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Abstract—The ratio between bubble velocity and mean velocity of the two-phase f low is a key parameter in
Taylor f low. Correlations for this characteristic velocity ratio that are valid over the entire range of attainable
capillary numbers are missing so far. Here, we develop such a correlation for laminar gas–liquid Taylor f low
in circular capillary channels. The proposed model is a two-parameter logistic function, which approaches
the theoretical asymptotic limit of Bretherton at low capillary number. The correlation relies on prior known
parameters such as channel diameter, f luid properties and gas/liquid volumetric f low rates only. In compar-
ison with numerical and experimental data, it is accurate within ±5 and ±18%, respectively. The correlation
should be useful to estimate various prior unknown hydrodynamics features of Taylor f low such as bubble
velocity, mean liquid velocity, gas holdup, uniform liquid film thickness, bubble diameter, and streamline
patterns in the liquid slug. The derived two-parameter logistic function may be useful to develop similar cor-
relations for non-circular channels and liquid–liquid Taylor f low.
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INTRODUCTION
Taylor f low is a special kind of slug f low in small

channels, where the liquid slugs separating the elon-
gated bullet-shaped bubbles (Taylor bubbles) are free
from gas entrainment. This f low regime, which is also
known as bubble train f low, segmented f low or capil-
lary slug f low, occurs in microfluidic devices for appli-
cations in life sciences (lab-on-a-chip), material syn-
thesis and chemical process engineering, e.g. in heat
exchangers and catalytic multiphase capillary and
monolithic reactors [1]. Among the various gas-liquid
flow patterns in microchannels [2], Taylor f low is
attractive because of its well-defined interfaces and
flow conditions, which are easier to control than in
macroscopic devices and because of its advantageous
mass transfer properties. The latter stems from (i) the
high interfacial area per unit volume, (ii) the thin liq-
uid film that separates the gas bubble from the channel
wall, and (iii) the recirculation in the liquid slug,
which accounts for good mixing and a wall-normal
convective transport in laminar f low [3]. For recent
reviews on Taylor f low we refer to [4–7].

The shape of the Taylor bubble depends mainly on
the (bubble) capillary number Cab = ubμL/σ and to a
lesser extent on the Reynolds number Reb = ρLubD/μL.
Here, ub denotes bubble velocity, ρL liquid density, μL

liquid viscosity, σ surface tension and D the pipe
diameter. At low Cab, both bubble ends form hemi-
spherical caps connected by a uniform cylindrical sec-
tion of radius Rb [8]. As Cab increases, the Taylor bub-
ble gets more slender and the fore-aft symmetry is lost.
In addition, there are capillary wave undulations
where the uniform interface merges with the transition
region in the rear [9]. The curvature of the bubble nose
increases approaching a limiting value at Cab = O(1).
The profile of the rear transition undertakes large
deformations as its shape evolves from convex for
small values of Cab to concave at large values of Cab
[10]. For high bubble speeds, the trailing end develops
re-entrant cavities of the continuous liquid phase [11]
which cause bubble breakup at capillary numbers of
order one and above [12, 13].

Of primary interest for many applications with
Taylor f low is the thickness of the uniform liquid film
δ = R − Rb. Several correlations have been suggested in
the literature to relate δ with Cab, see below. For engi-
neering practice, the direct benefit of these correla-
tions is at first limited as the bubble velocity and thus
Cab are not prior known in general. Often mass f low
controllers serve to prescribe the gas and liquid f low
rates QG and QL. For a straight channel with constant
cross-section A, thus the superficial velocities jG =
QG/A and jL = QL/A, the total superficial velocity (or
total volumetric f lux) jT = jG + jL and the volumetric
flow rate ratio (dynamic holdup) β = QG/(QG + QL) =

1 Special issue: “Two-phase f lows in microchannels: hydrody-
namics, heat and mass transfer, chemical reactions”. Edited by
R.Sh. Abiev
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jG/jT are known. In contrast, the mean gas velocity uG
and the void fraction α = jG/uG are unknown. In small
channel Taylor f low, liquid slugs are usually free from
gas entrainment to that ub = uG. Thus, Cab is unknown
as well. Particularly useful for practical applications of
Taylor f low would be a (preferentially) universal cor-
relation that relates the bubble velocity, the liquid film
thickness and other important hydrodynamic param-
eters of Taylor f low to the total superficial velocity jT.
The purpose of the present paper is to develop such a
correlation and to embed it in a unifying theoretical
framework for characterization of Taylor f low hydro-
dynamics. Here we restrict our study to laminar gas-
liquid Taylor f low through a straight circular pipe
where the diameter is sufficiently low so that gravita-
tional effects are negligible.

We formulate the desired correlation for the ratio
between the (unknown) bubble velocity ub and the
(known) mean velocity of the two-phase f low, i.e. the
total superficial velocity jT. For two incompressible
phases, the mean axial velocity in the liquid slug (us)
equals jT [14]. Several researchers indicated the funda-
mental importance of this velocity ratio for Taylor
flow [7, 14, 15]. Here, we denote η = ub/jT as the char-
acteristic velocity ratio of Taylor f low. Since the pro-
posed correlation for η is formulated in terms of prior
known parameters only, it may also serve as closure
relation for mechanistic models of Taylor f low in com-
plement to closure relations for the Taylor bubble rise
velocity proposed for larger channels [16].

