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Abstract—Kinetics for bioethanol production from glucose using Saccharomyces cerevisiae (PTCC 24860)
was experimentally studied in a batch membrane bioreactor and a conventional bioreactor using a pervapo-
ration process. For pervaporation, a dense hydrophobic polydimethylsiloxane membrane was used. The
batch membrane bioreactor resulted in increase of cell density, improved productivity and yield. A generic
model was developed which can give a unique description for production of bioethanol within both batch
membrane bioreactor and conventional bioreactor. Coupled describing equations of the model were solved
by means of genetic algorithm approach. The logistic model considered for expression of growth kinetics and
kinetic parameters calculated through the genetic algorithm. The results demonstrated that this generic
model is capable to describe reasonably the behavior of both the conventional bioreactor and the batch mem-
brane bioreactor with the highest correlation coefficient (0.979 and 0.987, respectively).
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INTRODUCTION
Limitations of fossil fuels as well as environmental

pollution have created a great incentive for develop-
ment of renewable energy sources in recent decades
[1–3]. One of these renewable energy sources is
bioethanol that its production is considered as a
trusted energy source and suitable additive for gasoline
or relevant fuels [4]. The benefits of using bioethanol
as a fuel include decrease of greenhouse gas genera-
tion, higher octane number in combustion, and cheap
energy which can be produced from materials includ-
ing sugar [5]. Conventional bioreactor (CBR) for
bioethanol production has some disadvantages such as
low ethanol production due to product inhibition
effect, requirement of additional purification steps in
downstream, low cell densities in the cultivated broth
and incomplete use of nutrients [6]. There are some
processes to achieve a simultaneous separation of fer-
mented ethanol as it is formed. The most important of
them is membrane separation. Pervaporation is
claimed to be one of the most efficient and promising
techniques for separation of ethanol/water mixture in
biological processes. That is because the process is

simple and does not require extra chemicals [7]. Sili-
con containing polymers, especially polydimethylsi-
loxane (PDMS), have been widely used as the organ-
ics selective membrane for separation of organic/water
mixtures via pervaporation process [8]. It is hydropho-
bic, and has a good chemical stability and biocompat-
ibility in long duration time compared to other poly-
meric and inorganic membranes such as poly [1-
(trimethylsilyl)-1-propyne] (PTMSP) and zeolite,
respectively. Membrane technology represents one of
the most effective and energy saving processes for eth-
anol production [9]. Coupling membrane separation
with biological process in a single unit is very attractive
configuration for the fermentations where continuous
elimination of metabolites is necessary to maintain
high productivity. It was designed to reduce substrate
and product inhibitions, increase growth and cell den-
sity, increase ethanol productivity, elimination of
downstream processing, simple performance and
improve system economic [10]. Irrespective of the
process employed for fermentation, defining the
kinetics and kinetic parameters of a bioprocess is an
important step toward translating the considered
model to industrial scales (scale-up) [11–13]. Several
previous studies have considered modeling of different1 The article is published in the original.
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kinds of bioreactors for bioethanol production, such as
batch [14, 15], continuous [16, 17], fed batch [18] and
recycle reactors [19]. There are also some reports in
the literature dealing with continuous ethanol produc-
tion by integrating conventional fermentation and per-
vaporation [20]. Modeling of batch bioreactors
including both membrane and conventional types has
received some attentions, but focus has been to handle
each process separately and no attempt was made to
develop a unique general model for describing these
two processes together. Besides, modeling of batch
bioreactors performance (conventional and mem-
brane-based) involves coupled differential equations
describing biomass growth, substrate consumption
and product generation which are usually difficult to
solve them. Some models have been presented based
on some simplifying assumptions which led to decou-
pled differential equations. Equations were solved sep-
arately to give the chemical species concentration
involving in the bioprocess [21]. With the background
mentioned above, the first aim in the present research
was to enhance bioethanol production by integrating
conventional fermentation with pervaporation in a
batch membrane bioreactor (MBR). For this purpose,
PDMS membrane was chosen for the removal of eth-
anol from fermentation broth which showed an
improvement in ethanol yield and productivity. The
second important task in this study was development
of a unique general model for CBR and MBR for
bioethanol production. The model developed for
MBR naturally reduces to CBR model by eliminating
the term including membrane f lux. Coupled describ-
ing equations of the model were solved following an
optimization procedure based genetic algorithm by
which the bio-kinetic parameters were confidently
determined.

MATERIALS AND METODS
Culture conditions. All chemicals used in present

study were analytical grades and supplied by Merck
(Darmstadt, Germany). The medium contained glu-
cose, yeast extract, and NH4Cl with concentrations of
50, 3, and 5 g/L, respectively. The medium was auto-
claved at 121°C and 15 psig for 20 min. The sterilized
medium was inoculated with 5% of pure seed culture
of the microorganism (S. cerevisiae) and then the cul-
ture was cultivated in an incubator at 30°C for 24 h.

