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Abstract⎯In this paper we give an overview of some of the advances that have taken place to address chal-
lenges in the area of optimization under uncertainty. We first describe the incorporation of recourse in robust
optimization to reduce the conservative results obtained with this approach, and illustrate it with interruptible
load in demand side management. Second, we describe computational strategies for effectively solving two
stage programming problems, which is illustrated with supply chains under the risk of disruption. Third, we
consider the use of historical data in stochastic programming to generate the probabilities and outcomes, and
illustrate it with an application to process networks. Finally, we briefly describe multistage stochastic pro-
gramming with both exogenous and endogenous uncertainties, which is applied to the design of oilfield infra-
structures.
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INTRODUCTION

Optimization under uncertainty has been an active
area of research in process systems engineering [1–3].
A major decision in this area is whether one should
rely on a robust optimization approach in which the
emphasis is to guarantee feasibility over a specified
uncertainty set, or whether one should use a stochastic
programming approach in which first -stage decisions
are made while anticipating that recourse actions can
be implemented once the uncertainties are revealed.
The robust optimization approach (or its generaliza-
tion, chance constrained optimization) is usually
more appropriate for short-term horizon problems in
which feasibility is a major concern. On the other
hand, stochastic programming is usually more appro-
priate for problems with long-term time horizons in
which it is expected that recourse actions will be taken.
Stochastic programming models, however, tend to be
much more expensive to solve compared to robust
optimization models. Furthermore, there is the ques-
tion of how to specify the uncertainties (e.g., an intui-
tive guess or the use of historical data). Finally, it is
essential to use as a basis an efficient deterministic
model.

In this paper, we address the following major ques-
tions in optimization under uncertainty: (a) how to
incorporate recourse in robust optimization, (b) how
to reduce computational time when solving two-stage
stochastic optimization problems, (c) how to make use
of historical data in the generation of scenarios for sto-
chastic programming, (d) how to handle exogenous
(decision independent) and endogenous (decision
dependent) uncertainties in multi-stage stochastic
programming. As opposed to our recent paper in this
area [3], we emphasize the modeling and application
of specialized solution methods in industrial problems
related to demand side management, supply chains,
process networks and oilfields.

MODELING RECOURSE IN ROBUST 
OPTIMIZATION

Robust optimization [4] is one of the main
approaches for incorporating uncertainty in optimiza-
tion modeling. The uncertainty is specified in terms of
an uncertainty set in which any point is a possible real-
ization of the uncertainty. The major goal is to find a
solution that is feasible for all possible realizations of
the uncertainty while optimizing the objective func-
tion. Since the worst case of the uncertainty set is one
of the possible realizations, a robust optimization
model returns a solution that is optimal for this partic-1 The article is published in the original.
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ular point. However, considering the worst case is
often overly conservative. One can reduce the level of
conservatism by adjusting the size of the uncertainty
set as proposed by Bertsimas and Sim [5], in which a
pre-specified “budget” parameter limits the number
of uncertain parameters that can change at the same
time. The general formulation for linear models is as
follows:

(1)

where the parameter  is uncertain and defined over
the uncertainty set  in which we assume that the
uncertainty budget is included. Eq. (1) corresponds to
a semi-infinite programming problem, but can be
simplified by considering the dual of each row in the
matrix  (robust counterpart), which yields a finite
dimensional optimization problem. A drawback with
this approach is that specifying the uncertainty set  is
not always trivial since the uncertainty set might not
be well known, and especially because the user has to
specify the uncertainty “budget” ranging from very
conservative (all parameters vary independently) to
less risk-averse (e.g., limiting the number of indepen-
dent changes). Another reason for over-conservatism
in traditional robust optimization is because recourse
is not accounted for (i.e., implement decisions after
the realization of the uncertainty), which may not be
realistic in some cases, such as in problems involving
investment and long-term contract decisions. Below
we present a recent development in robust optimiza-
tion that allows recourse to a certain extent, and

demonstrate the effectiveness of this method by apply-
ing it to an industrial case study. For a recent work for
accounting for recourse in a rigorous manner the
reader is referred to Zhang et. al [6] who have estab-
lished interesting theoretical connections between
flexibility analysis and robust optimization.

The affine decision rule approach. Consider the fol-
lowing multi-stage (  stages) optimization problem
under uncertainty,

(2)

where  is the vector of the t-th-stage variables. For
simplicity, we assume that the objective function only
depends on  and that only matrix  is uncertain.
While  does not depend on , xt for  are
recourse variables and depend on the realization of the
uncertainty. Note that  only depends on the  that
are realized up to stage .

The problem given in Eq. (2) cannot be solved as
such since the set of possible functions for  is
infinitely large. The idea in the Decision Rule
approach [7], also referred to as Adjustable Robust
Optimization [4], is to restrict oneself to a certain type
of functions for , in particular to the set of affine
functions. Hence, we set , and we
obtain the following robust formulation by constraint-
wise construction:

(3)

which can be reformulated into a single-level problem
for certain types of uncertainty sets by using tech-
niques applying strong duality. This results in a robust
counterpart formulation in which the decision vari-
ables are , and the parameters for the affine decision
rules are  and . By applying the Decision Rule
approach, the multi-stage problem is transformed into
a single-stage problem to which the classic robust opti-
mization reformulation is applied. Obviously, it is
quite restrictive to only consider affine functions;
however, this allows us to retain computational tracta-
bility and still account for recourse to a certain extent
(for rigorous treatment of recourse see [2]).

