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the subalgebra generated by the quantum argument shifts up to the second order.
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1. Introduction

Let g be a complex Lie algebra. The Lie–Poisson bracket on the symmetric algebra S(g) is the unique

Poisson bracket extending the Lie bracket,

S(g)× S(g)
Lie–Poisson bracket �� S(g)

g × g
Lie bracket ��

��

g

��
.

We suppose that ξ is an arbitrary element of the dual space g∗ and let ∂̄ξ denote the constant vector field

in the direction ξ. We write C for the Poisson center of the symmetric algebra S(g). We define Cξ as the

algebra generated by the set
⋃∞

n=0 ∂̄
n
ξ C. Mishchenko and Fomenko [1] showed the following theorem.

Theorem 1. The algebra Cξ is Poisson commutative.

Vinberg [2] inquired whether the argument shift algebra Cξ could be extended to a commutative

subalgebra Cξ of the universal enveloping algebra U(g). Nazarov and Olshanski [3] constructed the quantum

argument shift algebra Cξ for any regular semisimple ξ in terms of (i) the Yangian in the case g = gld(C)

and (ii) the twisted Yangians in the orthogonal and symplectic cases. Tarasov [4] constructed the same

quantum argument shift algebra for g = gld(C) via the symmetrization map. The quantum argument shift

algebra Cξ is also constructed via the Feigin–Frenkel center for (i) any simple complex Lie algebra g and

any regular ξ [5], [6], and (ii) any simple complex Lie algebra of type A or C and any ξ [7], [8].

So far, the argument shift operator ∂̄ξ had not been quantized. Gurevich, Pyatov, and Saponov [9]

defined the quantum derivations ∂i
j on the universal enveloping algebra Ugld(C). We found an explicit

formula for the quantum derivations of appropriate elements [10] and showed a quantum analogue of the

Mishchenko and Fomenko theorem [11].
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In the following, we present an explicit formula for the quantum argument shifts of an arbitrary central

element up to the second order (see Proposition 1). We also identify a reduced set of generators of the

algebra generated by the quantum argument shifts up to the second order (see Corollary 1 and Theorem 5).

This reduced set of generators provides an alternative to those given by Futorny and Molev [7]. Complex

combinatorial formulas play an essential role here (see Theorem 4 and Proposition 4).

2. Preliminaries

We write δ for the identity matrix and let xT be the transpose of a matrix x. We suppose that d is

a nonnegative integer and let M(d,A) denote the algebra of d × d matrices with entries in an algebra A.

We write xi
j for the (i, j) element of a d× d matrix x and

xi =
(
xi
1 . . . xi

d

)
, xj =

⎛

⎜
⎜
⎝

x1
j
...

xd
j

⎞

⎟
⎟
⎠

for the ith row vector and the jth column vector of the matrix x.

We define the generating matrix of the Lie algebra gld = gld(C) as the d× d matrix e composed of the

indeterminates eij (generators of the Lie algebra gld). The universal enveloping algebra of the Lie algebra

gld is the quotient algebra

Ugld = C〈eij〉/
(
ei1j1e

i2
j2
− ei2j2e

i1
j1
− ei2j1δ

i1
j2
+ δi2j1e

i1
j2
: i1, j1, i2, j2 = 1, . . . , d

)
,

where C〈eij〉 denotes the free unital algebra on the indeterminates eij and the denominator in the right-hand

side denotes the ideal generated by the elements

{
ei1j1e

i2
j2
− ei2j2e

i1
j1
− ei2j1δ

i1
j2
+ δi2j1e

i1
j2
: i1, j1, i2, j2 = 1, . . . , d

}
.

The following relation holds in the universal enveloping algebra Ugld:

[(en)i1j1 , e
i2
j2
] = [ei1j1 , (e

n)i2j2 ] = (en)i2j1δ
i1
j2
− δi2j1(e

n)i1j2 , n = 0, 1, 2, . . . . (1)

This can be proved by induction.

Quantum derivations on the universal enveloping algebra Ugld were defined in [9]. We give a slightly

modified definition of these operators as follows.

Definition 1. The quantum derivations on the universal enveloping algebra Ugld are the matrix ele-

ments of a unique homomorphism of unital complex algebras

Ugld → M(d, Ugld), x �→ ∂x

such that ∂ tr(ξe) = tr(ξe) + ξ for any numerical matrix ξ.

