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INTRODUCTION

The description of mass transfer in gas (vapor)—
liquid systems is almost always based on diffusion
equations, and the transition from diffusion equations
to mass�transfer equations is realized with any of the
mass transfer theories [1, 2] and, as a rule, based on the
phenomenological relationships

Ni = βiΔyi. (1)

This approach is more or less valid for binary sys�
tems, but the mechanism of mass transfer in multi�
component mixtures becomes much more compli�
cated. Thus, the presence (or absence) of the eigen
gradient of concentrations for a considered compo�
nent in the case of multicomponent diffusion yields a
nowhere near complete characterization of the mech�
anism of its transfer, which appears as specific phe�
nomena, such as diffusion barrier and osmotic and
reverse diffusion [3]. It should also be noted that con�
vective mass transfer also has a considerable effect on
the process of multicomponent diffusion [4–7]. The
mechanisms of diffusive and convective mass transfer
are different, but they overlap each other, and this fact
is advisable to take into account immediately in the
structure of multicomponent diffusion equations [8].

It should also be mentioned that the equations of
mass transfer in a two�phase gas (vapor)–liquid system
are always written relative to its phase interface. Sepa�
ration processes, such as absorption, desorption,
evaporation, and condensation, are related by defini�
tion with the resulting (convective) flow of a separated

medium from one phase into the other, i.e., with the
existence of a nonzero transversal flow velocity com�
ponent on the phase interface. The absence of a trans�
versal mass flow on the phase interface (equimolar
process) can only be attained to any degree during the
adiabatic distillation of mixtures that consist of com�
ponents with close latent phase transition heats.

It is shown in [9] that a wide variety of allied factors
(interface surface tension and phase temperature gra�
dients, phase equilibrium line curvature) affect the
process of mass transfer; a structure is proposed for a
binary mass�transfer equation that takes into account
the effect of these factors.

Using the theory of irreversible thermodynamics,
L.A. Serafimov and A.V. Timoshenko [10] have shown
that, in strict formulation, the structure of multicom�
ponent mass�transfer equations considerably differs
from the phenomenological relationships (Eq. (1))
even for an equimolar process. However, the practical
application of similar structures is hardly possible (at
least, in engineering approximation).

A great deal of materials on the generalization of
coefficients of mass transfer for different mass�
exchange equipment and phase flow interaction pat�
terns has been accumulated based on longstanding
studies [2]. The analysis of these data shows that these
generalizations were most frequently derived using the
tools of similarity theory presented in the form of cri�
terial equations, and ranked by the types of processes
(absorption, distillation, evaporation, etc.) and mass�
exchange equipment (film apparatuses, packings, and
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various kinds of bubble columns). The aforemen�
tioned generalizations were performed with a binary
formulation of the problem, as the experimental study
of the whole variety of multicomponent mixtures is
hardly possible. At the same time, some methods have
also been developed for the theoretical calculation of
phenomenological coefficients of mass transfer and
are currently developed, e.g., using the theory of the
coupled physical and mathematical modeling of pro�
cesses of mass transfer under certain hydrodynamic
conditions [11, 12].

For this reason, it seems that the description of
multicomponent mass transfer must be based on the
use of normalized (to certain conditions) binary coef�
ficients of mass transfer, and the specifics of a certain
process must be refined immediately in the structure
of mass�transfer equations. The objective of this work
is to substantiate a universal structure of multicompo�
nent mass�transfer equations suitable for describing
any mass�exchange processes.