Industrial case study. We consider the problem of
providing interruptible load in an air separation plant
[8]. We describe in this section the deterministic ver-
sion of this problem, which is then extended to the
adjustable robust optimization described in the previ-
ous section.

Specifically, we consider a power-intensive contin-
uously operated plant that can produce a certain set of
products, for which given demands have to be satis-
fied. There are inventory capacities for storable prod-
ucts, and additional products can be purchased at
given costs. We assume that for fixed production, all
production costs except for the cost of electricity are
constant. In this way, for optimization purposes, the
total operating cost only consists of the electricity cost
and the cost of purchasing products. Electricity prices,
which are time-sensitive, are assumed to be known for
the scheduling horizon. Besides selling products, the
plant can gain additional revenue from providing
operating reserve in the form of interruptible load,
which is capacity for load reduction that the grid oper-
ator can request from the plant in case of contingency.
The load reduction is measured with respect to the
plant’s target power consumption. The interruptible
load provider is rewarded regardless how much load
reduction is actually required, which is uncertain.

≤ ∀ ∈min{ : ( ) },T

x
c x A u x b u U

u
U

A

U

T

=

⎧ ⎫⎪ ⎪+ ≤ ∀ ∈⎨ ⎬
⎪ ⎪⎩ ⎭

∑1 1 1

2

min : ( ) ( ) ,
T

T
t t

x
t

c x A u x A x u b u U

tx

1x 1A
1x u ≥ 2t

tx u
t

( )tx u

( )tx u
= α +( )t t tx u B u

α ∈ =

⎧ ⎧ ⎫ ⎫⎪ ⎪ ⎪ ⎪+ α + ≤ ∀⎨ ⎨ ⎬ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎩ ⎭ ⎭

∑
1

1 1, 1
, ,

2

min : max ( ) ( ) ,
T

T T T
i ti t t i

x B u U
t

c x a u x a B u b i

1x
α B



THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING  Vol. 51  No. 6  2017

MATHEMATICAL PROGRAMMING TECHNIQUES FOR OPTIMIZATION 895

The goal is to find a production schedule 1over a
given time horizon that guarantees satisfaction of all
product demand under every possible realization of
the uncertainty, which lies in the actual demand for
load reduction. The solution is considered optimal if it
minimizes net operating cost for the worst case, where
the net operating cost is primarily the electricity cost
and product purchase cost minus the revenue from
providing interruptible load. We distinguish between
two types of decisions: here-and-now decisions which
have to be made at the beginning and cannot be
changed over the course of the scheduling horizon,
and wait-and-see decisions which can be adjusted
after realization of the uncertainty. Here-and-now
decisions are the modes of operation, the target pro-
duction rates for each product, and the committed
purchase amounts for each product in each time
period of the scheduling horizon. The wait-and-see
decisions are changes in production rates and product
purchases if load reduction is requested or has been
requested in previous time periods.

To model this problem, we assume that the plant
can operate in different operating modes, which repre-
sent operating states such as “off”, “on” and
“startup”. The feasible region for each mode is
defined by a union of convex subregions in the product
space, and a linear electricity consumption function
with respect to the production rates is given for each
subregion. The key feature here is that every subregion
has the form of a polytope. Such a mode is generally
referred to as a Convex Region Surrogate (CRS)
model. For complex processes, CRS models can be
constructed by either using a model-based [9] or a
data-driven approach [10].

At any point in time, the plant can only run in one
operating mode. For a given mode, the operating
point has to lie in either one of the convex subregions.
Any point in a subregion can be represented as a con-
vex combination of the vertices of the polytope. These
relationships can be expressed by the following con-
straints:
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where  is the set of subregions in mode , and 
is the set of vertices of subregion . The binary
variable  equals 1 if mode  is selected in time
period , whereas  equals 1 if subregion  is
selected in time period . The amount of product 
produced in time period  is denoted by . Associ-
ated with  is the disaggregated variable for
subregion , which is expressed as a convex com-
bination of the corresponding vertices, . The
amount of electricity consumed, , is a linear func-
tion of  with a constant  and coefficients 
specific to the selected subregion.

A transition occurs when the system changes from
one operating point to another. In particular, con-
straints have to be imposed on transitions between dif-
ferent operating modes, which is achieved through
Eqs. (5)−(7). The binary variables  equals 1 if and
only if the plant switches from mode  to mode  at
time , which is enforced by the following constraint:

(5)

where  and  =
 with being the set of all possible

mode-to-mode transitions.
The restriction that the plant has to remain in a cer-

tain mode for a minimum amount of time after transi-
tion is stated as follows:

(6)

with  being the minimum stay time in mode 
after switching to it from mode .