The organization of the paper is as follows. We first
give some fundamental relations in capillary Taylor
flow. Thereafter, we summarize the state of the art in
literature to elucidate the functional dependence of η
on the (two-phase) capillary number Ca = jTμL/σ,
which is based on jT as velocity scale. As main part, we
present the development of the new model and its evalu-
ation with respect to recent experimental and numerical
data from literature. This is followed by a discussion of
the accuracy, limitations and benefit of the model for
predicting hydrodynamics of Taylor flow.

FUNDAMENTAL RELATIONS
IN CAPILLARY TAYLOR FLOW

Conditions and Assumptions
We consider the laminar pressure-driven gas-liquid

flow through a cylindrical horizontal capillary (radius
R, diameter D = 2R, cross-sectional area A = πR2).
Both phases are incompressible and immiscible New-
tonian f luids. We assume that the gas density ρG, the
liquid density ρL, the gas viscosity μG, the liquid vis-
cosity μL and the coefficient of surface tension σ are all
constant.

The importance of gravitational and buoyancy
effects is usually quantified by the Eötvös number
Eo = g(ρL − ρG)D2/σ or by the Bond number Bo =
THEORETICAL FOUNDATIONS OF
gρLD2/σ. Leung et al. [17] experimentally studied the
effect of gravity in horizontal gas-liquid Taylor f low in
three different millimeter-sized channels (D = 1.12,
1.69, 2.12 mm giving Eo = 0.287, 0.653 and 1.028).
The authors observed gravity-induced drainage f low
from the top to the bottom of the pipe within the liquid
film resulting in bubble asymmetry. However, these
effects diminish for small values of Eo and/or Ca.
Magnini et al. [18] systematically investigated the
effect of buoyancy on the Taylor bubble shape and
velocity in vertical tubes by experiments and numeri-
cal simulations. The authors showed that buoyancy
could have a notable effect even at Bond numbers
below unity. Here we assume that the channel size is so
small that gravity/buoyancy effects are negligible
(Eo → 0), a criterion that should be fulfilled for sub-
millimeter channels. Accordingly, the bubble profile
and the f low field are assumed axisymmetric and
steady in a frame of reference moving with the bubble.

We further assume that the liquid slugs of Taylor
flow are sufficiently long to form a fully developed
parabolic velocity profile so that there is no interaction
between neighboring bubbles. In addition, the bubble
is assumed to be sufficiently long so that there is a
region where the bubble has a cylindrical shape with
the thickness of the liquid film being uniform and
independent of bubble length as described in [19].
Such a situation occurs when the front and the back of
the bubble are virtually independent. The inertia-free
boundary integral computations of Lac and Sherwood
[13] suggest that this is the case when the ratio between
the radii of the undeformed bubble and the tube
exceeds a value of 1.1. A further quantitative criterion
for the minimum bubble length (relative to tube
radius) in terms of Cab in absence of inertia and gravity
is given in [20]. In the presence of inertia, the neces-
sary bubble length to form a uniform film region
steeply increases with Reb, in particular at high Cab [9].
Fig. 1 shows a sketch of the Taylor f low configuration
under analysis with characteristic parameters. Real
images of such Taylor bubbles can be found e.g. in ref-
erence [21].

Mass Balance

A global mass balance for the two-phase f low yields
[14, 22]

(1)

Here, uf is the mean axial velocity of the liquid in the

uniform film region while  and

 denote the cross-sectional area of the film
and the bubble in this region, respectively.
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Fig. 1. Sketch of axisymmetric Taylor f low in a circular pipe (radius R) with streamline patterns and important parameter.
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For a compact notation, we introduce the wetting
fraction

(2)

This quantity is of interest for the penetration of a gas
phase into a capillary where it displaces a viscous liq-
uid [23]. When gravitational forces are negligible, the
thickness of the liquid film deposited at the wall
becomes constant in a distance sufficiently far from
the bubble tip [8, 24]. The relative cross-sectional area
fraction w = Af/A then represents the fraction of liquid
left behind the bubble. In terms of the wetting fraction,
Eq. (1) can be expressed as

(3)

a relation that will be useful later.
As further quantity of interest, we define the rela-

tive drift velocity

(4)

From Eq. (3) it follows

(5)

For a liquid film at rest it is Qf = uf = 0 and Eq. (5)
yields

(6)

Such a stagnant liquid film with zero velocity occurs in
the constant film thickness region of inviscid bubbles
that cannot exert tangential stresses [11]. In studies on
the displacement of a viscous liquid in a capillary by
the steady propagation of an inviscid semi-infinite fin-
ger [8, 25–27] or by a long inviscid bubble [28] m and
w are often used synonymously.
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Streamline Patterns in Liquid Slug
For gas-liquid mass transfer in Taylor f low, the

streamline patterns in the liquid slug are of great
importance [5]. These can be classified in recirculat-
ing f low (see sketch in Fig. 1) and complete bypass
flow, resulting in different pathways for mass-transfer.

In a frame of reference moving with the Taylor
bubble a recirculation pattern in the liquid slug occurs
when the bubble velocity is lower than the liquid
velocity on the channel axis, i.e. for ub < uL,max [23, 29].
For a liquid slug with a laminar fully developed para-
bolic velocity profile the maximum liquid velocity is
given by uL,max = 2jT. Thus, for m < 0.5 streamline pat-
terns show a recirculation region whereas for m > 0.5
complete bypass f low (CBF) occurs [11].