THEORETICAL SUBSTANTIATION 
OF THE STRUCTURE 

OF THE MASS�TRANSFER EQUATION 

The boundary layer theory, which enables the tran�
sition from diffusion equations to mass�transfer equa�
tions, is widely used to describe multicomponent mass
transfer. In this case, the resulting (convective) mass
flow through the phase interface, i.e., mass transfer
nonequimolarity for each phase of a heterophase gas
(vapor)–liquid system may exist on the phase inter�
face. It is obvious that, in this case, the overall mass
flow must incorporate two components, i.e.,

(2)
The mass�transfer equation structure, which takes

into account the effect of a convective mass flow on
the mechanism of mass transfer, can be substantiated
by analyzing the structure of the integral diffusion
boundary layer equation derived in turn from the con�
vective diffusion equation

(3)

and complemented with the continuity equation

(4)

and the boundary conditions written for the phase
interface

(5)

Equation (3) is written for the most general case
(liquid flow around an infinite width plate) using one
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ory  and some additional conditions, i.e.,

that the liquid density in the layer is constant and the
separated mixture is binary (component index is omit�
ted). The gradient mass flow (the right part of Eq. (3))
is known to depend not only on the gradient of con�
centrations, but also on the gradient of temperatures
and pressures in the boundary layer. The latter compo�
nents can also be neglected without a great loss of pre�
cision. Thus, the numerical estimation of the ther�
modiffusion flow contribution into the overall diffu�
sion flow [5, 6] shows that it does not exceed 6% of the
overall mass flow, even at extremely appreciable tem�
perature drops in the boundary layer (80–100°C).

Then, from Eq. (4), we have

(6)

Substituting Eq. (6) into Eq. (3) and integrating the
resulting expression over the entire depth of the diffu�
sion boundary layer, we obtain the integral diffusion
boundary layer equation. According to the boundary
layer concept, the derivatives incorporated into Eq. (3)
are zero outside the layer by definition. For this rea�
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equal to both the diffusion boundary layer thick�
ness and any values lying outside the diffusion layer
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Then,

(7)

The integration procedure for the left part of Eq. (7) is
detailed in [13]. Using this technique, we obtain

(8)

The overall flow of a transferred component must
also take into account convective mass transfer
(Eq. (2)), i.e.,

(9)
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phenomenological approach is used, this equation dis�
closes the physical meaning of the coefficients of mass
transfer (mass transport) and can be applied for esti�
mating the corresponding coefficients.

The relationships similar to Eq. (9) were first
derived for a thermal boundary layer (G.N. Kruzhilin)
and a hydrodynamic boundary layer (T. Kármán).
However, they did not take into account the possible
existence of a nonzero transversal velocity component
on the outer flow border (Nc = 0). The introduction of
the additional nonequimolarity condition into Eq. (5)
results in the appearance of the additional term

 absent in the solutions of G.N. Kruzhilin
and T. Kármán in the integral diffusion boundary layer
equation (Eq. (9)). This circumstance must be taken
into account as early as in the substantiation of the
structure of phenomenological mass�transfer equa�
tions, as in many cases the existence of a nonzero
transversal velocity component on the outer border of
boundary layers can have a rather profound effect on
the distribution of the functions  and 

When Eq. (1) is used, the physical meaning implied
by the term coefficient of mass transfer follows from a
comparison of integral diffusion using boundary layer
equation (9) with phenomenological equation (9). For
an equimolar process (Nc = 0), we obtain

(10)

As can be seen, Eq. (10), which is widely used in
practice to describe nonequimolar processes (absorp�
tion, desorption, evaporation, condensation, etc.),
does not allow one to apply this interpretation of the
coefficient of mass transfer due to the transformation
of the integral equation structure. In this case, the
structure of the nonequimolar mass�transfer equation
can be obtained by reducing an arbitrary process to
reference conditions, for which it is reasonable to
accept an equimolar process, i.e.,

(11)

The ratio of the integral terms in the right part of
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mixture, as well as on the ratio between the longitudi�
nal and transversal flows, i.e.,

 (12)

At the same time, it should be noted that the veloc�
ity and concentration profiles in boundary layers are
rather conservative with respect to the action of the
transversal flow [13]. For this reason, it seems quite
possible to neglect the correction function (Eq. (12))
in engineering calculations and set it equal to 1.