For the predefined sequences, each defined as a
fixed chain of transitions from mode  to mode  to
mode , we can specify a fixed stay time in mode 
by imposing the following constraint:

(7)

where  is the set of predefined sequences and
 is the fixed stay time in mode  in the corre-

sponding sequence.
The plant produces a set of products, of which

some may be storable. As stated in Eq. (8a), the inven-
tory level for product  at time , , is the inventory
level at time  plus the amount produced minus the
amount sold, . Eq. (8b) sets bounds on the inven-
tory levels, and Eq. (8c) states that also products pur-
chased from other sources, denoted by , can be
used to satisfy demand.
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(8a)

(8b)

(8c)

Interruptible load can be seen as the capability of a
plant to reduce its electricity load within a short
amount of time. It can hence be used as an operating
reserve resource to release the stress on the power grid
in times of contingency. When interruptible load is
provided, the plant still operates at its planned target
production level, but has to be ready to respond to load
reduction requests. When such a request actually
occurs, the plant has to deviate from its target produc-
tion rate such that the requested load reduction is
achieved.

To model the provision of interruptible load, we
first replace  by the following sum:

(9)

where  is the target production rate and 
is the response decrease in production rate when load
reduction is required, in which case  takes a
negative value. The reduction in power consumption
associated with the decrease in production with
respect to the target production rate has to be at least
the amount of requested load reduction, , as
stated in the following constraint:

(10)

where  is normally an uncertain parameter.

We further define a binary variable , which
equals 1 if interruptible load is provided in time period
. When interruptible load is provided, there may be

lower and upper bounds on the provided amount as
stated in the following:

(11)

where  is the amount of interruptible load provided
in time period .

The scheduling problem is formulated for a given
time horizon. For the problem to be well-defined, ini-
tial conditions are required, which are given in the fol-
lowing:
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which defines for how far back in the past the mode
switching information has to be provided.

The objective is to minimize the total net operating
cost, , which is defined as the sum of the electricity
cost and the product purchase cost minus the revenue
gained from providing interruptible load, as stated in
the following equation:

(13)

where , , and  are price coefficients.
With  being the uncertain parameter, an

affinely adjustable robust counterpart of the model
described above is formulated by applying the
approach presented in the previous section. To adjust
the extent of recourse, the parameter  is introduced,
denoting the number of uncertain parameters from
previous time periods that are incorporated in the lin-
ear decision rules. If , only the uncertain param-
eter from the current time period appears in the deci-
sion rules; hence, the only possible recourse actions
are the reduction in production rate when load reduc-
tion is requested and additional product purchase in
the same time periods. If , i.e. uncertain param-
eters from previous time periods are also taken into
account, lost production can also be made up by
increasing production or purchase in time periods
after the load reduction occurred. Furthermore, in
order to reduce the level of conservatism, the budget
uncertainty set proposed by Zhang et al. [11] is
applied, which sets a limit to the number of time peri-
ods in which maximum reserve dispatch can occur.

Applying the proposed model to an industrial air
separation case study, for which the data are provided
by Praxair, the scheduling problem is solved for a one-
week time horizon with an hourly time discretization.
The uncertainty set is chosen such that request for
maximum load reduction can happen up to 7 times a
week, which is a fairly conservative assumption. In
practice, the budget parameters can be chosen based
on historical data; alternatively, depending on the
market, there may be a strict limit on the number of
times in which load reduction can be requested during
a specific time horizon, which can be used to set the
budgets.

The solution strongly depends on the extent of
recourse that is considered in the model. With ,
a cost reduction of 1.2% is achieved compared to the
case in which no interruptible load is provided. These
cost savings further increase by more than 50% if  is
changed to 23. However, this improvement in the
quality of the solution comes at the cost of deteriorat-
ing computational performance. In the case of ,
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the model has 3282 binary variables, 82670 continu-
ous variables, and 84604 constraints, while for  =
23, the number of binary variables remains the same,
but the numbers of continuous variables and con-
straints increase to 330242 and 325000, respectively.
The computation times required to solve the models
to 0.1% optimality gap using CPLEX 12.6 on an Intel
Core i7-2600 machine at 3.40 GHz with 8 processors
and 8 GB RAM are 185 s and 6 476 s. The parameter

 can be further increased (up to 167). However, com-
putational experiments show only marginal improve-
ment in the solution for ; hence  = 23 is cho-
sen as a good trade-off between level of conservatism
and problem size.

ζ

ζ

ζ > 23 ζ

The results for the case with greater extent of
recourse, i.e.  = 23, are shown in Figs. 1 and 2. Along
with the electricity and interruptible load prices, Fig. 1
shows the target load profile for the plant as well as the
amount of interruptible load provided, which obvi-
ously has to be less than the target electricity con-
sumption. For liquid oxygen (LO2), one of the prod-
ucts, Fig. 2 shows the inventory profile and the corre-
sponding product f lows as well as the cumulative
recourse actions in terms of changes in production and
purchase rates. Negative production recourse indi-
cates time periods in which interruptible load is pro-
vided. One can see that the vast majority of the lost
production is made up by increasing production after
load reduction (positive production recourse).