The cross-sectional regions with recirculation flow
(in the channel center) and partial bypass f low (close
to the walls) are separated by the dividing streamline
[30], see Fig. 1. The position of the dividing streamline
results from the condition that the axial flow rate in the
recirculation area is zero in the moving frame of refer-
ence. The radial position of the dividing streamline (Rds)
and the radial position where the velocity in the moving
frame of reference is zero (R0) are given by [30]

(7)

Thus, the relative cross-sectional area of the recircula-
tion region is Ads/A = 2 − η.

The intensity of the recirculation can be quantified
by the time needed for the liquid to move from one end
of the liquid slug to the other end. A second character-
istic time scale is the time needed by the liquid slug to
travel a distance of its own length. Thulasidas et al.
[30] used the ratio of both time scales to define a non-
dimensional recirculation time. For a circular channel
the non-dimensional recirculation time is [31]

(8)
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LITERATURE RELATIONS FOR FILM 
THICKNESS AND BUBBLE VELOCITY

In this section, we summarize relations on the liq-
uid film thickness and bubble velocity, which we will
utilize in the subsequent section for the development
of the new model.

Liquid Film Thickness

In his classical paper [24], Bretherton applied
lubrication theory to the f low in the liquid film to
derive the first theoretical expression for the film
thickness. Using only local conditions at the bubble
nose, the asymptotic film thickness is independent of
bubble length and given by

(9)

Eq. (9) is only valid for very low capillary and Reyn-
olds numbers and according to Bretherton’s own

experiments accurate within 10% for Cab < 5 × 10−3.

By a scaling analysis, Aussilious and Quere (AQ)
[32] derived the following equation for the liquid film
thickness of a semi-infinite bubble in a circular tube

(10)

The factor F = 2.5 is obtained empirically by fitting
experimental data of Taylor [23]. This relation is valid

in the range 10−3 ≤ Cab ≤ 1.4 and approximates Eq. (9)

for small capillary numbers. Klaseboer et al. [33] pre-
sented an analytical extension of Bretherton’s work
yielding an expression identical to Eq. (10), except F =
FKGM = 2.79. Balestra, Zhu and Gallaire (BZG) [34]

performed an extensive computational study on the
hydrodynamics of Taylor bubbles and drops in capil-
laries under negligible gravity focusing on the effect of
the viscosity ratio λ = μG/μL. Using COMSOL Multi-

physics, they solved the Stokes equations by a moving

mesh method for capillary numbers in the range 10–4 ≤
Ca ≤ 1. By fitting the numerical results for a bubble
(λ = 0) , they found F = FBZG = 2.483 which is close to

the value of AQ [32].

Eq. (10) neglects inertial effects, which can become
important at higher velocities causing a non-mono-
tonic dependence of the film thickness on the Reyn-
olds number in a circular tube [8, 35] or a two-dimen-
sional channel [36]. Han and Shikazono [37] pro-
posed the correlation

(11)

which accounts for inertial effects by Reb and the
Weber number Web = CabReb. Eq. (11) was derived
from film thicknesses measurements for water and
ethanol with 0 < Cab < 0.4 and 0 < Reb < 2000. Howard
and Walsh [7] found that this correlation predicts the
film thickness best at higher capillary numbers
amongst the existing correlations.

Langewisch and Buongiorno (LB) [38] studied
capillary Taylor f low numerically with Ca and Re in
the ranges 0.005−0.2 and 0−900, respectively. The
density ratio was fixed to 0.001 and the viscosity ratio
to λ = 0.01 while gravity is neglected. The authors pro-
posed the following model for the film thickness

(12)

where

(13)

Here, Ca = Cab/η and Re = Reb/η represent the cap-
illary and Reynolds number using jT as characteristic
velocity scale, respectively. Kurimoto et al. [39] found

that the film thickness model of LB [38] shows a better
agreement with their numerical results as compared to
the model of Han and Shikazono [37].

Bubble Velocity

Literature relations for the bubble velocity are usu-
ally formulated either in terms of m or η. By the defi-

nition of m in Eq. (4), it is η = 1 − m−1 so that both for-
mulations are convertible.

Bretherton’s [24] analytical approach at low Cab
resulted in the expression

(14)

corresponding to

(15)

Giavedoni and Saita [8] found that their numerical
results for the film thickness match the theoretical cor-

relation of Bretherton for Cab < 10−3. Fairbrother and

Stubbs [40] suggested the empirical correlation

(16)
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Fig. 2. Dependence of characteristic velocity ratio on cap-
illary number and Reynolds number from various sources
[32, 34, 38, 41, 43].

u b
/
j T

10–210–3 10110–4 10010–1

2.0

1.5

2.5

1.0

Ca

Stagnant film assumption (SFA)

Aussilious & Quere (2000)

↑CBF

Langewisch & Buongiorno (2015)

Re

0

2

20

Simulation SFA

Balestra et al. (2018)

Re = 0

10

100

Correlations

Liu et al. (2005)

Abiev (2013)
which is valid in the range 7.5 × 10−5 < Cab < 0.014.
Experiments for very viscous fluids in 1.5−3 mm cir-
cular tubes by Taylor [23] indicate that the validity of
Eq. (16) may be extended up to Cab = 0.09. Taylors
experimental data up to Cab = 2 are well fitted by
inserting the film thickness model of AQ [32] for a
stagnant liquid film (m = w) into Eq. (2) giving

(17)

For large capillary numbers, m adopts an asymptotic
value, see discussion below.

Liu et al. [41] performed experiments in capillaries
with circular and square cross-section with hydraulic
diameters in the range of 0.9–3 mm using air and three
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different liquids in co-current upward f low. They fit-
ted their experimental data for the ratio of bubble
velocity to total superficial velocity by the correlation

(18)

which is valid in the range 2 × 10−4 ≤ Ca ≤ 0.39.

