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Abstract—An estimate has been obtained of the energy consumption on 1 mol of separated mixture based on
thermodynamic balances for processes that use mechanical and heat energy. Only irreversible losses depend
on the order of separation for mixtures in mechanical systems, while for the systems using the heat, the order
of separation also affects the reversible energy consumption. In the latter case, in order to obtain a reversible
estimate of the heat consumption, one should solve the problem of selecting the order of separation. An algo-
rithm has been obtained for its solution that enables one to approximately choose the order of separation at
the stage of preliminary calculations knowing only the properties of the feed.
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INTRODUCTION

Upon designing engineering systems, the problem
of evaluating their margin emerges. As an example, the
maximum performance at the given limitations on the
sizes of the apparatus and consumption of the raw
material and energy represents the problem of the plot
of the feasibility range of a system. The roughest esti-
mate for this range can be obtained by assuming that
the processes in the reversible system (the heat
machine with the efficiency factor (EF) that exceeds
the Carnot EF are compromised; the device that per-
forms the work for separating 1 mol of a mixture that is
lower than the Gibbs work of separation is compro-
mised, and so on).

The real feasibility ranges are substantially lower
than those that are emphasized by these physical laws.
In order to find them, the class of processes should be
specified and some limitations should be assumed (on
the sizes of units and associated coefficients of heat
and mass transfer and the required intensity of flows,
and others). The assumption of these limitations gives
results that are more real [1—4]. These restrictions
make it necessary to find solutions of a critical prob-
lem in a class of irreversible processes. The measure of
irreversibility is the increment or production of
entropy. The optimal solution usually corresponds to
the processes with minimum irreversibility.

For the separation systems that use mechanical or
electric energy (let us further refer to them as mechan-

ical), irreversible losses can be evaluated by known
mass-transfer coefficients, and only these coefficients
determine the separation sequence, whereas the
reversible work depends only on the contents of input
and output flows. For systems that use heat energy
(thermal), while reversible losses depend on the tem-
peratures of heat supply and abstraction and, conse-
quently, the order of separation; this allows the selec-
tion of this order to be made based on the minimum
losses.

The problem of the choice of the order of separa-
tion of liquid mixtures in the distillation columns has
drawn the attention of many researchers. It was dis-
cussed in detail in [5]. The work from [6] is devoted to
the computational aspects of this problem, which is
solved along with the choice of the design and opera-
tion of columns according to the general technical and
economic criterion, which assumes the cost of the heat
exchangers, mass-exchange plates, and others.

We consider the approach used in [7] to be more
efficient; here, the order of separation was chosen
according to the estimates of the total heat consump-
tion, based on the suggestion that the design parame-
ters of columns are determined upon subsequent cal-
culations. In this work, the extensional numerical
experiment was carried out with the selection of the
types of the separation of four components from the
mixture. In this case, the minimum heat losses were
calculated for each type as the product of the specific
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heat of vaporization and the vapor consumption from
residue at the minimum phlegm number. Considering
that this number algorithmically depends on the
choice of the cut point, authors were not able to obtain
the recommendations on the choice of the order of
separation in analytical form. Nevertheless, the results
of this work enabled the validity of the heuristic rec-
ommendations [5] that were used during design to be
evaluated.

Thermodynamic balances were used below to
obtain the evaluations of the specific heat losses in
simple distillation columns of azeotropic mixtures. In
this case, the heat losses also depend on the composi-
tion of mixture; however, the order of separation
depends only on the boiling points of the components
under pressures that were chosen in the columns.

The derivation of the estimates of the effectiveness
of the processes assuming the irreversibility requires a
priori data on the kinetics of processes and their struc-
ture. These data are often absent during the prelimi-
nary calculations. The heat losses at high loads cannot
be found without them. However, it was determined
that the separation sequence at loads that are close to
limiting is determined identically to low loads.

WORK OF SEPARATION IN MECHANICAL
SYSTEMS

Assumptions and statement of problem. Let us con-
sider the reversible isothermal process of separation
and assume that the mixture and its components are
similar in their properties to ideal gases or ideal solu-
tions so that the chemical potential of the ith compo-
nent can be written as follows:

w(T,P,C) =p(T,P)+ RTInC,, i=12...,n, (1)
where C; is the concentration of the ith component.