ζ

Fig. 1. Target electricity consumption profile and provided interruptible load for the case of ζ = 23, and price profiles.
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TWO-STAGE AND MULTISTAGE STOCHASTIC 
PROGRAMMING

Stochastic programming is the framework that
models mathematical programs with uncertainty by
optimizing the expected value over the possible reali-
zations. In general, the expected value is computed by
integrating over the set of uncertain parameters, which
might be a challenging task. In the case of discrete
uncertainty sets with finite support, the realizations
can be characterized with a finite number of scenarios,
simplifying the calculation of the expected value.
Accordingly, stochastic programming is often
regarded as a scenario-based approach for optimiza-
tion under uncertainty [12]. The formulations can
accommodate decision making at different stages
according to the sequence in which uncertainty
reveals. The stages imply a discrete time representa-
tion of the problem and establish the information of
the uncertain parameters available at that time. The
potential paths in which discrete uncertain parameters
might evolve are represented in a scenario tree as
shown in Fig. 3. In these trees, each node is a deci-
sion-making instance with known realization of the
uncertain parameters up to the current state; potential
future realizations are represented with branches from
the given node.

The simplest stochastic programming formulation
considers decisions that are made before uncertainty
reveals. It is called single-stage stochastic program-
ming or stochastic programming without recourse.
Among the stochastic programs that consider
recourse, the most widely used formulation is the
Mixed-Integer Linear Program (MILP) with continu-
ous recourse in a second stage. The two-stage stochas-
tic programming formulation divides the decisions
into two sets: here-and-now decisions that are made
before uncertainty reveals, and wait-and -see deci-
sions that are independent for each scenario. The typ-
ical formulation of a linear stochastic programming
problem is presented in Eq. (14),

(14)

∈
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where  is the vector of first-stage decisions in mixed-
integer polyhedral set ,  is the vector of second-
stage (recourse) decisions in polyhedral set , and 
is the index for scenarios. An important property of
the formulation presented in Eq. (14) is that the feasi-
ble region for the first-stage variables  is a convex
polyhedron [12]. Based on this property and assuming
that the second-stage problems  are bounded,
an MILP reformulation that explicitly calculates the
expected value can be derived by including all second-
stage problems. This reformulation, the deterministic
equivalent of the stochastic programming problem
that is presented in Eq. (15), may lead to very large
problem sizes if the number of scenarios is large.

(15)

The benefits of using a stochastic programming
model can be quantified by the Value of the Stochastic
Solution (VSS). The VSS is the difference between the
expected value of the objective functions obtained
from the stochastic formulation and a deterministic
formulation that substitutes the uncertain parameters
with their expectation. The expected value of the
deterministic formulation is calculated by solving the
problem, implementing the first-stage solution, and
evaluating the scenarios with their optimal recourse.
The model in Eq. (14) can also be extended to a mul-
tistage stochastic programming model. The tree corre-
sponding to a three-stage problem has the same struc-
ture as the one shown in Fig. 3. The solution of multi-
stage stochastic programming problems is
considerably harder, and special care must be taken to
avoid anticipating the uncertain parameters that have
not been revealed. The general formulation of a three-
stage stochastic programming problem is presented in
Eq. (16),
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gram with three stages.
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the branches, and introduce non-anticipativity con-
straints [13]. This reformulation has the advantage of
being relatively easy to implement. The solution of
large-scale stochastic programming problems is a
challenging area of research due to the very large num-
ber of scenarios needed to model industrial problems
and the rapid growth of scenarios in multistage sto-
chastic programming. Methods frequently used to
solve large stochastic programming problems leverage
the scenario structure of the problems. The L-shaped
method is the implementation of Benders decomposi-
tion to two-stage stochastic programming problems
[14]. The method considers the first-stage variables as
complicating and iterates between a relaxed master
problem and subproblems that are solved by scenario.
Lagrangean relaxation is also used in decomposition
strategies for two-stage and multistage stochastic pro-
gramming problems. The most common implementa-
tion generates sets of copied variables for each scenario
and their corresponding non-anticipativity con-
straints. A Lagrangean relaxation of the problem is
obtained by dualizing the non-anticipativity con-
straints, which makes the problem amenable to sce-
nario decomposition. Other decomposition strategies
are Progressive Hedging and Nested Decomposition
procedures.

Example of two-stage stochastic programming. The
supply chain design problem considered involves
selecting distribution centers (DCs) among a set of
candidate locations, determining their storage capac-
ity for multiple commodities, and establishing the dis-
tribution strategy [15]. The objective is to minimize
the sum of investment costs and expected distribution
cost. Distribution costs are incurred during a finite
time-horizon that is modeled as a sequence of time-
periods. These costs include transportation from plant
to DCs, storage of inventory at DCs, transportation
from DCs to customers, and penalties for unsatisfied
demands.