Abiev [22] developed a mathematical model for the
bubble velocity and validated it by experimental data
from literature [30, 42]. Based on calculations with
this model, he proposed the following approximation
for horizontal f low [43]

(19)

where

(20)

This relation is valid in the range 10−4 ≤ Cab ≤ 50.

The Taylor bubble velocity in slug f low is often
modelled based on the drift f lux approach [44, 45]
which reads

(21)

Here, C0 is the distribution parameter and ud is the
drift velocity. The drift velocity is regarded zero in hor-
izontal microchannels. With ub = jG/α and jT = jG/β
Eq. (21) then yields the relation

(22)

In microchannels, the characteristic velocity ratio thus
takes the role of the distribution parameter.

From a large number of experiments, Kurimoto
et al. [21] proposed the following model for the distri-
bution parameter
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where f  is defined in Eq. (11). This correlation has density and viscosity as well as the ratios of bubble and
HS

the disadvantage, that both, ub and jT must be known
in order to evaluate Web and Re. Thus, an iterative pro-
cedure is required, which may hinder a broader prac-
tical application of this model.

A NEW CORRELATION
FOR THE CHARACTERISTIC

VELOCITY RATIO

The goal of this paper is to derive a simple yet accu-
rate correlation for the characteristic velocity ratio
η = ub/jT in terms of prior known non-dimensional

parameters. Suo and Griffith [14] performed a dimen-
sional analysis and obtained seven independent
dimensionless groups. Here, the ratios of liquid-to-gas
liquid slug length to tube diameter are all assumed
large being without influence while gravity is negligi-
ble (cf. Section Conditions and Assumptions). The
two remaining parameters from the dimensional anal-
ysis in [14] are the capillary number and the Ohne-
sorge number. As the latter can be expressed in terms
of capillary number and Reynolds number, we base
our correlation for η on Ca and Re.

Evaluation of Literature Data
To develop a new model we evaluate the informa-

tion from literature collected in the previous section.
For that purpose, we plot in Fig. 2 various relations for
η as function of Ca. The correlation of Liu et al. [41]
EERING  Vol. 54  No. 1  2020



8 MARTIN WÖRNER

Fig. 3. Normalization of η data from numerical simula-
tions [34, 38] by Eq. (36), representing the present model
for vanishing Reynolds number.
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in Eq. (18) is an explicit relation of the form η = η (Ca)
and can be plotted without further processing.

The correlation of Abiev [22] in Eq. (19) is an
implicit relation between η and Ca. Since we could not
bring it in an explicit form, we evaluate it as follows.
For a given set of values for Cab we compute by

Eq. (19) the corresponding values of η and thereafter
the corresponding values of Ca = Cab/η. This proce-

dure yields the relation η = η(Ca) plotted in Fig. 2.

Next, we utilize correlations for the relative velocity m.
By inserting relations for m into Eq. (4), one can eval-
uate the velocity ratio. In this way, we obtain by inser-
tion of Eq. (17) the result

(24)

Eq. (24) represents again an implicit relation between
η and Ca. Here we take F = FAQ = 2.5 and proceed as

described above to plot it in Fig. 2. Similarly, we
inserted and evaluated Eq. (14) of Bretherton [24]
which is valid at low capillary numbers only. The cor-
responding graph overlaps with Eq. (24) and is not
included in Fig. 2.

We now utilize correlations for the liquid film
thickness to evaluate the characteristic velocity ratio.
In gas-liquid Taylor f low, the viscosity ratio is typically
very small resulting in negligible velocity in the liquid
film. From Eq. (6) one obtains the relation

(25)
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Thus, one can determine the velocity ratio from cor-
relations for δ or Rb. Inserting the film thickness model

of AQ [32] given in Eq. (10) into Eq. (25) yields Eq.
(24). The film thickness models of LB [38] in Eq. (12)
accounts for inertial effects by the Reynold number
Re. Inserting Eq. (12) in Eq. (25) yields an explicit
relation η = η(Ca, Re) which is plotted by the thin
lines in Fig. 2 for various values of Re. This model has
the disadvantage that the function Φ(Re = 0) in Eq.
(13) is discontinuous at Re = 0. The film thickness
model of Han and Shikazono [37] accounts for inertial
effects by the Reynolds number Reb and the Weber

number Web = CabReb. Inserting Eq. (11) in Eq. (25)

yields together with Web = η2CaRe again an implicit

relation of the form η = η(Ca, Re), which is however
not evaluated here.

Included in Fig. 2 are numerical data from two
recent numerical studies with state of the art CFD
simulations (symbols). The results of BZG [34] for
Re = 0 cover 20 distinct values of Ca in the range
0.0001−0.8 (taken from Fig. 16a in [34]). The numer-
ical results of LB [38] cover 14 distinct values of Ca in
the range 0.005 ≤ Ca ≤ 2 at various values of Re. In
Fig. 2, only data for Re = 0, 2, 10, 20 and 100 are
included while results for Re > 100 will be discussed in
Fig. 3 below.