If the temperature and pressure in the system prior
to and after the end of the separation process did not
change and is adiabatically isolated, the work of the
separation in this system at arbitrarily slow process
corresponds to the change in its Gibbs energy, i.e., the
total increment of chemical potentials for 1 mol of the
mixture [8]. This can be expressed through the vector
of initial concentrations C; = (Cy,,...,Cy,...,C,,) and
the vectors of the concentrations of mixture in the
products of separation C; = (C,,...,C;,...,C,,) and C, =
(C217""C2i7"'7C2n)'

Let us refer to the fraction of feed that was supplied
into the first product as g, while that for the second is
(1 — ). Then, the change of the energy (molar revers-
ible work of separation) corresponds to

Ay = D [eCuudT, P,Cy)
i=1

+ (1 =e)Cyp (T, P,Cy) — Cop (T, P,Cy))].

(2)
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If the equations for chemical potentials (1) are intro-
duced in Eq. (2) and we assume that the conditions of
material balance are valid for any component as fol-
lows:

eCy +(1-e)Cy =Cyy, i=12,...,n, (3)

the components ., are reduced and Eq. (2) becomes

Ay =—=RT [CyInCy, —£C, InCy,
i=l1

- (1-¢e)CyInCy] = RT[S) — &S, — (1 -¢)S,],

“4)

where S, = > C; InC

ji>

(G =0, 1, 2) is the molar

i=1
entropy of mix,ing of the jth product.

The analogous equation is obtained for the separa-
tion of mixture by # rather than two products.

The entropy of mixing (increment in molar
entropy upon mixing of individual components) coin-
cides in form with the Shannon function, which deter-
mines the amount of information, and it is referred to
as the information entropy in some works [9]. When
applied to the considered problem, the concept the
entropy of mixing is considered to be more natural. The
transition from mixing entropy to the work of separa-
tion requires it to be multiplied by RT

At full separation, when each product consists of a
single component, its fraction g, = C;, and the con-
centration is unity, we obtain from Eq. (4) the known
relationship for the work of separation of 1 mol of the
mixture into pure components in the reversible pro-
cess:

Ay =-RTY CyInC, = RTS,, (5)
i=lI
The determined energy costs due to separation repre-
sent the lower estimate of the real consumption.

After dividing the reversible estimate of energy
costs by the period of process, we can calculate the
reversible estimate of power that is consumed on the
separation as well. This evaluation can be approached
at a low flow intensity or at finite intensity, but at infi-
nitely high transfer coefficients.

When there is clear separation so that each product
of separation (sampling) consists of the fraction of
components of the input flow and the components
that appeared in one product are absent in others, let
us indicate the fraction of jth selection as ;. This cor-
responds to the sum of the concentrations of compo-
nents in the feed that were included in this selection.
The reversible work of the separation of each jth selec-
tion, assuming that its consumption is less by ¢; times
than the consumption of feed, whereas the concentra-
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tions of the introduced components C;; = C; / g;,isas
follows:

Ay = —Rngz%ln%

i=1 J 8]

i=1

(6)

The reversible work of separation for m selections is

Ay = RT[S0 —Zsjsjj =-RTY g;lng;,  (7)
j=1 j=1

in other words, each selection can be considered the
individual component (Eq. (5)).

The obtained estimates depend only on the com-
positions of mixture prior to and after separation,
while the order of separation does not affect their mag-
nitude. The assumption of kinetic factors and the
related irreversibility of processes allows one to evalu-
ate additional energy costs. The work of separation in
isothermal process for adiabatically isolated system
can be expressed according to the Stodola equation [8]
through reversible work 4, the environmental temper-
ature 7T, and the increment in entropy of system AS as
follows:

A=A, +TAS = A, + 5A. (8)

In order to evaluate the energy consumption during
separation, one should determine the minimum incre-
ment in entropy at the given period of process, the
mean intensity of flows, and the heat- and mass-trans-
fer coefficients.

Let us consider the calculation system, which con-
sists of a container with a feed, m subsystems in which
the flows are fed after separation, and equipment that
performs the separation process (let us refer to it as the
working medium).

The working medium takes energy from environ-
ment and creates the flows of substance. Consider that
the feed and the mixture in each jth subsystem; the
total number of moles /N that is subject to separation;
as well as the period of process, T, are specified. The
driving force that creates flows of substance is the dif-
ference among chemical potentials between the work-
ing medium and the container of feed and between the
working medium and subsystems. For the sake of sim-
plicity, let us consider only the first subsystem, which
indicates the differences of chemical potentials for the
ith substance as follows:

Apg = (o — 1g)> Apy = (1f; —pyy), i=1,..., 1.

Here, the index p denotes chemical potentials of work-
ing medium upon contact boundaries with the feed
and subsystem.

THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING Vol. 50

TSIRLIN et al.