The DC candidate locations are assumed to have
associated risks of disruption. The risk is characterized
by a probability that represents the fraction of time
that the potential DC is expected to be disrupted. For
the set of potential DC locations, the possible combi-
nations of active and disrupted locations give rise to a
discrete set of scenarios regardless of the investment
decisions. The scenarios determine the potential avail-
ability of DCs. Actual availability depends on the real-
ization of scenarios and the investment decisions. The
distribution strategy implies establishing demand
assignments in all possible scenarios. Assignments are
modeled with continuous variables to allow customers
to be served from different DCs simultaneously. Cus-
tomer demands are satisfied from active DCs accord-
ing to the availability of inventory. Unsatisfied
demands are subject to penalty costs. The expected
cost of distribution is calculated from the distribution
cost of each scenario according to its associated prob-
ability. DCs are assumed to follow a continuous review

base-stock inventory policy with zero lead time. All
cost coefficients are assumed to be known and deter-
ministic.

The problem is formulated as a two-stage stochas-
tic program. In the first stage, DCs are selected from a
set of candidate locations and their capacities are
established. In the second stage, the demand assign-
ment decisions are made according to the selected
DCs and random disruptions in each scenario.

The following notation is used in the formulation:
the set of candidate locations for DCs is denoted by ,
the set of customers is denoted by , the set of scenar-
ios is denoted by ,  is the binary variable deciding
if a DC is open at candidate location ,  represents
the fraction of demand of customer  satisfied from
location  in scenario ,  represents the fraction of
demand of customer  that is not satisfied in scenario

,  is the working inventory in location , and  is
the safety inventory in location . The parameters of
the problem are: the number of time-periods in the
design horizon ( ), the demand of customer  per
time-period ( ), the holding cost of a unit of inven-
tory per time-period ( ), the fixed-charge for opening
DCs ( ), the capacity cost for DCs per unit of inven-
tory ( ), the transportation cost per unit from plant to
DC ( ), the transportation cost per unit from DC 
to customer ( ), the penalty cost per unit of unsat-
isfied demand ( ), the probability of scenario ( ),
the maximum capacity of DCs ( ), the matrix
indicating the availability of DC  in scenario ( ),
and the array indicating the distinguishability of sce-
narios  and  with respect to the investment in DC

( ).
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Fig. 4. General configuration of supply chain with supply
plant, distribution centers and markets.
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When the transportation times are neglected
from the formulation, the inventory can be brought
to its base-stock level instantly after the placement
of a replenishment order. In this sense, the inven-
tory is found at its optimal level before costumer
demands are revealed in every time-period. The

objective function (17) minimizes the sum of
investment costs of DCs, the expected cost of
transportation from plants to DCs, the expected
cost of storage in DCs, the expected cost of trans-
portation from DCs to customers, and the
expected cost of penalties.

(17)

The optimization problem is subject to the follow-
ing constraints:

(18)

(19)

(20)

(21)

Constraints (18) ensure demand assignments for all
scenarios. Constraints (19) bound the storage capacity
of DCs. Constraints (20) ensure that customer assign-
ments in every scenario are restricted by the inventory
available at DCs; inventory availability at DCs
depends on their capacity and the binary matrix ( )
that indicates the realization of disruptions ( )
in the scenarios.

The example considered here includes: 1 produc-
tion plant, 9 candidate locations for DCs, and 30 cus-
tomers with demands for 2 commodities. The param-
eters of the instance were generated randomly. The
candidate DCs have disruption probabilities between 2
and 10%. The number of scenarios in the full-space
problem is 29 = 512. The design is based on a time-
horizon (N) of 365 days; on this time-scale, invest-
ment cost can be interpreted as annualized cost. The
instance is used to illustrate the use of Benders decom-
position, the benefits of strengthening the master
problem, and the impact of solving a reduced subset of
relevant scenarios. The selected relevant subset of sce-
narios includes scenarios with up to 4 simultaneous

disruptions, for a total of 256 scenarios with probabil-
ity equal to 99.99%.

The full-space model yields a total cost of
$ 7225447, while the reduced model yields a similar
cost of $ 722491. Both solutions predict the same
design decisions and therefore the same investment
cost. The largest difference in the results is in the
expected cost of penalties. Both problems were solved
to 0% optimality tolerance using the special Benders
decomposition algorithm described in [15]. Both for-
mulations involve 9 binary variables; the full-space
model has 318479 constraints and 309263 continuous
variables, while the reduced-space model has 159247
and 154639, respectively. The Multi-cut Benders solu-
tion times were 281 s and 151 s, respectively, while the
Strengthened multi-cut Benders solution times were
176 s and 89 s, respectively. As can be seen in Fig. 5, the
use of the strengthened multi-cut master problem
reduces the solution time because it requires fewer
iterations. The solution times for the full-space and the
reduced instances without any decomposition strategy,
using GUROBI 5.5.0, were 3349 s and 1684 s, respec-
tively. The much smaller solution times with the
decomposition algorithms demonstrate that the pro-
posed methodology is effective to solve large-scale
instances of high computational complexity.