We define the polynomials

f
(n)
± (x) =

n+1∑

m=0

1± (−1)n−m

2

(
n

m

)

xm.

The following theorem is proved in [10].
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Theorem 2. The quantum derivations of the matrix elements (en)ij are given by

∂(en)ij =
n∑

m=0

(
f
(n−m−1)
+ (e)j(e

m)i + f
(n−m−1)
− (e)(em)ij

)
=

=

n∑

m=0

(
(em)jf

(n−m−1)
+ (e)i + (em)ijf

(n−m−1)
− (e)

)
.

We write C for the center of the universal enveloping algebra Ugld. The center C is generated by the

elements tr e, tr e2, . . . .

We suppose that ξ is an arbitrary numerical matrix. The map ∂ξ = tr(ξ∂) is called the quantum

argument shift operator in the direction ξ. We define Cξ as the algebra generated by the set
⋃∞

n=0 ∂
n
ξ C.

The following theorem is proved in [11], [12].

Theorem 3. The algebra Cξ is a quantum argument shift algebra in the direction ξ.

3. Formulas for second-order quantum argument shifts

We present formulas for the second-order quantum argument shifts of central elements. Theorem 2

suffices for this purpose. We adopt the convention that tr e−1 = 1 for simplicity of notation. The following

formulas give the quantum argument shifts of an arbitrary central element up to the second order.

Proposition 1.

∂
(
tr en1 tr en2 . . .

)
=

n1∑

m1=−1

tr em1

n2∑

m2=−1

tr em2 . . .
∏

k

f
(nk−mk−1)
− (e)

and

∂∂ξ
(
tr en1 tr en2 . . .

)
=

n1∑

m1=−1

tr em1

n2∑

m2=−1

tr em2 . . .

n1−m1−1∑

k1=−1

f
(k1)
− (e)

n2−m2−1∑

k2=−1

f
(k2)
− (e) . . .

. . . ∂ tr

(

ξ
∏

�

f
(n�−m�−k�−2)
− (e)

)

(2)

for a finite product tr en1 tr en2 . . . .

Proof is by direct computation. We have

∂ tr en =

n∑

m=0

(
f
(n−m−1)
+ (e)em + f

(n−m−1)
− (e) tr em

)
=

= f
(n)
− (e) +

n∑

m=0

f
(n−m−1)
− (e) tr em =

n∑

m=−1

f
(n−m−1)
− (e) tr em

by Theorem 2 and the identity
∑n

m=0 f
(n−m−1)
+ (x)xm = f

(n)
− (x). We obtain

∂(tr en1 tr en2 . . .) = ∂(tr en1)∂(tr en2) . . . =

=

n1∑

m1=−1

tr em1

n2∑

m2=−1

tr em2 . . .
∏

k

f
(nk−mk−1)
− (e). (3)
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We proceed to calculate the second-order quantum argument shifts

∂ξ(tr e
n1 tr en2 . . .) =

n1∑

m1=−1

tr em1

n2∑

m2=−1

tr em2 . . . tr

(

ξ
∏

k

f
(nk−mk−1)
− (e)

)

(4)

and

∂∂ξ(tr e
n1 tr en2 . . .) =

n1∑

k1=−1

n2∑

k2=−1

. . . ∂

(∏

�

tr ek�

)

∂

(

tr

(

ξ
∏

�

f
(n�−k�−1)
− (e)

))

=

=

n1∑

k1=−1

n2∑

k2=−1

. . .

k1∑

m1=−1

tr em1

k2∑

m2=−1

tr em2 . . .
∏

�

f
(k�−m�−1)
− (e)∂ tr

(

ξ
∏

�

f
(n�−k�−1)
− (e)

)

by formula (3). Because

n1∑

k1=−1

n2∑

k2=−1

. . .

k1∑

m1=−1

k2∑

m2=−1

. . . =

n1∑

m1=−1

n2∑

m2=−1

. . .

n1∑

k1=m1

n2∑

k2=m2

. . . ,

we arrive at formula (2). �

We write A[S] for the algebra generated by an algebra A and a set S contained in the quantum

argument shift algebra Cξ. We define

C
(0)
ξ = C, C

(n)
ξ = C

(n−1)
ξ [∂n

ξ C].