We now discuss Fig. 2 displaying the various data
and relationships. All relations and data show a mono-
tonic increase of η with Ca. With exception of the
model of Liu et al. [41] in Eq. (18), all data virtually
overlap for Ca < 0.02. In this range, η is close to unity
indicating that the bubble moves only slightly faster
than the total superficial velocity. The curve resulting
from the film thickness model of AQ [32] in combina-
tion with the stagnant film assumption (SFA) is in the
entire range of Ca in excellent agreement with the
model of Abiev [43]. The same holds for the numerical
data of LB [38] for Re = 0 and 2 in the range 0.005 ≤
Ca ≤ 1. Only the two data points at Ca = 1.5 and 2 show
slightly lower values of η as compared to the model of
Abiev [43]. For the larger values of Re, the numerical
data of LB [38] show a continuous decrease of η with
increase of Re. The viscosity ratio in the numerical
simulations of LB [38] is λ = 0.01. The thin lines in
Fig. 2 represent the film thickness model of LB [38] in
combination with the stagnant film assumption for
λ = 0. For Re ≤ 20, the lines agree very well with the
numerical data, which indicates that the assumption
of a stagnant liquid film is a reasonable approxima-
tion. For Re = 100, however, a slight deviation exists
especially at large values of Ca.

Flows with Negligible Inertia

As a strategy for the development of our new model
we first consider the limit Re = 0 and then introduce
the effect of finite Re. The model development for
vanishing Reynolds number relies on the principle of
 CHEMICAL ENGINEERING  Vol. 54  No. 1  2020
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mass conservation, which we aim to combine with
information from momentum equation.

Equation (3), which results from a global mass bal-
ance, shows that the characteristic velocity ratio ub/jT
depends on the f low rate of the liquid film. Depending
on the gas-to-liquid viscosity ratio λ = μG/μL, the liq-

uid film may be stagnant (λ → 0) or be carried along
by shear forces. Estimating the f low rate in the liquid
film requires a momentum balance. To that end, one
may approximate the uniform body of the bubble by a
long concentric cylinder surrounded by an annular
liquid film. Under the further assumption that the
flow in both phases is fully developed and laminar, the
radial profiles for the local velocity within the concen-
tric gas core and the annular liquid film can be com-
puted analytically [46, 47]. These velocity profiles are
an important ingredient in the model of Abiev [22].
For the ratio of f low rates, it follows [14]

(26)

Inserting Eq. (26) in Eq. (3) yields after some algebraic
manipulations

(27)

In the literature, various forms of this relation exist.
Eq. (27) is equivalent to Eq. (16) in [14], to Eq. (12) in
[7] and to Eq. (32) in [34]. It is also equivalent to
Eq. (5) in [48], with reference to earlier work in [11].
In the limit λ → 0, Eq. (27) reduces to Eq. (25).

With jT and λ given, Eq. (27) forms a system of two

unknowns (ub and w) which one cannot solve analyti-

cally. By Eq. (2), w may be replaced by the bubble
radius Rb or the liquid film thickness δ. Balestra et al.

[34] combined Eq. (27) with a AQ-type film thickness
model and solved the system for different values of the
viscosity ratio λ numerically. More recently, Makuch
et al. [48] performed a similar approach based on the
Bretherton film thickness model in Eq. (9) extended
for nonzero λ. The authors fitted the numerical results
by a scaling function establishing an algebraic rela-
tionship valid for low values of Cab.

Here, we solve Eq. (27) in combination with the
AQ [32] film thickness model in Eq. (10) numerically
using the Matlab script provided by BZG [34] as sup-
plemental material. Considering the viscosity ratio λ =
0 and different values of F proposed in literature, we
obtained in this way graphs for the velocity ratio η = η
(Ca) for the range 10−5 ≤ Ca ≤ 103. While values Ca @
1 may not represent physically stable Taylor f low as
discussed below, the curves show some interesting fea-
tures, which are useful for model development. With
two distinct asymptotic limits Ca → 0 and Ca → ∞,
the curves η (Ca) are of sigmoidal type and symmetric
with respect to the inflection point. The lower asymp-
totic limit is η0 = η (Ca → 0) = 1 while the upper

( )1 11
2 .b

f

Q w w
Q w w

− −= +
λ

2

1 (1 2 )
.

1 (2 )(1 )

w
w w
− − λη =

− − − λ
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asymptotic limit η∞ = η (Ca→∞) depends on the

value of F.

By virtue of Eq. (4), the existence of an upper
asymptotic limit η∞ for large capillary numbers is con-

sistent with the asymptotic value for the relative drift
velocity m. The value m∞ = 0.56 reported by Taylor

[23] for Cab = 2 corresponds to η∞ = 2.27. In experi-

ments at a viscosity ratio λ = 2.5 × 10−5, Cox [49] con-
sidered capillary numbers up to Cab = 10 and reported

a slightly higher asymptotic value m∞ = 0.60 corre-

sponding to η∞ = 2.5. From boundary integral simu-

lations for an inviscid bubble in creeping f low, Marti-
nez and Udell [28] obtained the value m∞ = 0.59 for

Cab = 10 corresponding to η∞ = 2.44. In a similar but

more recent study, Lac and Sherwood [13] found an
absolute maximal bubble velocity corresponding to
η∞ = 2.5 when Ca becomes very large. The same value

was reported by Dupont et al. [50] from volume of
fluid computations.

Being valid under the assumptions of a stagnant
liquid film and negligible inertia, Eq. (24) yields in the
limit Ca → ∞ the relation

(28)

Values reported in literature for F range from 2.483
[34] to 2.79 [33] resulting in η∞ = 2.8 and 2.43 when

inserted in Eq. (28), respectively. This and the values
given above indicate a relatively large uncertainty for
η∞ even when inertia is negligible.