The increment in entropy, which is related to the
generation of flow from the container to subsystem,
corresponds to

1 n
AS) =2 [X[au®@Aua® + su@Apa@lir. ()
0 i=l
According to the conditions of material balance for
working medium, we have

[eutoar = [gu. (10)
0 0

The total amount of ith substance, which was trans-
ferred within the period t to the first subsystem, is
specified and corresponds to the product of the num-
ber of moles N, and the concentration of ith compo-
nent C};.

Optimal solution. The problem of the minimum
AS, under the conditions (10) by g,; >0, g, > 0,and is
generally the problem of optimal control because L,
depends on the vector of concentrations C, of the mix-
ture in subsystem, which conversely varies depending
on the capacity of subsystem and the flow intensity
g,(H. However, this problem is substantially facilitated
in such a widespread case when the differences of
chemical potentials Apy,; and Ap; (driving forces) are
unambiguously related to the flows g,; and g;;, respec-
tively.

Assume that Apy = @g(80), Apy; = @4(gy;), then,
Egs. (9) and (10) are split into 2z problems of the fol-
lowing types:

T

AS,; = % Icvi(gvi)dt — min assuming that
' (11)

T

jgw.dt “NCy, v=12i=1,...,n,

0
where 6, = g,,0,;(g,;) is the function that determines
dissipation.

The optimal solution of problems (11) through the
equations that relate the driving forces with the change
in the composition of subsystems determines the prin-
ciples of change in the parameters of a working solid
that correspond to this solution.

Problems (11) represent the averaged problems of

nonlinear programming. Their optimal solution g
[10] is either constant and corresponds to the specified
mean value of flow
NC,;
g0 =& = T (12)
or switches at the section (0, ) between two values,
which are referred to as basic. The latter variant corre-

sponds to the case when, at the point g, which was
determined from Egs. (12), the convex shell of the
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function o,,(g,,) is strictly below the plot of this func-
tion. For real mass-transfer laws, the driving force
monotonically grows with growth in the flow and the
function o, (the product of the flow and driving force)
is concave downwards so that the optimal consump-
tion g,, is initially constant.

In the Onsager case, when the mass-transfer flow
linearly depends on the difference of chemical poten-
tials for all i and v, we obtain

8vi = 0va‘AMw‘ = (I)vi = gVi . (13)
vi
The production of energy is proportional to the square
of the flow so that the optimal intensities of flows sat-
isfy Eq. (12).
The minimum increment in entropy for this solu-

tion is
mm ZAS\TIH _ z ( ) (14)
whereas the mmlmum work of separatlon is
NC,;
Apin = A9+ 7 GV,( ) (15)
0 Z -

Because the values of ﬂows are defined by the given
initial and final states of system, their introduction
into the dependences G (g ;) enables the specification
of estimate (15).

For the process where the flows adhere to the
Onsager kinetics (13), it follows from Eq. (15) that

Amin = AO + ngl'z (L + L]

=1 Goi Oy

n
1 22 |-
= 4, +;ZEN c?/a,
where @; = o0 /(0L +0y;) is the equivalent mass-

transfer coefficient by the ith component.
The lower estimate for the separation power is

mm: IZN Cz/_

(16)

Pmin =
(17)

=Pt ggzciz/a’ia
i=1

n
where p, = —gORTZC,- InC..

i=1

We should note that the irreversible estimate of the

work of separation that was calculated according to
Eq. (16) is discontinuous. For poor mixtures, when the
concentration of one component is close to unity,
whereas it is close to zero for other components, it
takes the finite value. This rationalizes the fact that is
known in practice that the inaccuracy of the reversible
estimates is particularly high for poor mixtures.
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Irreversible estimate of power for continuous sepa-
ration system. Assume that, in a continuous separation
system, the feed flow g, with the concentration vector
Cyisdivided by m flows, g; (j = 1,..., m), with the con-
centrations C;. In this case, the temperatures of the
separated and output flows are similar.

The minimum power that is required for clear sep-
aration in this system can be evaluated by Eq. (17) as
follows:

Prin = D00+ & .85/31 (18)
Jj=1 Jj=1
where
_&is S
g,=2L20, D g =1, (19)
8o o
Poj = &€ jRTZ(Cﬁ InC,; — Cy InCyy), (20)

i=1
o, is the coefficient of mass transfer upon the separa-
tion of the jth flow.