DATA-DRIVEN APPROACHES
TO SCENARIO GENERATION

Before solving a robust or stochastic optimization
model in practice, one has to choose a proper model of
the uncertainty. This is motivated by the fact that the
quality of such model directly impacts the quality of the
solution of the optimization problem. In this section, we
discuss methods for uncertainty modeling that use his-
torical and forecast data for scenario-based optimization
frameworks (e.g., stochastic programming).
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Scenario trees are discrete 1representations of the
probable outcomes of uncertain parameters, which are
continuous random variables in most applications in
process systems engineering. Also, a scenario tree is an
input to a stochastic programming model. Therefore,
systematically generating scenario trees that more
accurately capture the true, but generally unknown
structure of the uncertainty improves the quality of the
solution to the original stochastic problem [16]. Given
an initial structure of the tree (number of stages and
number of branches from each node), data-driven sce-
nario tree generation methods directly use available
data to specify the probabilities of the branches and
values of the outcomes.

In this section, we discuss the property-matching
method of Høyland and Wallace [17] and an extension
that addresses the potential under-determination of
such a method. The property-matching method aims
at generating scenario trees by matching statistical
properties (e.g., moments and co-moments) calcu-
lated from the tree to the respective properties esti-
mated from actual data (historical or forecast). Specif-
ically, generating a scenario tree requires solving an
optimization problem in which the objective function
is an error measure (deviation of properties from the
tree and data), and the decision variables are branch
probabilities and node values. Consider the case of a
two-stage scenario tree with N scenarios that is used to
model a single uncertain parameter (see Fig. 6). The
scenario probabilities and node values are represented
by the vectors  and , respectively.

The property-matching optimization model is
given in Eq. (22). The set of statistical properties to be
matched is denoted by , and the target value for

p x

S

property  is given by . Also,  is the mathe-
matical expression of statistical property  calculated
from the tree, and  is a weight vector.

(22)

The optimization model in (22) may be over- or
under-determined depending on the number of
branches, targets, and uncertain parameters. For
instance, as discussed in [18], for one uncertain
parameter and four moments as targets, it can be cal-
culated that we can only have a tree with N = 2 scenar-
ios for a well-posed model. If we were to increase N to
three or more, then this would result in an under-
specified model. To overcome this under-specifica-
tion issue and to allow more scenarios to be consid-
ered, a distribution-matching approach has been pro-
posed and is briefly described as follows.
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In addition to matching (co-)moments, points of
the (empirical or estimated) marginal cumulative dis-
tribution function (CDF) are also matched, thus
increasing the number of target values and balancing
the difference between the number of variables and
data points. Specifically, let s = CDF denote the mar-
ginal CDF property to be matched. Following the
notation in Eq. (16), the functional form used in the
distribution matching problem is given by Eq. (23).

(23)

where  denotes the empirical or estimated
marginal CDF of random variable . Note that we
must ensure that the node values are ordered due to
the cumulative information being matched, e.g.,

. The approach described
above can be extended for the case of multiple uncer-
tain parameters as well as autocorrelated uncertainties
(stochastic processes), such as product demand and

price. In the latter case, scenario tree generation is
aided by time series forecasting [18].

Two-stage scenario tree generation example. Figure 7
shows a process network [18] consisting of a raw mate-
rial A, an intermediate product B, finished products C
and D (only product D can be stored), and plants P1,
P2, and P3. Product C can also be purchased from a
supplier, or in the case of multiple sites, it could be
transferred from another site that also produces it. In
this example, we solve a multiperiod production plan-
ning problem to determine the optimal f low rates in
the network. The multiperiod problem is modeled as a
two-stage stochastic program as follows. The first
stage, or here-and-now variables, are all the variables
in the model at the first time period, , whereas the
second stage, or wait-and-see variables, are all the
variables at the remaining time periods, .

The linear programming deterministic equivalent
problem is as follows. The objective function in
Eq. (24) to be maximized is the expected profit,

(24)

where  is the probability of scenario , is the
selling price of material  in period ,  is the
operating cost of facility  in period ,  is the
purchase cost of material  in period , , is the
inventory cost of material  in period , and 
and  denote the penalties associated with
unmet demand and capacity violation. The decision
variables include sales/purchase/inventory amounts
( ), and inlet/outlet f low rates

to/from facilities ( ). The model constraints
are given as follows,
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Table 1. Numerical results for the oilfield development planning problem

Problem Type
Total Expected NPV ($109)

Optimality Gap Solution Time (s)
lower Bound upper Bound

Reduced Model 6.968 10.495 50.61% 40562
SSD 7.166 − 0.20% 41
LD − 7.180 14
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(25g)

(25h)

(25i)

(25j)

where , is the production yield,  is the demand

of finished products,  and  are maxi-

mum and minimum capacities of each facility, 
is the maximum inventory amount of product D, and

 is the maximum purchase amount of raw
material A. Constraints (25a) relate the output f lows
with the input f lows through the yield of each facility

, constraints (25b)–(25e) represent material and
inventory balances, equations (25f) represent the
demand satisfaction and slack variables are employed
to account for possible unmet demand, constraints
(25g)–(25j) are limitations in the f lows, storage, raw
material availability, and capacity violations, respec-
tively. Non-anticipativity conditions (not shown) are
also included in the model; they enforce that the deci-
sion variables take on the same value for all scenarios
at  (e.g.,  where the scenario ).