The expression  is generally used as a character�
istic process driving force  =  in Eq. (11).
This is explained by that a researcher cannot operate
with the actual difference of concentrations on the dif�
fusion layer borders  =  in the most practi�
cally important cases (e.g., in the generalization of
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age concentrations. At the same time, the second term
in the right part of the integral diffusion boundary layer
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ing force  =  Taking into account that
the considered driving forces are related to one
another, i.e.,
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and (14)
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within the range  and may be set equal to 1.5
in the most practically important cases.

As can be seen from Eq. (15), the effect of the con�
vective flow on the total mass flow proves to be rather
complicated: the resulting mass flow linearly trans�
forms the diffusion component of the total flow
depending on its direction, and the contribution of the
convective component depends on both the value and
direction of the resulting flow and the boundary con�
centration of transferred components. The specifics of
a certain process are determined by its conditions.
Thus, nonequimolarity can be produced by the differ�
ence either between interface permeability conditions
for diverse mixture components (absorption, desorp�
tion, etc.) or between interphase interaction heats
(evaporation, condensation, etc.). It seems that the
generalizing equations derived to describe different
processes of mass transfer must come to a universal
equation normalized with respect to equimolar pro�
cess conditions when the proposed mass�transfer
equation structure is used, as the nonequimolarity
effects have already been taken into account in the
structure of Eq. (15).

When passing to multicomponent mixtures, the
multicomponent convective diffusion equation takes
the form

(16)

The direct application of this equation does not
allow one to obtain the structure of the multicompo�
nent mass�transfer equation. However, a correspond�
ing solution can be found by linearizing Eq. (16), the
procedure for which is described in sufficient detail in
[3, 15]. The problem does not radically change upon
the transition to convective diffusion equations. Lin�
earizing the diffusion equation (Eq. (16)) using a diag�
onalizing matrix and introducing the additional
assumption about the constancy of elements in the
square matrix of multicomponent diffusion coeffi�
cients, we then obtain

(17)

As can be seen, the linearization splits the set of
multicomponent convective diffusion equations (16)
into a number of linear differential equations, in which
the concentrations y are replaced by their linear com�
binations ψ (pseudoconcentrations), and the diagonal
matrix elements DL are used instead of binary diffusion
coefficients. The form of the obtained differential
equations is entirely the same as for the convective dif�
fusion equation for binary mixtures (Eq. (3)), which
enables one to use the above�found solution
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(Eq. (15)). Neglecting the correction function
(Eq. (12)), this equation can be written as

(18)
Performing inverse transformations, for a multi�

component mixture, we finally obtain that

(19)
The elements of the multicomponent equimolar�

mass�transfer matrix can be calculated by different
methods [15]. Here, it should be noted that the
method selected to express the multicomponent mass
transfer matrix elements must meet the Damkeler

condition  In this context, it seems pref�

erable to use the equation [16] proposed specially for
describing multicomponent equimolar mass transfer,
namely,
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where  (21)

and (22)
Hence, set of equations (19)–(22) principally

describes the gas�phase mass transfer in multicompo�
nent mixtures for any mass�exchange process in
gas(vapor)–liquid systems if the information about the
regularities of resulting flow distribution along the
phase interface is available, and the binary coefficients
of mass transfer, which corresponds to conditions of
the equimolar process, is the only type of kinetic coef�
ficient used. In this case, the direction of mass flow
from the outer flow border (phase interface) to the
flow core is taken as positive. The commonly accepted
phenomenological equation (Eq. (1)) is a particular
case of this system for a binary mixture.
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OF THE MASS�TRANSFER EQUATION 
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equimolarity. The results of the study are traditionally
formalized as special criterial equations, which gener�
alize the information about the coefficients of mass
transfer in certain processes under certain hydrody�
namic conditions. Only a small number of works pre�
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water in film apparatuses can include processes with a