For strict separation,

Zpoj = —gORTZSj Ing;.
j=1 i=1

According to the material-balance conditions,

za, i =Co i=1..,n—1,

n

D Ci=1 j=0..m
i=1

The number of Egs. (21) corresponds to n — 1 because
this relationship is derived from conditions (19) and

(22) for the concentration of one component.
Selection of the order of separation for multicompo-
nent mixtures. In practice, the separation of multi-
component mixtures is often performed as the succes-
sive separation of mixtures by two flows. For example,
during the strict separation, the mixture from three
components is initially divided into two flows, the lat-
ter of which does not contain any component, and,
then, the latter is divided again into two components.
It was mentioned that the reversible work (corre-
sponding power is p,) does not depend on the order of
separation, because p, is determined by the expenses
and the compositions of flows at the input and output
of entire system. The irreversible component of the
power in Eq. (18) depends on the order of separation
of components and allows the choice of this sequence.
Let us consider a mixture that consists of three
components with the concentration (C,, C,, C;) and
the consumption g. The coefficients of mass transfer
during the separation of the first component and the

(21)

(22)
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second component are denoted as o, and a.,, respec-
tively, and they depend on the design of the apparatus
and properties of components. Assume that the com-
ponents are arranged by their properties so that one
cannot isolate the second component without the pri-
mary separation of the first or third one.

The following two variants of the separation of
three-component mixture are possible:

(1) direct, when the first component is initially sep-
arated that is followed by the separation of the second
and the third one;

(2) inverse, when the third component is initially
separated and then the first and second are separated.

Let us consider that separation upon each step is
clear. The irreversible power losses upon the direct
order of separation are

R
0‘2' i % (23)
+ (- cl)zﬂ} =g,
)

The relation that is given in square parentheses (irre-
versibility coefficient) is expressed as a;.
Using the inverse order, we analogously obtain

2 2
Ap, = gz[g L (€+C)
A, a,
2Cl+C 2
+ (1_C3) 1—2j| :g az.
a,
The condition of preference of the direct order of
separation follows from the inequality a, < a,, which
looks as follows after simple derivations:

i[ch ~2G+1-(C7 +C)(C +C,)’ ]
N (24)
< i[ch -2C,+1-(C+C) (G, + G)
%5}
If the right-hand side is less than the left-hand side in
this inequality, the inverse order of separation is pref-
erable.

It is easy to show that the equations that are present
in square parentheses in the left- and right-hand sides
of inequality (24) monotonically decrease at any con-
centration C, with the growth of C, and C;, respec-
tively. Therefore, for the reasonability of the direct
order of separation, the simultaneous fulfillment of
the following inequalities is sufficient:

o, >0, C >GC;, (25)
whereas for inverse order it is sufficient that these ine-
qualities are opposite. When inequalities (25) have a
different direction, one should use condition (24).

The condition of preference (24) can be used for
multicomponent mixtures in an algorithm that is
based on the logic of dynamic programming. In this
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case, primarily all possible combinations of three-
component mixtures are considered, the optimal
order of separation is selected for each of them, and
the corresponding value of the irreversible work of sep-
aration is written to memory.

In order to obtain the optimal solution, one should
compare (n—1)th order of separation in the system
from two steps. For example, for n = 4, one should
compare three methods for separation at the first step:
1+2+3)+4,1+2+3+4),and (1 +2)+ (3+4).
For the first two, the optimal order of the separation of
the mixture from three components should be initially
determined. For n = 5, we should consider two vari-
ants of the separation of mixture at the first step into
the flows from (4 + 1)th component and two types of
separation by (2 + 3) components based on the pre-
liminary determination of the optimal order of separa-
tion for flows that contain three and four components,
and so on.

Form of the attainability set. As follows from the
condition that the dependence of power on perfor-
mance represents a quadratic parabola that is charac-
terized by two coefficients

Prin(®) = Py + Ap = g4y + g’a. (26)
The form of the attainability set follows for the separa-
tion systems that use the mechanical or electric energy,

and its cut point is
—Ay +N A +4pa
gmax(p) = 2 .

The attainable performance is the monotonous
upward-convex function of consumed power.

(27)

REVERSIBLE ESTIMATE OF HEAT
CONSUMPTION FOR THERMAL
SEPARATION SYSTEMS

Most separation processes consume the heat
energy for the formation of the difference of chemical
potentials between working medium and the sources
(the driving force of mass transfer).

Assume that the system operates in stationary
mode and the mixture is divided into two flows.

