '2 , .

z rr r

r r
rr r

F p dS

u uu u
r r r r

≤ θ ≤ π0 σ2' rr σ2 θ' r
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The expression for Fz acquires the form

or

(18)

where

Coefficients Q1, …, Q14 are definite at β = 0.

The dimensional force is 

Having proceeded to the limit λ → 0 (K → 0), α → 0,
m1 → ∞ (any m2) in expression (18) for Fz, we will
obtain the force acting on a continuous solid sphere
(without pores), which makes a translational oscilla-
tory motion in a viscous f luid:

In the dimensional form, this expression coincides
with that presented in [6, §24].

At m2 = 0 (ω = 0), formula (18) (without the factor
e−it) gives the expression for the force acting on the
control surface of a porous spherical shell with a solid
impermeable core, which moves uniformly and recti-
linearly:

(19)

where

−  +π= − π 

22
2 2 2 2

3 2
2

( )8 2
3 2

im
it

z
m D A e i mF e

m

−π=

 + − α + − α×  + − α + − α 

1 2 1 1 1 3 1 1

4 5 1 1 1 6 1 1

2
3

cos( ) sin( ) ,
cos( ) sin( )

it

z
eF

Q Q m m m Q m m
Q Q m m m Q m m

(( ))

( )
( ) ( )

= α − − + λ − + + + −
= + α − + α + α − α − α

+ λ + + + α + α
= − + α + α + − − + − α + + α − + − α

+ λ −

2 2 2 2 2 3
1 1 2 2 2 1 1 2 2 2

2 2 2 2 2 2 3 2 2
2 7 8 1 2 2 2 1 2

2 2 3 2 5
9 10 11 1 2 2
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3 7 8 1 2 2 1 2 2 1 2 2

6 2 2 2 5 5 2 2 ,

3 2 3 27 27

3 6 ,

3 ( 2) 9 9 2 (1 )( ) 3 9 9

Q m m im m m im m m im

Q Q Q m m m i m m m

Q Q Q i m m i m

Q Q Q m im m m m i m m im m

( )
( )( )

( )

− + + α + α
= α − + + + λ − − +

= − + α − α − α − α + λ + + α − α + α − α
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At α = 0, expression (19) acquires the form of
the dimensionless force acting on a porous sphere

that uniformly and rectilinearly moves in a viscous
f luid:

CONCLUSIONS

The effect of the translational oscillatory motion of
a porous spherical shell with a solid impermeable core
immersed into a viscous f luid on the motion of this
f luid inside and outside the porous body has been
studied. The analytical solutions of the non-steady-
state Brinkman equation describing the motion of a
fluid in a porous medium and the Navier–Stokes
equation describing the motion of a f luid outside a
porous medium in a fixed spherical system of coordi-
nates have been found. An analysis of the solutions of
the obtained equations is presented. The fields of the
filtration rates and velocities of the free f luid inside
and outside the porous body have been determined.
The graphs of the profiles of the filtration rates and
velocities of the free f luid, as well as the f low lines at
different values of the parameters, have been con-
structed. The force acting on the control spherical sur-
face enveloping the external surface of a porous shell
with a solid impermeable core which makes a transla-
tional oscillatory motion has been determined.

NOTATION

SUBSCRIPTS AND SUPERSCRIPTS
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