( ) ( ) ( ) ( )c c .f L f f fB pN Nη = ψ − ψ − ψ − ψ + ψ

( ) [ ]( ) ( ) ( )c c* .f f f fN B y y pN y y N y= − − − +

1

* 0 .
m

i

i

N
=

⎛ ⎞
=⎜ ⎟

⎜ ⎟
⎝ ⎠
∑

( ) [ ]( )*** ,
m

i ij if j jf i f

j i

N y y y y B y y
≠

= β − = −∑

* *
m

ii ij j

j i

B y
≠

= β∑

* * .ij ij iB y= −β



THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING Vol. 49  No. 3  2015

NONEQUIMOLAR MASS TRANSFER IN GAS (VAPOR)–LIQUID SYSTEMS 265

universal criterial equation. However, this method is
always accompanied by a general loss of precision.

It was not as early as by von Kármán that the com�
monly accepted criterial equation written as the power
dependences of the Sherwood criterion on influence
criteria (Sh, Re, etc.) is incorrect, as the power expo�
nents in the criterial equation must be functions of the
same criteria. Equimolar mass exchange was studied
in [18] using the mathematical model of turbulent
mass exchange in an axially symmetric gas flow (pipe)
to show that the following equation proposed by
von Kármán really provides a higher generalization
precision:

(23)

The criterial equations that generalize gas�phase
mass transfer in film columns are compared in Fig. 1
for three typical mass�exchange processes, e.g., evap�
oration (Nc > 0), distillation (Nc ≈ 0), and absorption
(Nc < 0).

As can be seen, all of the considered generaliza�
tions can be distinctly classified into three correspond�
ing groups, i.e., the generalization lines for evapora�
tion (lines 1–3) predominantly lie above the generali�
zation lines for distillation (lines 4–9), and the
generalization lines for absorption (lines 10 and 11)
are below them, which confirms the hypothesis about
the appreciable effect of the convective (resulting)
flow on the process of mass transfer.

The data (points) calculated by Eq. (23) are plotted
in the same figure. Since this equation was derived
based on a numerical experiment, they may be consid�
ered to be theoretical. As can be seen, these data cor�
relate well with the experimental generalization data
for distillation, which supports the advisability of
numerical experiments for acquiring corresponding
information (generalizing equations).

The evaporation and condensation of pure compo�
nents in an inert medium are the most typical repre�
sentatives of nonequimolar processes. These processes
are rather widely used in industry, quite well studied,
and are of particular theoretical interest, for the fol�
lowing reasons:

(1) The resistance of the gas phase to mass transfer
is eliminated during the evaporation (condensation) of
one�component liquids, which enables the overall
process of mass transfer to be reduced to gas�phase
mass transfer.

(2) The conditions of the isothermal process elim�
inate the effect of heat transfer on the process of mass
transfer. 

(3) The insolubility of an inert component in the
liquid phase enables the fairly simple estimation of the
resulting mass flow as the flow of an active (evaporated
or condensed) mixture component.
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Is should also be noted that the most correct infor�
mation about the effect of the convective flow on
resulting mass exchange can be obtained by perform�
ing the experiment on the evaporation and condensa�
tion of just pure components in an inert medium
(binary formulation), since in this case the diffusion
effect of interaction between different system compo�
nents are eliminated (multicomponent formulation).

The undoubted effect of the concentration of an
inert component on mass transfer in the process of
evaporation was mentioned in a number of earlier
works. It was proposed as early as in the works of Col�
burn and Drew [21] and Spalding [22] that the effect
of a change in the concentration of an inert com�
ponent in the diffusion layer be taken into account
as follows:

(24)

Relying on the generalization of evaporation
experimental data, Cairns and Roper [23] derived the
following equation:

(25)

A number of authors also noted the effect of some
other criteria and complexes, in particular the process
driving force (difference between the concentrations
on the diffusion layer borders) and the heterogeneity
of a mixture (ratios of the molecular masses of the gas
mixtures on the diffusion layer borders or their densi�
ties), on mass transfer. Thus, Asano and Fujita [24]
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Fig. 1. Data on the gas�phase mass transfer in film columns
(Sh = f(Re) at Sc = 0.75) for (1–3) evaporation, (4–9) dis�
tillation, and (10, 11) absorption from (1) [17], (5, 6) [19],
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by Eq. (23).