Formula (4) implies the following assertion.

Corollary 1. C
(1)
ξ = C[tr

(
ξen
)
: n = 1, 2, . . . ].

We have

∂2
ξ (tr e

n1 tr en2 . . .) =

n1∑

m1=−1

tr em1

n2∑

m2=−1

tr em2 . . .

. . .

n1−m1−1∑

k1=−1

n2−m2−1∑

k2=−1

. . . tr

(

ξ
∏

�

f
(k�)
− (e) ∂ tr

(

ξ
∏

�

f
(n�−m�−k�−2)
− (e)

))

(5)

by formula (2). Formula (5) implies the corollary.

Corollary 2. The algebra C
(2)
ξ is contained in the algebra generated by the algebra C

(1)
ξ and the

elements

tr(ξem∂ tr(ξen)) + tr(ξen∂ tr(ξem)), m, n = 0, 1, 2, . . . .

Proof. The elements of the form

n1+1∑

m1=−1

n2+1∑

m2=−1

. . . tr

(

ξ
∏

k

f
(mk)
− (e) ∂ tr

(

ξ
∏

k

f
(nk−mk)
− (e)

))

belong to the additive monoid generated by the elements

tr(ξen∂ tr(ξen)), tr(ξem∂ tr(ξen)) + tr(ξen∂ tr(ξem)), m, n = 0, 1, 2, . . . .

Any element of C
(2)
ξ is contained in the algebra generated by the algebra C

(1)
ξ and the elements

tr(ξem∂ tr(ξen)) + tr(ξen∂ tr(ξem)), m, n = 0, 1, 2, . . . . �
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We suppose that m and n are nonnegative integers. We have

tr(ξem∂ tr(ξen)) = tr

(

ξem
n+1∑

j=1

(
f
(n−j)
+ (e)ξej−1 + f

(n−j)
− (e) tr(ξej−1)

)
)

=

=

n+1∑

j=1

(
tr(ξemf

(n−j)
+ (e)ξej−1) + tr(ξemf

(n−j)
− (e)) tr(ξej−1)

)
, (6)

by Theorem 2 and thus

tr(ξem∂ tr(ξen)) =

n∑

j=1

tr(ξemf
(n−j)
+ (e)ξej−1) mod C

(1)
ξ (7)

by Corollary 1.

Definition 2. We define the (m+ n)× n integer matrix P
(m)
n as the coefficients of the polynomials

xmf
(n−j)
+ (x) =

m+n∑

i=1

(P (m)
n )ijx

i−1

and let Pn = P
(0)
n .

The matrix Pn is the submatrix of the matrix Pn+1 in the top right corner, Pn+1 =
( ∗ Pn
1 0

)
and

P
(m)
n =

(
0
Pn

)
(the first m row vectors are null). For instance, because

(
f
(3)
+ (x) f

(2)
+ (x) f

(1)
+ (x) f

(0)
+ (x)

)
=
(
3x+ x3 1 + x2 x 1

)
=
(
x0 x1 x2 x3

)

⎛

⎜
⎜
⎜
⎝

0 1 0 1

3 0 1 0

0 1 0 0

1 0 0 0

⎞

⎟
⎟
⎟
⎠

,

we have P4 =

(
0 1 0 1
3 0 1 0
0 1 0 0
1 0 0 0

)

.

Definition 3. We define

τξ(x) = tr

⎛

⎜
⎜
⎜
⎜
⎝

(
ξ ξe . . . ξem−1

)
x

⎛

⎜
⎜
⎜
⎜
⎝

ξ

ξe
...

ξen−1

⎞

⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎠

=

m∑

i=1

n∑

j=1

xi
j tr(ξe

i−1ξej−1)

for any m× n numerical matrix x.

By formula (7), we now have

tr(ξem∂ tr(ξen)) = τξ(P
(m)
n ) mod C

(1)
ξ . (8)
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4. Generators of the algebra C
(2)
ξ

We give the reduced set of generators of the algebra C
(2)
ξ . The generators given in Corollary 2 can be

expressed in terms of lower triangular matrices.