Thermodynamic balances of the separation system.
Let us write the equations of energy and entropy bal-
ances assuming that the mixtures are close to ideal
solutions and the heat of mixing can be omitted:

4. —q-+ qehg — grehp — ge(1 —&)h = 0, (28)

grSE — gresp — gr(1 — €)sp + 9 _9- 4 5=0. 29)
B TD

Here, g, and g_ is the amount of heat fed to the sys-

tem and taken from it, respectively; 75 and T, are the

temperatures at which the heat flow is supplied and

abstracted, respectively; gg, /g are the molar flow and

the molar enthalpy of separated mixture; €, A, and sp
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are the fraction of the low-temperature product and its
enthalpy and entropy; Ay and sp is the enthalpy and
entropy of the high-temperature product; and o is the
production of entropy.

From conditions (28) and (29), after the exclusion
of ¢_, we obtain following for the heat losses as follows:
Ty

selp — he) —e(splpy — h
TB_TD[(F D F) (D D D)

q; =dr

ToT; 0
—(1=-¢e)(sgT —hg)|+0—L2_ =g +0o .
( ) (58T B)] T —T, q. T, —T,

The first component in the right-hand side of this

equation, which is expressed by qf, represents the heat
losses in a reversible process, when the coefficients of
heat and mass transfer (sizes of apparatus) are infi-
nitely high; it is proportional to the consumption of
the separated mixture g The second component cor-
responds to the dissipative energy costs and is propor-

tional to qz. for the linear dependence of the flows and
driving forces in the heat and mass transfer.

Let us further consider the distillation column for
specificity.

Assumptions. The external flows of substance that
enter and leave the system usually pass through heat
exchangers, where the hot flows are cooled, whereas
the raw material flow is warmed to a temperature that
corresponds to the temperature in the point of injec-
tion. Let us include these heat exchangers in the sys-
tem. Then, we may consider that the differences of the
heat flows that enter and leave with the liquid flows
and the heat losses into environment are small com-
pared to the heat flow that is fed with the heating vapor
and abstracted in the dephlegmator. This assumption
substantially simplifies the analysis of the system. In
particular, in this case, ¢, = g_ = ¢. The heat flows dif-
fer only by the temperature in the injection and exit

points Ty and Ty, < T.
Assuming that the difference (h — T),s) for each flow

corresponds to the molar free energy, that is, the
chemical potential, p, for the mixture at the tempera-

ture of T, we obtain the relationship of the heat flow
with the performance in the following form:

Ty
eup(Tp, P, x
TB_TD[ up(Th D)

q=28r
(31)
BTD .
Ty —Tp
Here, the concentration vector of the correspond-
ing flow is represented by x; (j = F, B, D).

+ (1 - e)up(Tp, P, xp) — up(Tp, P,xp)] + ©

For the mixtures that are close to ideal solution,
each chemical potential is as follows:

uji(TDaP,-xj) = HOj(TDaP) + RTD lnxj,.,

(32)
j=FD,B, i=1..,n
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The right-hand side of Eq. (31) can be expressed
through the compositions of flows as follows:
Ty
Iy - Tp

0
+ G—TBTD e

Is—-Tp, mMmc nNc ‘

q=28r [AF —&dAp — (1 - 8)AB]
(33)
Lo

Here, 4, =—RT, Y x;Inx; = RT,S,, j=F,D,B)

is the reversible worl?lof the separation of 1 mol of jth
flow by pure components. The equation that is given in
square parentheses represents the reversible Gibbs
work of the separation of 1 mol of flow g with the con-
centration xp by the flows with the concentrations xp,
and xj at the temperature of 7p,. Let us denote it as A,.

The value ne = (1-Tp/T) is the counterpart of the
Carnot efficiency.

Equilibrating the production of entropy to zero in
Eq. (33), we obtain the reversible estimate of the heat

losses ¢° = gr A, / 7c in the thermal separation system.

The temperatures of heat supply and abstraction
depend on the pressure P in column and, conse-
quently, the reversible efficiency depends on the pres-
sure. The aim of the increase in pressure is usually the
increase in the temperature T, to the degree, at which
the heat can be abstracted with the water having the
temperature that is close to the environmental air tem-

perature. In this case, T, (P) is nearly 324 K.

Let us solve Eq. (33) relative to g and represent it
as follows:
T;
g = ¢ — o(g, g¢) 2.
Ag Ag
Equation (34) shows that the reversible process of
thermal separation can be represented as the ideal heat

machine, which operates between the reservoirs with
the temperatures T and 7T}, and produces the power of

(34)

separation po = grA,. The reversible efficiency of this

machine is b = 1€
8

The relationship between the performance and
heat losses, as shown in [11, 12], when the driving
force of mass transfer is the difference of chemical
potentials, while that for the heat exchange is the tem-
perature difference, is determined by two coefficients,
namely, the reversible efficiency of the column b and
the irreversibility coefficient a and looks as follows:

gr =bq—aq’. (35)

The relationship between the irreversibility coeffi-
cient a and the kinetic parameters of column (heat-
and mass-transfer coefficients) was also obtained. At
the step of preliminary calculations, the magnitude of
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the irreversibility coefficient can only be roughly be
based on the characteristics of the analogous columns.