266

JOURNAL OF THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING Vol. 49  No. 3  2015

PONIKAROV et al.

have processed a great deal of experimental data on the
evaporation of water, benzene, carbon tetrachloride
into air and the evaporation of water into carbon diox�
ide using the equation

(26)

where (27)

Asano and Fujita [24] use relative mass concentra�
tions instead of molar concentrations in their general�
izations. Similar generalizations were also obtained in
the works of a number of other authors [25].

Relying on these studies and a number of other
works, it has been proposed [26–28] to reduce the
process of mass transfer in the evaporation or conden�
sation of pure components in an inert medium to cer�
tain reference conditions defined as arising in the pro�
cess of mass transfer under similar hydrodynamic con�
ditions (Re = idem, Sc = idem), but at a vanishingly
small diffusion flow rate, i.e.,

(28)

This approach was most consistently applied in the
works of L.D. Berman. This author has led to the

important conclusion [28] that the ratio  is
weakly dependent on the pattern and conditions of
flow past the phase interface, which indicates the wide
applicability of these generalizations. L.D. Berman
has performed the processing of numerous experi�
mental data [23, 26–28] obtained in both his works
and the works of some other authors to show that the
experimental evaporation data can perfectly be gener�
alized for different components and hydrodynamic
process conditions at a negligible mixture heterogene�
ity factor (  or ) with the rela�
tively simple equation

 (29)

 where (30)

L.D. Berman points out that Eq. (29) can also be
extended to the generalization of the condensation
process. In these equations, e is the factor, which takes
into account the component evaporation rate on the
phase interface and interpreted by some authors as a
similarity criterion. Low values of the factor e corre�
spond to high evaporation rates, and its high values
indicate that the evaporation rate is low. In this case,
the reference conditions are understood to mean the
process occurring at a vanishingly small evaporation
rate   It should be noted that the con�
sidered approach implies that driving forces of mass
transfer and coefficients are calculated using flow core
component concentrations instead of mass�average
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of Eq. (15). The dependence  = , in which

the Sherwood criterion is calculated for the total mass
flow, is used in the generalizations of some authors. It
can easily be shown that these expressions are entirely
equivalent to Eq. (28) as follows:

(31)

Neglecting the mixture heterogeneity factor
, Eq. (26) can similarly be reduced to the

form

(32)

All of the analyzed generalizations are in rather
good agreement with both the experiment and each
other. Hence, we may state that, according to contem�
porary concepts, there is an explicit dependence
between the mass flow of an active mixture component
and both the inert component concentration and the
process driving force in the evaporation (condensa�
tion) of a component in an inert medium for binary
mixtures, although the opinions about a certain form
of these dependences are rather contradictory. It is
also noteworthy that the dependence of the coeffi�
cients of mass transfer on the transferred component
concentrations and, moreover, on the driving forces of
the process contradicts the essence of the phenome�
nological approach. These dependences can be
taken into account to any extent for binary mix�
tures, but this is impossible for multicomponent
mixtures in principle.