Definition 4. Let n be a nonnegative integer and x an n× n numerical matrix. We define the n× n

lower triangular numerical matrix σ(x) by the formula

σ(x) =

⎛

⎜
⎜
⎜
⎜
⎝

x1
1 0 · · · 0

x2
1 + x1

2 x2
2 · · · 0

...
...

. . .
...

xn
1 + x1

n xn
2 + x2

n · · · xn
n

⎞

⎟
⎟
⎟
⎟
⎠

=
n∑

i,j=1

xi
jδmax{i,j}δmin{i,j}.

Proposition 2. (τξ ◦ σ)(x) = τξ(x) for any numerical square matrix x.

Proof. We suppose that m and n are nonnegative integers and let (ζ1, . . . , ζn) be a finite sequence of

elements of the set M(d,C) � {e}. We have

tr[ξem, ζ1 . . . ζn] =
∑

ζk=e

(
tr(ζ1 . . . ζk−1e

m) tr(ξζk+1 . . . ζn)− tr(ζ1 . . . ζk−1) tr(ξe
mζk+1 . . . ζn)

)
,

by the commutation relation (1), and thus

tr[ξem, ξen] =

n∑

k=1

(
tr(ξem+k−1) tr(ξen−k)− tr(ξek−1) tr(ξem+n−k)

)
=

=

n∑

k=1

[tr(ξem+k−1), tr(ξen−k)] = 0, (9)

because the algebra C
(1)
ξ = C

[
tr(ξen) : n = 1, 2, . . .

]
(see Corollary 1) is commutative by Theorem 3.

We have

(τξ ◦ σ)(x) =
n∑

i,j=1

xi
j tr(ξe

max{i,j}−1ξemin{i,j}−1) =
n∑

i,j=1

xi
j tr(ξe

i−1ξej−1) = τξ(x)

for any n× n numerical matrix x by formula (9). �

Proposition 3. For any nonnegative integers m and n, we have

tr
(
ξem∂ tr(ξen)

)
+ tr

(
ξen∂ tr(ξem)

)
= (τξ ◦ σ)

(
0 PT

n

Pm 0

)

mod C
(1)
ξ .

Proof. We have

tr
(
ξem∂ tr(ξen)

)
+ tr

(
ξen∂ tr(ξem)

)
= τξ(P

(m)
n ) + τξ(P

(n)
m ) = τξ

( ⎛

⎝

n m

m 0 0

n Pn 0

⎞

⎠

)

+ τξ

( ⎛

⎝

m n

n 0 0

m Pm 0

⎞

⎠

)

=

= (τξ ◦ σ)

( ⎛

⎝

m n

n 0 PT
n

m 0 0

⎞

⎠

)

+ (τξ ◦ σ)

( ⎛

⎝

m n

n 0 0

m Pm 0

⎞

⎠

)

= (τξ ◦ σ)

( ⎛

⎝

m n

n 0 PT
n

m Pm 0

⎞

⎠

)

mod C
(1)
ξ

by formula (8) and Proposition 2. �
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The following theorem plays an essential role in reducing the number of the generators given in Corol-

lary 2 and Proposition 3. The proof is given in the Appendix.

Theorem 4. For any nonnegative integers m and n, we have

σ

(
0 PT

m

Pm+2n 0

)

=

n∑

k=0

((
2n− k

k

)

+

(
2n− k − 1

k − 1

))

P
(m+k)
m+k , (10)

σ

(
0 PT

m

Pm+2n+1 0

)

=
n∑

k=0

(
2n− k

k

)
(
P

(m+k)
m+k+1 + P

(m+k+1)
m+k

)
. (11)

The following theorem is the main result in this paper.

Theorem 5. The algebra C
(2)
ξ is given by

C
(2)
ξ = C

(1)
ξ

[
τξ(P

(n)
n ), τξ(P

(n)
n+1) + τξ(P

(n+1)
n ) : n = 1, 2, . . .

]
.

Proof. The algebra C
(2)
ξ is contained in the algebra

C
(1)
ξ

[
τξ(P

(n)
n ), τξ(P

(n)
n+1) + τξ(P

(n+1)
n ) : n = 1, 2, . . .