We have obtained the following from Eq. (35):

1. The performance of column is restricted by the

2
value g™ = i—, which is achieved at the value of heat
a

X

flow corresponding to g™ = 2£ Further increase in
a

the heat supply decreases the performance due to the
growth in the irreversibility.

2. The efficiency of the column in the maximum
max

performance mode % does not depend on the irre-

versibility coefficient and corresponds to one-half of
the reversible efficiency. Considering that the revers-
ible efficiency of the system of thermal separation
depends not only on compositions, but also tempera-
tures and the order of separation affects the reversible
heat losses. This means that, during preliminary cal-
culations, they can be used to select the order of sepa-
ration. Let us specify the procedure of this choice
based on the example of the cascade of simple distilla-
tion columns.

SELECTION OF THE ORDER OF SEPARATION
FOR A MIXTURE IN A SYSTEM OF SIMPLE
DISTILLATION COLUMNS

Reversible heat losses. Assume that the molar com-
position of the mixture that is fed into separation to the
system of distillation columns x,,..., X;,..., X,, is known.
In this case, all components are arranged such that the
boiling point of the ith component 7;is lower than the
temperature 7;, ;.

Let us consider a column of the system, the input
flow of which contains the components from v to p
(I < v, u<m). Let us use the concept of the key com-
ponent [13], according to which the separation process
is mainly influenced by the difference of the properties
of boundary ith and (i + 1)th components.

Let us consider the separation to be clear [7], i.e.,
that the upper fraction (distillate) contains all compo-
nents, the boiling points of which are less than or equal
to T;, while the lower (still) represents all components
with the boiling points higher than or corresponding to
T;. . The temperature of the heat supply to the resi-
due Ty is close to 7;,,, while the temperature of
abstraction from the dephlegmator 77 is close to 7.
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Using Eq. (7), let us write the work of separation
that is consumed on 1 mol of input and output flows of
column as follows:

n
A, = —RT,{Zxk Inx,

k=v

v

— &y, In SvuJ = RTS

A,; = —RT, (Zxk Inx,
k=v

(36)
- gvilngviJ = RTI'SVI’

n
Ay = _RTi[ Z X Inx;

k=i+1
— € IN 8(i+1)u] = RT;'S(H—I)H'

The upper index / in the first relationship indicates that
the work of separation relates to the case when the cut
point lies between ith and (i + 1)th components.

The fractions of these flows out of the input flow of
the system are denoted as

u i 0
Evp = Zxks Evi = zxka Eirpp = Z K-
k=v k=v k=i+1
The entropies of the mixing of corresponding flows
that are represented by the concentrations of compo-
nents in feed are written as follows assuming their frac-
tion in the flow of raw material:

n
Sy = —Zxk Inx, +¢&,,Ing,,,
k=v

i
Sy = —Zxk Inx, +¢,,In¢g,,
k=v

n
S =— Z XeInox, + € Ingg,y,.
k=i+1

The reversible heat losses in the column on 1 mol of
raw material flow are as follows:

i IiT;
qvu =R 4 (Svu - Svi - S(i+1)p)
Tz‘+1 - Tz (37)
I'T,
= _RT—IT;(SW Ing,, —€,;Ine,; — €4, IN€g,).

Let us refer to the equation that depends on the
temperatures of components on the cut point and stays
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before the square parenthesis as the temperature coeffi-
cient as follows:
Ki — ];'TH—I . (38)
T;’+1 - T;
The higher the temperature coefficient, the higher the
specific heat losses.

Rule of the choice of the order of separation for a
ternary mixture. Assume that the composition of the
mixture that is fed to the separation is known, where
X1, X5, X3 = 1 — x; — x, are the molar fractions of com-
ponents. Let us write the total heat losses in direct and
inverse orders of separation according to Eq. (37) as
follows:

T,

G =¢q1+49,=—R

I,-T
X [x; Inx; + (x5 + x3) In(x; + x3)] (39)
_ DL [, In X, + X3 In x5 — (%, + x3) In(x; + x3)],
I, -T,
T,T.
— + — _RA
q> =49y +4qx» T,-T,
x [x31In x5 + (x; + x,) In(x; + x,)] (40)
_ rAD [ Inx; + x; Inx; — (x; + x,) In(x; + x,)].