The yield of plant P1 is the uncertain parameter
and the distribution of its historical data is given in
Fig. 8. The empirical CDF was obtained and approxi-
mated by a smooth function (generalized logistic
function), i.e.,  in Eq. (17). In this example,
N = 5 scenarios were considered, and the targets
include the first four moments and CDF information.
The scenario generation problem is a nonlinear pro-
gram with 10 variables and 14 constraints. It was mod-
eled in AIMMS 3.13 and solved with IPOPT 3.10.1
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using AIMMS’ multi-start module in less than one
second. Fig. 9 shows optimized scenario probabilities
of the generated scenario tree. Note that the profile
captures the shape of the distribution of the original
data, including tail effects.

MULTISTAGE STOCHASTIC PROGRAMMING 
UNDER ENDOGENOUS AND EXOGENOUS 

UNCERTAINTIES

Uncertain parameters can be classified into two
categories depending upon the way the uncertainty is
resolved: exogenous, where realizations occur inde-
pendently of the decisions; and endogenous, where
the realizations are affected by the decisions. In the
endogenous case, the decisions may affect the timing
of the realizations or their underlying probability dis-
tribution [19]. In this section, we consider the first
class of endogenous uncertainty where decisions affect
the timing of realizations. In the context of process
systems engineering, exogenous uncertainties often
correspond to market uncertainties, such as oil prices.
Endogenous uncertainties are technical uncertainties,
such as oilfield size, that are only resolved after a deci-
sion is made at a given point in time (e.g., to drill a par-
ticular oilfield). Surprisingly, although many problems
contain both types of uncertainties, optimization
under both types has been largely unexplored in the
literature.

In the case where the uncertainty is purely exoge-
nous, the shape of the scenario tree is known in
advance, since exogenous realizations occur automat-
ically in each time period. This is shown in Fig. 10 with
the standard form of the tree, as well as its alternative
representation which gives each scenario a unique set
of nodes.

In the case of endogenous uncertainty, however,
the shape of the scenario tree is conditional, since the
timing of realizations depends on the process deci-
sions. As shown in Fig. 11, we use a superstructure

Fig. 7. Process network with uncertain yield for plant 1.
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form of the alternative tree in order to capture all pos-
sible outcomes [20].

For simplicity, we assume that the scenarios corre-
spond to all possible combinations of realizations of
the uncertain parameters. In other words, the set of
scenarios in the exogenous scenario tree corresponds
to a Cartesian product over the sets of realizations for
the exogenous parameters (denoted by ), and, sim-
ilarly, the set of scenarios in the endogenous scenario
tree corresponds to a Cartesian product over the sets of
realizations for the endogenous parameters (denoted
by ). For the case of both endogenous and exoge-
nous parameters, we generate the set of scenarios by
simply taking the Cartesian product of all possible
combinations of realizations of the endogenous
parameters and all possible combinations of realiza-
tions of the exogenous parameters, . This is
equivalent to copying the exogenous scenario tree for
each possible combination of realizations of the
endogenous parameters. We then link these exoge-
nous trees by adding first-period and endogenous
non-anticipativity constraints, thereby producing

XR

NR

×N XR R

what we refer to as a ‘composite’ scenario tree as
shown in Fig. 12.

The general model for this class of problems, origi-
nally proposed by Goel and Grossmann [21], is a
mixed-integer linear disjunctive program. A simpli-
fied, compact form of the updated model [20] is given
in Eq. (26)–(34).

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)
The objective function, Eq. (26), minimizes the

total expected cost associated with decisions ,
weighted by the probability of each scenario, .
Eq. (27) represents constraints that govern decisions

 and link decisions across time periods. First-period
non-anticipativity constraints (NACs) are given by
Eq. (28), exogenous NACs are given by Eq. (29), and
disjunctive constraint (30) conditionally enforces
endogenous NACs based on the value of Boolean vari-
able . The value of  is determined by an uncer-
tainty resolution rule in Eq. (31).

Because the number of NACs grows exponentially
as the number of time periods, uncertain parameters,
or realizations increases, most problems of practical
interest are too large to be solved directly with com-
mercial MILP solvers. In order to eliminate redundant
NACs, a number of theoretical properties have been
proposed by Goel and Grossmann [21], Gupta and
Grossmann [22] and Apap and Grossmann [20] based
on the concepts of symmetry, adjacency, transitivity,
and scenario grouping. These properties drastically
reduce the number of constraints; however, the result-
ing model is often still intractable, and special solution
approaches are required.