Microorganism. The pure stock culture of S. cerevi-
siae was used. The strain was originated from Persian
Type Culture Collection (PTCC 24860), supplied by
Iranian Research Organization for Science and Tech-
nology (IROST).

MBR system. Figure 1 illustrates a schematic dia-
gram of the MBR system used in this study. A set of
experiments were carried out in the CBR and MBR
with the same working volume of 1260 mL.
Polydimethylsiloxane (PDMS) membrane (Supplied
by Pervatech Company, Netherland) with an effective
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thickness of 20 μm was used as a selective separation
barrier to enhance substrate conversion through con-
tinuous withdrawal of ethanol from fermentation
chamber [22]. The pressure on the top feed side was
atmospheric, while the bottom side of membrane
evacuated with a vacuum pump (E2M2-Edvards) to
1 mbar. The enriched ethanol was collected at the per-
meate side in liquid form using liquid nitrogen cold
trap. Experiments were carried out at constant tem-
perature of 32°C. Samples were taken every 2 h from
the broth and permeate and cell dry weight, glucose
and produced ethanol concentration were measured
by spectrophotometer, color-metric method using
DNS reagent, and gas chromatograph, respectively. It
should be noted that the MBR system could easily
adapted to act as CBR by replacing the membrane at
the bottom of the fermentation chamber by a glass
plate and eliminating cold trap at the permeate side.

MODELING
Growth kinetics is typically categorized to struc-

tured and unstructured models or segregated and non-
segregated models [14]. In this study, the model was
considered to be unstructured and non-segregated in
logistic category. The same model was used for the
CBR and MBR.

The general model for biomass growth kinetics.
Most of models can describe log phase of cell growth,
while few models can describe lag, exponential and
stationary phases all together. In this study, the logistic
model was selected. The logistic kinetic model is a
suitable model for prediction of growth curve [23].
The specific growth rate projected by the logistic
model is expressed as

(1)

where μ is the specific growth rate [h–1] that depends
on biomass concentration, K is the logistic constant, X
is the concentration of S. cerevisiae [g L–1], and Xm is
the maximum concentration of S. cerevisiae [g L–1].
The mass balance for biomass generation can be illus-
trated as follows:

(2)

(rate of biomass in – rate of biomass out + generation
rate of biomass = accumulation rate of biomass),
where Fm is the volume tric f low rate [L h–1], X0 is the
concentration of S. cerevisiae at the membrane permeate
side [g L–1], rx is the biomass growth rate [g L–1 h–1], V is
the working volume of the bioreactor [L], and t is the
fermentation time [h]. Considering that no biomass
can pass through the membrane, X0 = 0, Eq. (2)
reduces to

(3)

 −μ =  
 m

1 ,XK
X

− + =m 0
( )

0 ,x
d X V

F X r V
dt

= +x .dV dXr V X V
dt dt
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Fig. 1. Schematic diagram of the MBR with pervaporation: (1) MBR; (2) membrane; (3) feed solution; (4) sampling port; (5)
temperature controller; (6) heater; (7) CO2 outlet; (8) Pirani gauge; (9) N2 cold trap; (10) vacuum pump; and (11) temperature
preservative box.
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The total material balance for the MBR can be
written as follows:

rate of mass in – rate of mass out = rate of mass
accumulation

(4)

Integration of the above equation with the initial
condition t = 0, V = V0 leads to a linear relationship in
variation of bioreactor volume with time:

(5)

V0 is the initial working volume of the bioreactor
[L] and rx is given by the Malthus law:

(6)

Combination of (1), (3), and (5) results in

(7)

The general model for substrate consumption. The
logistic model can successfully describe utilization of
substrate. Mass balance for substrate utilization rate
can be illustrated as follows:

− =m0 .
d V

F
dt

= −0 m .V V F t

= μx .r X

   − +=   −  

m

m 0 m

1 .
X FdX K XX V F tdt
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Rate of substrate in – rate of substrate out – sub-
strate consumption rate = accumulation rate substrate

(8)

where Sm is the concentration of glucose at the mem-
brane permeate side [g L–1], S is the glucose concen-
tration in the MBR [g L–1], rs is the consumption rate
of glucose [g L–1 h–1]. Knowing that the membrane is
not permeable to glucose, Sm = 0, Eq. (8) reduces to

(9)

The consumption rate of glucose can be related to
the specific glucose utilization rate by the following
equations:

(10)

(11)

where Yx/s is the yield of cell concentration based on
the substrate consumption.