The numerical data of LB [38] in Fig. 2 suggest that
the upper asymptotic limit η∞ depends on Re. Fur-

thermore, for any value of Re the relationship η = η
(Ca) is not symmetric with respect to the inflection
point. To fit an asymmetric sigmoidal curve, a five-
parameter logistic (5PL) function is required [51].
Here we adopt the 5PL function provided by the data
analysis software Origin (OriginLab Corporation)

(29)

The reason is that fitting by Eq. (29) shows better con-
vergence as compared to the 5PL function proposed
by Gottschalk and Dunn [51] when the focus is on low
values of Ca as it is the case here. Fixing the lower
asymptote to η0 = η(Ca → 0) = 1, four free parameters

remain where we restrict the domain to η∞ > 1, c > 0,

h > 0 and s > 0.

To determine further of the four parameters, we
consider the asymptotic limit of Bretherton in
Eq. (15). For Cab → 0, the velocity ratio approach

( )
22/3 2/3 2

2/3 2/3Ca

(Re 0)

Ca
lim .

1( 1) Ca

FP F
FF P

∞

→∞

η →

 η= =  −− η 

0
5PL 0 .

1 (Ca/ )
shc

∞
−

η − ηη = η +
 + 
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10 MARTIN WÖRNER
unity. Thus, for Cab → 0 it follows Ca → Cab so that

the asymptotic limit in Eq. (15) can also be written as

(30)

Our goal is to choose the parameters of the logistic
function in such a way that the limit of Eq. (29) agrees
with Bretherton’s limit in Eq. (30). In the limit Ca → 0 it

is (Ca/c)−h @ 1 so that Eq. (29) may be approximated as

(31)

Comparing Eq. (30) and Eq. (31) shows that both lim-

its become identical when hs = 2/3 and (η∞ − 1) c–2/3 =

1.29 × 32/3. With these two conditions, there remain
only two free parameters of the logistic function,
namely h or s and η∞ or c. Here, we choose s and η∞

as remaining free parameters. Thus we have h = 2/(3s)
while c follows from relation

(32)

The logistic function from Eq. (29) then takes the form

(33)

For s = 1, Eq. (33) simplifies to

(34)

with η∞ being the sole free parameter. The function in
Eq. (34) is symmetric with respect to the inflection
point. For F = FBZG =2.483, Eq. (28) yields η∞ = 2.8
so that Eq. (34) becomes

(35)

Eq. (35) is in good agreement with the AQ-SFA curve

in Fig. 2 only for Ca < 10−3.

A more accurate model for high values of Ca
requires s ≠ 1 in order to account for the asymmetric
behavior. To determine appropriate values for s and η∞

for the case of vanishing Reynolds number, we fit the
data of LB [38] together with the data from Fig. 16a)
in BZG [34] by function (33) using Origin. By regres-
sion analysis for in total 30 data points, we obtain
s(Re = 0) = 0.474 and η∞(Re = 0) = 2.467. The latter

value is well within the range reported in literature.
Inserting both numerical values in Eq. (33) yields

(36)

Eq. (36) constitutes the present model for vanishing
Reynolds number.

2/3
1 1.29(3Ca) .η ≈ +

1 ( 1)(Ca/ ) .
hsc∞η ≈ + η −

3/2
11

.
3 1.29

c ∞η − =  
 

( )
2PL

1/
2/(3 )

1
1 .

1
1 3Ca

1.29

ss
s

∞

−∞

η −η = +
 η − +   

  

1PL
2/3

1
1 .

1
1 (3Ca)

1.29

∞

−∞

η −η = + η −+

2/3

1.8
1 .

1 0.6708Ca
−η = +

+

( )Re 0 0.4741.408

1.467
1 .

1 0.280Ca
→ −

η = +
+
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Flows with Inertia
In order to estimate the accuracy of the new model

for vanishing and finite Reynolds numbers, we nor-
malize the numerical data of BZG [34] and LB [38] by
Eq. (36). Figure 3 shows the corresponding ratio as
function of Ca. For Re = 0, the difference between
Eq. (36) and the numerical data is less than 1% over
the entire range of Ca. For Ca ≤ 0.01, the deviation is
virtually zero due to the fact that the asymptotic
behavior agrees with the theory of Bretherton [24].

For Re = 2, the difference between Eq. (36) and the
numerical data of LB [38] is less than about 2% over
the entire range of Ca. For Re ≤ 100, the deviation is less
than about 2% only for Ca ≤ 0.025. For larger values of
Ca, the ratio in Fig. 3 decreases with increase of Re from
0 to 100. At a value of Re ∼ 100, the ratio takes a mini-
mum before it increases as Re increases up to 800.

Overall, Fig. 3 reveals that for the combination
Ca > 0.025 and Re > 2 a refined model is required.
Since for Re ≥ 200 only few numerical data points are
available, we restrict the development of an improved
model to the range 0 < Re ≤ 100. To that end, we fol-
low the procedure from above and fit the numerical
data of LB [38] for Re = 2, 10, 20, 40, 60 and 100 by
Eq. (33) using Origin. By regression analysis, we
obtain for each value of Re a combination of η∞ and s.

In all cases, the coefficient of determination of the
regression is larger than 0.9996. This value is close to
the theoretical maximum of unity, indicating that the
present model fits the data very well.

In Fig. 4 we show the values of η∞ and s for the

above set of Re. In the range 20 ≤ Re ≤ 100, the upper
asymptote is about constant with η∞ ∼ 2.3. The expo-

nent s, instead, is slightly increasing over the entire
range of Re. Figure 4 shows that one can well approx-
imate the dependence of both parameters on Re by
relations

(37)

and

(38)

Equations (33), (37) and (38) constitute the present
new model which we expect to be valid for capillary
numbers up to Ca ∼ 10 and Reynolds numbers up to
Re ∼ 100.