One effective approach is Lagrangean decomposi-
tion (LD), in which the complicating non-anticipativ-
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distribution-matching approach.
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ity constraints are dualized in order to decompose the
problem into independent scenario subproblems that
can be solved in parallel. More recently, a sequential
scenario decomposition heuristic (SSD) has been pro-
posed that involves sequentially solving endogenous
MILP subproblems to determine the integer deci-
sions, fixing these decisions to satisfy the first-period
and exogenous NACs, and then solving the original
problem as an LP [20].

Oilfield planning example. We consider a modified
form of the MILP described in [23] for maximizing
the total expected NPV in the development planning
of an offshore oilfield. There are 3 oilfields, 3 potential
Floating Production Storage and Offloading vessels
(FPSOs), and 9 possible field-FPSO connections. A
total of 30 wells can be drilled over a 5-year planning
horizon: 7 for field I, 11 for field II, and 12 for field III.
There is also a 3-year lead time for FPSO construction
and a 1-year lead time for FPSO expansion. Fields II
and III have a known recoverable oil volume (size);
however, the size of field I is uncertain. Specifically,

there are 2 possible realizations for the size of field I,
both with equal probabilities. Note that this is an
endogenous uncertainty, since the size cannot be real-
ized until we drill the field and begin producing from
it. The oil and gas prices are also uncertain, with 2 pos-
sible realizations with equal probabilities in each time
period. These are exogenous uncertainties, since the oil
and gas prices are market values that will be realized
automatically in each time period. These prices are
assumed to be correlated. The network superstructure
for this problem instance is shown in Fig. 13a.

We have 2 possible combinations of realizations for
the endogenous parameters and 32 possible combina-
tions of realizations for the exogenous parameters. By
considering all possible combinations of realizations
of the uncertain parameters, we generate 64 scenarios
with equal probabilities. This gives rise to a 6-stage,
mixed-integer linear stochastic programming problem
with 333249 constraints, 70465 continuous variables,
and 7360 binary variables. After applying the theoreti-
cal reduction properties [20], there are 124980 con-

Fig. 10. An exogenous scenario tree and its alternative representation.
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Fig. 12. A ‘composite’ scenario tree for endogenous and exogenous realizations.
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straints (a 62% reduction), 70465 continuous vari-
ables, and 7000 binary variables. The problem was
modeled in GAMS 24.3.3 and solved with CPLEX
12.6.0.1 on a machine with a 2.93 GHz Intel Core i7
CPU and 12 GB of RAM.

Table summarizes the results for the example prob-
lem. In the case of solving the reduced model directly,
the optimality gap cannot be improved past 50% after
more than 11 hours. In contrast, SSD finds a high-
quality feasible solution ($7.166 billion) in only 41 sec-
onds. The LD algorithm uses this lower bound and
finds a high-quality upper bound ($7.180 billion) in 14
seconds. This implies that the SSD solution is within
0.20% of the optimum.

The network structure corresponding to the best
feasible solution ($7.166 billion, as obtained by the
SSD heuristic) is shown in Fig. 13 (b). This solution
indicates that we begin installing all necessary infra-
structure in the first year. This includes FPSO I and
FPSO II, as well as the following field-FPSO connec-
tions: field I to FPSO I, field II to FPSO I, and field
III to FPSO II. Notice that due to the inherent risk in

the size of field I, FPSO I is shared among fields I and II
rather than devoting a separate FPSO solely to field I.

The corresponding drilling schedule is shown in
Fig. 14. Since it takes 3 years for the FPSOs to be fully
operational, drilling cannot begin until the fourth year.
For Field II, we drill 10 wells in year 4 and 1 well in
year 5. Similarly for Field III, we drill 10 wells in year
4 and 2 wells in year 5. For Field I, we instead wait
until year 5 and then drill 7 wells. The strategy here is
to drill fields of known sizes first (as this carries less
risk), and then drill the field with an uncertain size.

CONCLUSIONS

In this paper, we have given an overview of several
major challenges in optimization under uncertainty.
We have shown that recourse can be accounted for in
robust optimization with linear Decision Rules, which
has the effect of producing less conservative solutions.
This has been illustrated on a demand side manage-
ment problem for an air separation plant with inter-
ruptible load. To effectively solve two-stage stochastic
optimization problems, we showed that it is very
important to reduce the number of scenarios, tighten
the MILP formulation, and apply a decomposition
scheme like Benders decomposition with multiple
cuts. We have illustrated the application of these strat-
egies in the design of supply chains under disruptions.
We have also shown that to avoid assigning arbitrary
probabilities and outcomes in scenario trees, historical
data can be incorporated to generate these scenarios
by using moment matching supplemented by match-
ing cumulative distribution function values. We have
illustrated this capability in the design of process net-
works with historical information of uncertain yields.
Finally, we have shown that both exogenous and
endogenous uncertainties can be effectively handled
in multi-stage stochastic programming by relying on
theoretical properties to reduce the number of non-
anticipativity constraints, and applying Lagrangean
decomposition and fast heuristics. In this case, the
example of the design and planning of an oilfield was
considered.

Fig. 13. Network structure for the oilfield development planning problem.
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Fig. 14. Drilling schedule for the best feasible solution of
the oilfield development planning problem.
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