− − =m m s
( )0 ,d SVF S r V
dt

− = +s .dV dSr V S V
dt dt

μ
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,
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 −μ =  
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X
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The substitution of (5), (10), and (11) into (9)
yields

(12)

(13)

The general model for bioethanol formation. Mass
balance describing product formation in the MBR is
given by following equation:

Rate of ethanol in – rate of ethanol out + forma-
tion rate of ethanol = rate of ethanol accumulation.

It should be noted that the membrane is permeable
to ethanol, and therefore an output term would exist in
the ethanol mass balance expression:

(14)

(15)

(16)

where Pm is the concentration of ethanol at the mem-
brane permeate side [g L–1], P is the ethanol concen-
tration in the MBR [g L–1], rp is the ethanol produc-
tion rate [g L–1 h–1], and Yp/s is the yield of formed
product based on substrate consumption.

The substitution of (5) and (16) into (15) yields

(17)

In summary, a set of differential equations consist-
ing of Eqs. (7), (13), and (17) was obtained using the
logistic kinetic model which describes S. cerevisiae
growth, glucose consumption, and ethanol produc-
tion in the MBR, respectively.

Putting Fm = 0, the set of equations obtained for the
MBR reduces to a set of equations describing S. cere-
visiae growth, glucose consumption, and ethanol pro-
duction for the CBR as follows:

Both the sets of equations describing the MBR and
CBR performances for bioethanol production consist
of coupled differential equations which cannot be
integrated separately to give the species concentration.
Therefore, a special mathematical treatment is

μ
= − +

−
m

x s 0 m

''
,

X FdS S
dt Y V F t

 −= − +  − 
m

m x/s 0 m

1'' .X FdS XK S
Xdt Y V F t

− + =m m p
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p s
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Xdt

XdS XK
Xdt Y

XdP K XY
Xdt
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required to solve the problem. In this study we have
used an optimization procedure based on genetic algo-
rithm approach.

Finding the best parameters of model equations by
means of genetic algorithm. Expression of a modeling
issue as an optimization problem is an effective way to
solve many of problems including curve fitting. Sys-
tem identification method based on genetic algorithm
is one of the ways to do this work. Genetic algorithm
was used as a tool to search global optimum and it
improved the parameters from the previous step to
reduce the difference between experimental data and
modeling results. Estimation of experimental data by
means of a physical model has been done by obtaining
parameters of the model so that the resulting functions
would have minimum deviation compared to experi-
mental data. In this problem, calculations were begun
with an initial guess by genetic algorithm. Then the
initial guess was inserted in the differential equations
in order to describe behavior of system. The system of
differential equations solved by the Runge–Kutta
method and its results were compared with experi-
mental data. A program code was developed by means
of the software package Matlab (Version 7.14) for this
purpose. The calculation steps in the optimization
procedure are given by the f lowchart of Fig. 2.

RESULTS AND DISCUSSION
In this study, glucose with fixed initial concentra-

tion of 50 g L–1 was used as substrate in the CBR and
MBR. Before starting the bioprocess, separation per-
formance of PDMS membrane was estimated sepa-
rately via pervaporation of ethanol/water mixture as
feed at low ethanol concentration attainable in the
bioreactor. The selectivity of around 7 for ethanol over
water and total f lux of 0.46 kg m–2 h–1 was obtained
which was used for modeling purposes. In the CBR at
stationary phase of growth which was achieved after 22 h,
ethanol and cell concentrations were approximately
constant at 22.22 and 13.25 g L–1, respectively, while
glucose was almost completely consumed. The calcu-
lated yield of cell concentration based on substrate
consumption, Yx/s and the yield of produced ethanol
based on substrate consumption, Yp/s in the CBR were
to be 0.32 and 0.54 g/g, respectively, which increased
to 0.41 and 0.59 g/g in the MBR and the productivity
was 1.106 g L–1 h. In the MBR mode of operation at
the stationary phase of growth, the cell and ethanol
concentrations in the broth were 15.35 and 20.02 g L–1,
respectively. The cell concentration in the broth was
higher than that of the CBR. The enriched ethanol
with high concentration of 13.8 wt % was obtained at
the permeate side of the membrane.

Figure 3 shows variation of the cell (S. cerevisiae),
glucose, and ethanol concentration with time in the
CBR which was calculated by genetic algorithm with
simultaneous solving three equations (18), (19), and
 CHEMICAL ENGINEERING  Vol. 53  No. 1  2019
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Fig. 2. Steps in the optimization procedure.

Start

Define the objactive function

Create the initial population randomly as the initial

estimation of the parameters of the kinetic equations

Insert the parameters in differential equations and

solve equations with numerical method

Sort the results and truncate the worst data

Is experimental data similar to the results?