I,-T,

The sign of the difference A, = g, — ¢, determines
the order of separation. If A;, <0, < 0, the total heat
losses are lower upon the direct order of separation. If
the difference is positive, the inverse order is more
favorable.

After simple derivations, Ag,, is

Aj

:R(ﬂ_ﬂ (41)

L-T T;-T,
where F,(x) = x,Inx, — (1 —x)In(l —x;) — (1 —x;) x
In(1 — x3).

Assuming that x, =1 — (x, + x;), the function F}, =
(x;, x;) corresponds to zero on the nodes and along the
coordinate axes of the x,x; plane of the concentration
simplex, which is limited by the inequalities x; > 0,
X3 >0, (x; + x5) < 1. Inside the simplex, this function is
always positive and achieves a maximum on the line
x, = x3 = 0.5(1 — x,). The order of separation is deter-
mined only by the sign of the first comultiplier in Eq. (41),
which corresponds to the difference of the tempera-
ture coefficients. The direct order is preferable if
K, < K,. If this inequality has an opposite sign, the
inverse order of separation is favorable. Each temper-

ature coefficient is calculated under the pressure set in
the column.

Analogously, the problem of the order of separation
can be considered in the cascade from two columns,
which is intended for the separation of one component

)Flz(X) = R(K, = K;)Fi5(x),
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or a group of components with intermediate boiling
points. Assume that the lower boiling point of the

intermediate target sampling is 7;.,, while the highest

is T;. The order of separation is determined identically
to that for the mixture of three components. Instead of
concentrations, the fractions of corresponding selec-
tions are considered.

A flow containing several substances can be consid-
ered to be a component, the fraction of which corre-
sponds to the total concentration of the substances in
it, whereas the boiling point corresponds to the that of
the component on the cut point. Therefore, the
medium component during the direct order of separa-
tion in the first column has the temperature 7;,,, and

T}, in the second one, while it becomes inverse upon
inverse order. The direct order of separation, when it is
reasonable to separate the components with the boil-
ing points that are less or equal to T}, on the first col-

umn of cascade, while those are from 7, to 7; on the

second one, is preferable if the following inequality is
fulfilled:
K <K, =< LT ,
7:41 - ]: Tj+] - TJ
Example 1. As an example, let us choose the order
of separation and determine the reversible heat losses
for separating the mixture from three components,
namely, benzene, toluene, and xylene [14]. In addi-
tion, the latter consists of three isomers. The molar
concentration and the boiling point of benzene are
x, =0.4, T, =353.1 K, while for toluene they are
x, =0.3, T, =383.6 K. The total concentration of
xylene and the boiling point of the low-boiling isomer
is x; =0.3, T; =411.35 K. The pressure in the col-
umns is equivalent and close to atmospheric.

Let us determine the order of separation according
to Eq. (42). After introducing the boiling points, its
right-hand side corresponds to 380.0 K, while the left-
hand side is 383.62 K. Thus, the inequality is fulfilled
and it is reasonable to separate benzene on the first
column of cascade, as is performed in real systems of
separation.

(42)

Reversible heat losses on 1 mol of the mixture dur-
ing direct and inverse orders of separation (Egs. (39),
(40)) are g, = 44.516 kJ/mol and ¢, = 46.537 kJ/mol.

Using the molar weights of the components (M, =
78.0 g/mol, M, = 92.14 g/mol, and M; =
106.16 g/mol), one can evaluate the heat losses on one
kilogram of mixture (molar weight of the mixture

M =x M, + x,M, + x;M; = 90.16 g/mol): q" =
493.74 kJ /kg and ¢;' = 516.16 kJ /kg.

After multiplying by the consumption of mixture in
kg/s, we obtain a lower estimate of the heat flow in
kilowatts.
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Rule of a nondecrease in temperature coefficients.
Condition (42) may be considered to be a necessary
condition of the reasonability of the problem of the
order of separation. A comparison of two possible cut
points leads to a simple rule for choosing the order of
separation of a multicomponent mixture in thermal
systems. In order to make reversible energy costs on the
separation of multicomponent mixture in the cascade of
binary separation systems minimum, the temperature
coefficients should monotonically increase from the first
to the further steps of cascade. This rule does not require
the procedure of dynamic programming and overcome
of the associated computational difficulties.