DISCUSSION

Model Accuracy in Comparison with Literature Data
We assess the accuracy of the new model by a parity

plot in Fig. 5 which compares the values of η = η (Ca,
Re) predicted by Eqs. (33), (37) and (38) with numer-
ical data for η. The latter include in addition to the
data from BZG [34] and LB [38] already used for
model development the numerical data of Kurimoto et
al. [39]. Figure 5 shows that for Re ≤ 200, the deviation

∞η = + × Re
(Re) 2.3 0.167 0.83

Re
(Re) 0.884 0.41 0.968 .s = − ×
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Fig. 4. Parameters η∞ and s of the 2PL model versus
Reynolds number.
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Fig. 5. Parity plot comparing the present model with results
from numerical simulations of Taylor flow [34, 38, 39].
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between numerical data and model is within ±2% over
the entire range of Ca. For Re = 200 and 400, the devi-
ation is larger but still within ±5%.

For further evaluation of the predictive capabilities
of the new model, we show in Fig. 6 a second parity
plot now comparing the model with the measurements
listed in Table A1 of Kurimoto et al. [21]. The authors per-
formed experiments in circular microchannels with four
different diameters (D = 200, 320, 500, and 700 μm).
They used three different liquids, namely water and
two types of glycerol-water solutions with 64 and
52 wt % glycerol, respectively. The experiments
encompass the ranges 0.005 ≤ Cab ≤ 0.235 and 6 ≤ Re ≤
941 while η is in the range 1.1 − 1.6. Concerning mea-
surements accuracy, the author give a relative error for
the measured gas slug volume, which was estimated as
less than ±3.0%.

The deviation between the present model and the
experimental data in Fig. 6 is within ±10% for the
diameter D = 200 μm. For the larger diameters D =
320 and 500 μm, the deviation is mostly in the range
between 0 and −10%, meaning that the present model
consistently underestimates the measurements. For
the largest diameter D = 700 μm, the deviation is
mostly in the range from −5 to −18%. Interestingly,
the experiments with 52 wt % glycerol-water solution
in the 200 μm channel is the only case were the present
model consistently overestimates the measurements of
Kurimoto et al. [21].

Limitations of Proposed Correlation

The comparison with experimental results in the
previous subsection shows that the proposed model for
the characteristic velocity ratio of Taylor f low may be
considered sufficiently accurate with an error of ±10%
for microchannels with diameter 500 μm and below
THEORETICAL FOUNDATIONS OF CHEMICAL ENGIN
and Reynolds number up to Re ∼ 400. For larger
channel diameters and higher Reynolds numbers, the
agreement is less good and refinement of the model is
advisable.

The improvement of the model for high Reynolds
number is hindered by the lack of reliable numerical
and experimental data at large capillary numbers.
Experimentally, it is quite hard to reach high Ca in
capillaries (either by high velocities or by high viscosi-
EERING  Vol. 54  No. 1  2020
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Table 1. Relations between priori unknown hydrodynamic parameters of Taylor f low and the characteristic velocity ratio

Unknown parameter Relation

Void fraction and velocities

Void fraction

Bubble velocity

Mean liquid velocity

Slip ratio

Relative drift velocity

Relations for stagnant liquid film

Uniform bubble radius

Uniform film thickness

Uniform wetting fraction

Streamline patterns in liquid slug

Condition for recirculation flow

Radius of dividing streamline

Radius of vanishing velocity in moving frame

Non-dimensional recirculation time

/α = β η

/b Tu j = η

/ (1 )/(1 / )L Tu j = − β − β η

/ ( )/(1 )b LS u u= = η − β − β

1
1m −= − η

1/2
/bR R −= η

1/2
/ 1R −δ = − η

1
1w −= − η

2η <
1/2

ds/ (2 )R R = − η

1/2
0/ (1 /2)R R = − η

1
1/( 0.5)

−τ = η −
ties) because it results in very high pressure-drops.
While the utility of extending the model to large Ca
may thus be limited for practical applications, it is
nevertheless of academic interest.

The numerical simulations of LB [38] in Fig. 2
show that the value of η∞ depends on Re. For Re ≤ 100

the upper asymptote decreases with increase of Re.
For Re ≥ 200, there are not sufficient data available at
large Ca to allow for a reliable regression analysis with
respect to the upper asymptote, as the maximum val-
ues of Ca in the simulations of LB [38] decrease with
increase of Re, cf Fig. 2. In fact, the upper asymptotic
behavior of η at large Re seems to be largely unknown
and a quantitative relationship η∞(Re) is missing in

literature.

This lack of information is related to the stability of
Taylor bubbles. Goldsmith and Mason [11] found that
the trailing end develops re-entrant cavities of the con-
tinuous liquid phase for high bubble speeds. For low
Reynolds number, the corresponding re-entrant jet
may cause bubble breakup at Ca ∼ 4−7 as experimen-
tally observed by Olbricht and Kung [12] and con-
firmed by inertia-less numerical simulations by Lac
and Sherwood [13], see also [50]. As the Reynolds
number increases, the bubble might lose its axial sym-
metry at the rear. Water/nitrogen experiments in a
2 mm capillary by Asadolahi et al. [52] show that
three-dimensional shape oscillations occur for Reyn-
THEORETICAL FOUNDATIONS OF
olds numbers above Re ∼ 951 even for capillary num-
bers as low as Ca ∼ 0.007.