Yes No

Select suitable parents and create a new population

with Crossover operator

Show best Parameters

and figures Select appropriate members and create a new

population with Mutation operator
(20) as coupled equations. As can be clearly seen from
Fig. 3, it demonstrated that the logistic model could
successfully describe S. cerevisiae growth, glucose, and
ethanol concentrations in the CBR. Time variation of
the mentioned species in the MBR was presented in
Fig. 4. Three equations (7), (13), and (17) were calcu-
lated contemporary by genetic algorithm. It was found
that the logistic model was efficiently described
growth, glucose consumption, and ethanol concentra-
tion in the MBR.
THEORETICAL FOUNDATIONS OF CHEMICAL ENGIN

Table 1. Optimized kinetic parameters for ethanol productio

System K, h–1 Xm, g L–1

CBR Experimental – 13.80
Model 0.45 14.16

MBR Experimental – 15.33
Model 0.47 15.65
Experimental results obtained for the CBR and
MBR were compared in Table 1 with the model pre-
dicted values.

The objective function used for optimization study
based on genetic algorithm was defined as

(21)

= =
= − approximation experimental

2

1 1

Objective functio

( )

n

,
i i

m N

j j
j i

y y
EERING  Vol. 53  No. 1  2019

n in CBR and MBR

K, h–1 K, h–1 Yp/s Yx/s

– – 0.32 0.54
2.03 0.82 0.38 0.55

– – 0.41 0.59
1.24 1.21 0.42 0.75
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Fig. 3. (a) Profiles of cell concentration obtained in the CBR;
(b) profiles of glucose concentration obtained in the CBR;
(c) profiles of ethanol concentration obtained in the CBR.
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Fig. 4. (a) Profiles of cell concentration obtained in the MBR;
(b) profiles of glucose concentration obtained in the MBR;
(c) profiles of ethanol concentration obtained in the MBR.
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where m and N are the number of equations and sam-

ples and  is the approximation solution.

In this study the convergence criterion was set

based on determination coefficient. A fitting approach

was used to evaluate the kinetic parameters by match-

ing the experimental data with the equations describ-

ing for S. cerevisiae, glucose and bioethanol concen-

trations. The fitting results in terms of determination

coefficients are shown in Table 2, while the kinetic

parameters and yield of fermentations are presented in

Table 1. As can be observed from Table 1, there is a

close agreement between the experimental and model

approximationijy
THEORETICAL FOUNDATIONS OF
predicted values with respect to the maximum cell

concentration, the yield of cell concentration based on

substrate concentration (Yx/s) and the yield produced

ethanol based on substrate concentration (Yp/s). Also

the model predicted values using the optimized

parameters were shown in Figs. 3 and 4 along with

experimental data. As shown in these figures the set of

equations in the form of a unique general model for

the CBR and MBR were capable to describe effi-

ciently S. cerevisiae growth, glucose consumption and

bioethanol production.
 CHEMICAL ENGINEERING  Vol. 53  No. 1  2019
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Table 2. Optimization results obtained based on determi-
nation coefficients for the CBR and MBR models

System R2

CBR 0.979

MBR 0.987
CONCLUSIONS

Bioethanol production from glucose using S. cere-
visiae was experimentally studied via CBR and mem-

brane bioreactor using pervaporation (MBR) in batch

mode of operation. The results demonstrated that

integration of fermentation bioprocess with mem-

brane separation enhanced the ethanol productivity at

least by 27% over conventional batch fermentation.

One of the most important problems for bioethanol

production is still lack of a comprehensive general

model to describe variation in concentration of chem-

ical species involved in the bioprocess. In this study, a

generic model was developed to describe performance

of MBR which naturally reduces to a describing model

for CBR by eliminating the term containing mem-

brane f lux. Coupled differential equation describing

the processes were solved following an optimization

procedure using genetic algorithm. Kinetic parame-

ters were recovered through genetic algorithm fit of

experimental data with model equations. It was found

that general equations were efficiently described

S. cerevisiae growth, glucose consumption and bioeth-

anol production.

NOTATION

Fm volumetric f low rate, L h–1

K logistic kinetic constant (biomass), h–1

P bioethanol concentration, g L–1

Pm maximum bioethanol concentration, g L–1

rp bioethanol production rate, g L–1 h–1

rs glucose utilization rate, g L–1 h–1

rx S. cerevisiae growth rate, g L–1 h–1

S glucose concentration, g L–1

S0 initial glucose concentration, g L–1

Sm outlet glucose concentration, g L–1

t time, h

V working volume of fermenter, L

V0 initial working volume of fermenter, L

X S. cerevisiae concentration, g L–1

X0 initial S. cerevisiae concentration, g L–1

Xm maximum S. cerevisiae concentration, g L–1
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