Each possible cut point determines the pressure in
the column and the related temperatures of heat sup-
ply and abstraction and, consequently, the tempera-
ture coefficient. First, one should separate the mixture
by the cut point, which corresponds to minimum tem-
perature coefficient.

Upon a shift in the cut point to high-boiling com-
ponents, the temperature coefficient usually increases
(the numerator grows in proportion to square, whereas
the denominator grows in proportion to the first
degree of temperature). Therefore, in most cases, but
not always, the heuristic rule that the low-boiling
components should be sequentially separated [5] is
valid. This also corresponds to the results of a numer-
ical experiment that was performed in [7], when in two
out of twelve cases, the direct order of separation was
not best.

To the roughest approximation, one can assume
the effect of the losses from irreversibility in thermal
systems was due to the fact that they are proportional
to the square of the flow of separated mixture. The sum
of the squares of the output flows for each column at
the given total flow is minimal on its input when these
flows are close to each other. Therefore, the best cut
point should be the one from the viewpoint of the nec-
essary consumption that the input flows in each col-
umn would be nearly equivalent. This corresponds to
the dichotomy rule suggested in [15].

Assuming this fact, the rule postulated above for
selecting the order of separation can be complemented
as follows: if the temperature coefficients for two types
of separation coincide or differ slightly from each
other, the one for which the fractions of selections are
closer to each other is favorable.

Example 2. As an example, let us analyze the order
of separation that was accepted in the typical gas-frac-
tioning setup of one of the oil-refining plants. The
equipment is intended for the separation of the mix-
ture of hydrocarbons into four fractions, namely,
methane containing hydrogen sulfide, carbon dioxide,
methane, ethane, and propane (i = 1); isobutane (i = 2);
butane (i = 3); and pentane that contains pentane and
hexane (i = 4).

THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING Vol. 50

TSIRLIN et al.

The pressure in columns is maintained at such a
level that the temperature of heat abstraction in
dephlegmators would be 324 K. In the first column,
the most volatile (methane) fraction is separated. The
temperature of the heat supply to the residue of the
first column is 424 K, whereas the pressure in column
is 1.7 MPa. In the second column, the fourth fraction
is separated, the pressure is 0.65 MPa, and the temper-
ature in residue is 389 K. Finally, in the third column of
separation, the second and third fractions are separated
under the pressure of 0.72 MPa. The temperature in res-
idue is 341 K. We should note that the heuristic principle
of the successive separation of low-boiling components is
violated in the second column [5].

The temperature coefficients in the existing order
of separation were as follows:

K, =324%424 _ 1393 ¢
324389
65

K, = % = 6499.0.

K, = 1939.0,

Thus, the order of separation that is accepted on
the plant corresponds to the rule of growth in the tem-
perature coefficients. If the low-boiling second frac-
tion was isolated in the second column and the fourth
and third fractions were isolated in the third column,
the temperature coefficients K, and K; would replace
each other and the growth rule would be violated,
which would imply growth in the energy costs.

Because the efficiency corresponds to one-half of
the reversible efficiency in the limiting performance
mode, the choice by the rule of temperature coeffi-
cients is also valid for this mode.

CONCLUSIONS

The rules for preliminary calculations of the opti-
mal order of separation were obtained for multicom-
ponent mixtures. For systems that use mechanical or
electric energy (membranes, centrifuges, and others),
the order of separation is determined only by irrevers-
ible losses. For thermal systems (rectification, absorp-
tion, and others), the reversible energy costs also
depend on the order of separation. The order of sepa-
ration that corresponds to maximum reversible effi-
ciency is determined by the temperature coefficients
for the distillation columns.

The obtained recommendations have an approxi-
mate character and are only valid because the afore-
mentioned assumptions are close to real; in addition,
the separated mixtures are close to an ideal solution
and the conditions in the column are close to the dis-
placement mode.
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NOTATION

reversible molar work of separation, J/mol;

irreversibility coefficient, mol s/J%;
concentration, mol/mol;
consumption, mol/s;

molar enthalpy, J/mol;
temperature coefficient, K;
pressure, Pa;

power, W,

heat flux, W,

universal gas constant, J/(mol K);
entropy of mixing;

molar entropy, J/(mol K);
temperature, K;

mass-transfer coefficient, mol?> K/(s J);
fraction of product withdrawal;
chemical potential, J/mol;
production of entropy, W/K.

SUBSCRIPTS AND SUPERSCRIPTS

variables that are related to bottoms;

variables that are related to the dephlegmator;
variables that are related to feed;

number of the component of mixture;
number of selection of product.
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