The most general and substantiated information
about the criteria characterizing the process of mass
transfer can be obtained from the analysis of differen�
tial mass�transfer equations, i.e., convective diffusion
equations. To accomplish this, it is advisable to use the
above�considered integral equations of a diffusion
boundary layer. There is no diffusion resistance to
mass transfer in the liquid phase for the isothermal
evaporation (condensation) of pure components in an
inert medium, the resulting mass flow through the
phase interface is equal to the active mixture compo�
nent flow  When the correction function
(Eq. (12)) is neglected, and the coefficients of mass
transfer are determined from the real difference of
concentrations on the diffusion layer borders, it then fol�
lows from Eq. (15) (component index is omitted) that

(33)

and (34)

When the same nonequimolar diffusion process is
selected as a reference process but at a vanishingly
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small rate  =  the formal transforma�
tion of Eq. (34) then gives

(35)

Since Eq. (35) was derived without any limitations
on the type of the process, it is equally applicable for
any mass�exchange process in gas (vapor)–liquid sys�
tems, including the considered processes of evapora�
tion and condensation. However, we should note that
the criterion e proves to be negative for the process of
condensation  Minimum e is 1 

for evaporation, and  in this case,
whereas minimum  and maximum e is zero

 for condensation. In the latter case, as also

pointed out in [26], the ratio  . Equa�
tion (35) perfectly meets these ultimate process condi�
tions, but the same cannot be said of Eqs. (29)–(31).

It should also be noted that the acceptance of the

condition  used in the derivation of Eq. (35)
is equivalent to the assumption about the coincidence
of concentration profiles for equimolar and non�
equimolar processes under the conditions of their low
rates. By all means, this assumption contradicts with
the physical essence of the process. It immediately fol�

lows from Eq. (34) that, for evaporation, 
and, for condensation, if there exists a finite driving

force, ; otherwise, it is impossible to speak of
mass transfer. At the same time, the coefficients of
mass transfer are determined during the selection of
equivalent conditions in both approaches under the
same hydrodynamic conditions as for the studied non�
equimolar process (Re = idem, Sc = idem), and this in
turn implies the equality of rate�average concentra�
tions  This circumstance allows us to
establish a relation between the compared approaches.

It follows from the boundary layer theory that the
thickness of the boundary layer grows for the positive
direction of the resulting flow (evaporation, ),

and the derivatives  in Eq. (2) decrease [13], which

leads to a decrease in diffusion coefficients of mass
transfer. At a vanishingly small evaporation rate

, the diffusion component of the mass flow
becomes much lower than its convective component

 In this case, the concentrations in the diffu�
sion layer are equalized, and a slight change in con�
centration occurs only in the zone adjacent to the flow
core  Then, it follows from Eq. (34) that

(36)

Similarly, it is possible to demonstrate for the process
of condensation that , and 
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at .
Then, performing the simultaneous solution of

Eqs. (14), (33), and (35) at a fixed parameter ,
for the processes of evaporation and condensation, we
obtain that

(38)

and (39)

A comparison of all of the considered generalizing
equations with the experimental data on the evapora�
tion of different components into an inert medium
(air) from [23–28] is carried out in Fig. 2.

As can be seen, appreciable deviations between the
experimental data and Eq. (35) derived immediately
from the structure of the binary nonequimolar mass�
transfer equation (Eq. (15)) are only observed in the
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Fig. 2. Relative Schmidt criterion versus evaporation
intensity factor e: (1) nearly coinciding data of calculation
by Eqs. (29) and (38), (2, 3) calculation by Eqs. (32) and
(35), respectively. All the equations were rearranged in the
form of Eq. (31). Points are the data from [27] for (a–c)
water–air, (d) chlorobenzene–air, and (e) bromoben�
zene–air and from [24] for (f, g) carbon tetrachloride–air,
and (h) methanol–air.
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region of rather high evaporation rates (e < 1.5). We
should note that the spread of experimental data in
this region is rather great, as the process isothermicity
condition is hard to maintain at such a high evapora�
tion rate.

Let us emphasize once again the following impor�
tant circumstance: a researcher almost always deter�
mines the total mass flow through the phase interface
from the expression  –  i.e.,
operates with mass�average flow rates and concentra�
tions for any apparatuses or their elements. However,
both the flow rates and compositions of interacting
phases are variable for nonequimolar processes. This
approach also persists when calculating driving forces
of the process and, therefore, in the calculation of the
coefficients of mass transfer and similarity criteria. At
the same time, as can be seen from Eq. (14), the differ�
ence between the compared driving forces 
and  may be very considerable.