Predicting Taylor Flow Hydrodynamics
Among the quantities that are related to the charac-

teristic velocity ratio η are the mean liquid velocity,
the relative velocity, the gas hold-up, the cross-sec-
tional area of the partial bypass f low and recirculation
flow regions, the non-dimensional recirculation time
in the liquid slug, the thickness of the liquid film and
the bubble diameter. Table 1 summarizes the mathe-
matical relations of these and further quantities with
the characteristic velocity ratio. When the pipe radius,
the gas and liquid f low rates and the physical proper-
ties of the phases are known, then jT, β, Ca and Re are

known as well. The correlation η = η(Ca, Re) given by
Eqs. (33), (37) and (38) developed in this paper then
links all priori unknown parameters in Tab. 1 with
prior known parameters. Thus, the new model allows
predicting a comprehensive set of hydrodynamic
parameters characterizing gas-liquid Taylor f low in
circular microchannels by one single relation.

By means of the identities Cab = η Ca, Reb = η Re

and Web = η2CaRe, the proposed correlation can also

be used to estimate the liquid film thickness or the
pressure drop from correlations relying on Cab, Reb
and Web, cf. the section with literature relations. Fur-
 CHEMICAL ENGINEERING  Vol. 54  No. 1  2020
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thermore, it is of benefit for modeling mass transfer in
Taylor f low [53], as it allows estimating the streamline
pattern in the liquid slug including the size of the recir-
culation area and the non-dimensional recirculation
time, given in Eqs. (7) and (8), from prior known
parameters.

The two-parameter logistic function in Eq. (33)
with its asymptotic behavior at low capillary numbers
agreeing with the theory of Bretherton [24], may also
serve as basis for the development of correlations for a
broader range of Taylor f low. While the present study
is limited to gas-liquid f lows, where the viscosity ratio
λ approaches zero, the underlying approach could be
applied to liquid-liquid flow as well. In literature, there
exist already several numerical studies on liquid-liquid
Taylor flows, which may serve as starting basis [34, 54–
57]. Further potential extensions may concern
larger/non-circular channels with upward/downward
Taylor f low [18, 58]. In such cases, gravity/buoyancy
forces are no longer negligible so that their influence
on the characteristic velocity ratio should be taken into
account by the Eötvös or Bond number.

CONCLUSIONS

Many hydrodynamic parameters of Taylor f low
closely relate to the ratio between bubble velocity (ub)

and total superficial velocity (jT). Correlations for this

characteristic velocity ratio (η = ub/jT), which are valid

in the entire range of capillary numbers, have been
lacking so far. Using available theoretical, experimental
and numerical results on gas-liquid Taylor flow in circu-
lar microchannels from literature, a correlation for η is
proposed in terms of the capillary number (Ca) and
Reynolds number (Re) both using jT as velocity scale.

As basis for the correlation a five parameter logistic
function is selected which accounts for the lower and
upper asymptotes of η for small and large values of Ca
while allowing for asymmetry. At low Ca, the correla-
tion adopts the theoretical asymptotic limit of Breth-
erton resulting in excellent agreement with literature
data. By this asymptotic behavior, the number of free
parameters is reduced to two. One parameter is the
value of the upper asymptote while the other one
accounts for the asymmetry of the logistic curve. Both
remaining free parameters are obtained by regression
analysis using numerical simulation data for η from
literature. The new correlation is given by Eqs. (33), (37)
and (38). The deviation between the correlation and
numerical data for Re up to 800 is within ±5% over the
entire range of Ca. In comparison with experimental
data, the agreement is less good but still within ±18%.

For large values of Ca and Re, a further improve-
ment of the new model is desirable. In literature there
is, however, a relative large uncertainty concerning the
upper asymptote of the characteristic velocity ratio for
finite Reynolds number. Here, numerical studies
where Ca and Re can be varied independently may be
THEORETICAL FOUNDATIONS OF CHEMICAL ENGIN
particularly useful to determine not only the upper
asymptote but also the upper value of Ca where the Tay-
lor bubble shape is stable for certain finite values of Re.

Since the proposed correlation relies on prior
knowledge of physical properties and gas/liquid f low
rates only, it should be particularly useful to predict
hydrodynamic attributes of Taylor f low such as bubble
velocity, mean liquid velocity, gas holdup, uniform
liquid film thickness, bubble diameter, and streamline
patterns in the liquid slug. Furthermore, the present
model can be used in combination with models for liq-
uid film thickness or pressure drop formulated in
terms of non-dimensional groups being based on the
bubble velocity instead of total superficial velocity.
Finally, the developed two-parameter logistic func-
tion may also serve as prototype for similar correla-
tions valid for non-circular capillary channels and liq-
uid-liquid Taylor f low.
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NOTATION

A area, m2

α void fraction (holdup)

Bo Bond number

β gas volumetric f low ratio (dynamic holdup)

c parameter in 5PL function

Ca capillary number based on total superficial velocity, 

Ca = jT μL/σ
Cab capillary number based on bubble velocity, 

Cab = ubμL/σ
D inner diameter of circular pipe, m

δ uniform liquid film thickness, m

Eo Eötvös number

F constant parameter in Eq. (10)

g gravitational acceleration, m s−2

h parameter in 5PL function

jT total superficial velocity, m s−1

λ gas-to-liquid viscosity ratio

m relative drift velocity

μ dynamic viscosity, Pa s
EERING  Vol. 54  No. 1  2020
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