A comparison of the generalizing equations with
each other and the experimental data for the processes
of evaporation and condensation is performed in
Fig. 3. For the process of condensation, absolute evap�
oration intensity factors are plotted as abscissas. The
data on the generalization of heat�exchange processes
are plotted in the same figure. Under the assumption
about the existence of perfect analogy between these
processes in apparatuses of the same type, the follow�
ing condition [13] must be met:

 (40)

As can be seen, the data on mass and heat transfer
also rather satisfactorily correlate with each other,
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which allows one to speak of the applicability of the
assumption of the existence of a perfect analogy
between separately occurring mass and heat transfer
processes in apparatuses of the same type for calculat�
ing the corresponding coefficients of mass transfer in
the absence of reliable information on one of the pro�
cesses.

CONCLUSIONS

The existence of a convective mass flow though the
phase interface affects the structure of the integral dif�
fusion boundary layer equation and leads to the
appearance of an additional term. For this reason, the
application of the traditional phenomenological struc�
ture of the mass�transfer equation (Eq. (1)) for
describing mass�exchange processes with pronounced
nonequimolarity seems to be unjustified. The analysis
of the integral equation has allowed us to propose a
corrected structure of the phenomenological equation
based on reducing the arbitrary mass�exchange pro�
cess to a reference process that was selected to be
equimolar. The proposed mass�transfer equation
structure was shown to be valid for both binary and
multicomponent mixtures.

The generalization criteria (evaporation and con�
densation intensity factors) used in a number of works
for describing extremely nonequimolar processes
immediately follow from the proposed structure of the
mass�transfer equation itself, thus implicitly validating
its correctness. The considered generalization (simi�
larity) criteria represent concentration dependences
and are only correct in this form in the binary formu�
lation of the problem (evaporation or condensation of
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Fig. 3. Mass and heat transfer in evaporation and condensation: calculation of mass transfer in (1) evaporation and (2) conden�
sation by Eq. (35), (3) evaporation and (4) condensation by Eq. (29), (5) evaporation by Eq. (32), (6) evaporation by Eq. (38),
and (7) condensation by Eq. (39); data for heat transfer (points) in evaporation (water–air) from (a) [29] and (b) [27].
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pure components in an inert medium). Moreover, in
our opinion, these dependences cannot act as similar�
ity criteria at all, as they result from the incorrectness
of the used structure of the phenomenological mass�
transfer equation. An important advantage of the pro�
posed structure is its universality, i.e., its applicability
to describing arbitrary mass�exchange processes.

NOTATION

B*—elements of the square matrix of multicom�
ponent equimolar coefficients of mass transfer, m/s;

BL—elements of the diagonal matrix of coeffi�
cients of mass transfer, m/s;

D, , and DL—binary diffusion coefficients and
elements of the square and diagonal matrices of mul�
ticomponent diffusion, respectively, m2/s;

N—mass flow, m/s;
y—molar gas concentration;
Δy—driving forces of mass transfer;
r and z—transversal and longitudinal coordinates,

respectively;
β—coefficient of mass transfer for a binary mix�

ture, m/s;
εD—turbulent diffusion coefficient, m2/s;
η and ψ—pseudoflows and pseudoconcentrations

of the linearized multicomponent mass�transfer equa�
tion, respectively;

ω—velocity, m/s;
[ ], ( ), and 〈 〉—square, column, and diagonal

matrices, respectively;

—Nusselt criterion;
—Reynolds criterion;
—Sherwood criterion;

—Schmidt criterion.

SUBSCRIPTS AND SUPERSCRIPTS

D and K—diffusive and convective mass flow com�
ponents, respectively;

i, j—components;
f —phase interface;
c—resulting flow;
z, r—directions of coordinate axes;
∞—flow core;
*—equimolar conditions;

—mass�average values.
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