]

by Proposition 3 and Theorem 4. We prove that the elements τξ(P
(n)
n ) and τξ(P

(n)
n+1) + τξ(P

(n+1)
n ) belong

to the algebra

C
(1)
ξ

[
∂2
ξ tr e

n : n = 3, 4, . . .
]

(12)

by induction on the nonnegative integer n. Suppose that the integer n is positive and the elements τξ(P
(m)
m ),

τξ(P
(m)
m+1) + τξ(P

(m+1)
m ) belong to algebra (12) for any nonnegative integer m < n. The element τξ(P

(n)
n )

belongs to algebra (12) because the element ∂2
ξ tr e

2n+1 − (4n+ 2)τξ(P
(n)
n ) belongs to the submodule

spanC
{
τξ(P

(m)
m )

}n−1

m=0
+ spanC

{
τξ(P

(m)
m+1) + τξ(P

(m+1)
m )

}n−1

m=0

modulo C
(1)
ξ by Theorem 4. Similarly, the element τξ(P

(n)
n+1) + τξ(P

(n+1)
n ) belongs to algebra (12). �

We compute the first several elements of the generators:

τξ(P
(1)
1 ) = tr(ξ2e),

τξ(P
(1)
2 ) + τξ(P

(2)
1 ) = tr(2ξ2e2 + ξeξe),

τξ(P
(2)
2 ) = tr(ξ2e3 + ξeξe2),

τξ(P
(2)
3 ) + τξ(P

(3)
2 ) = tr(2ξ2e4 + 2ξeξe3 + ξe2ξe2 + ξ2e2),

τξ(P
(3)
3 ) = tr(ξ2e5 + ξeξe4 + ξe2ξe3 + ξ2e3),

τξ(P
(3)
4 ) + τξ(P

(4)
3 ) = tr(2ξ2e6 + 2ξeξe5 + 2ξe2ξe4 + ξe3ξe3 + 4ξ2e4 + ξeξe3),

τξ(P
(4)
4 ) = tr(ξ2e7 + ξeξe6 + ξe2ξe5 + ξe3ξe4 + 3ξ2e5 + ξeξe4).

They form a commutative family together with the elements
{
tr(ξen) : n = 1, 2, . . .

}
(see Theorem 3

and Corollary 1).
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Appendix: Proof of Theorem 4

We note that relation (10) for m+1 implies the same relation for m and is therefore equivalent to the

relation

σ(P2n) =
n∑

m=1

((
2n−m

m

)

+

(
2n−m− 1

m− 1

))

P (m)
m (13)

together with the relation for the first column vectors

σ

(
0 PT

m+1

Pm+2n+1 0

)i

1

=

n∑

k=0

((
2n− k

k

)

+

(
2n− k − 1

k − 1

))
(
P

(m+k+1)
m+k+1

)i
1
. (14)

Relation (13) is equivalent to the combinatorial relation

(
2n1 + n2 + 2n3 + 1

2n3

)

+

(
n2 + 2n3

2n3

)

=

=

n3∑

n4=0

((
n1 + n2 + n3 + n4 + 1

2n4

)

+

(
n1 + n2 + n3 + n4

2n4

))(
n1 + n3 − n4

2(n3 − n4)

)

.

This follows by comparing the (2n1 + n2 + 2, n2 + 1) element of the matrix σ(P2n) with that of the matrix

n∑

m=1

((
2n−m

m

)

+

(
2n−m− 1

m− 1

))

P (m)
m ,

for n = n1 + n2 + n3 + 1.

Relation (14) is equivalent to the polynomial relation

f
(m+2n)
+ (x) + f

(m)
+ (x)x2n =

m+2n+1∑

i=1

(Pm+2n+1 + P
(2n)
m+1)

i
1x

i−1 =

=

n∑

k=0

((
2n− k

k

)

+

(
2n− k − 1

k − 1

))m+2k+1∑

i=1

(P
(k)
m+k+1)

i
1x

i−1 =

=
n∑

k=0

((
2n− k

k

)

+

(
2n− k − 1

k − 1

))

f
(m+k)
+ (x)xk.

Similar arguments apply to the case in (11). We thus arrive at the following proposition.

Proposition 4. 1. Theorem 4 is equivalent to the following conditions.

For any nonnegative integers n1, n2, and n3, we have

(
2n1 + n2 + 2n3 + 1

2n3

)

+

(
n2 + 2n3

2n3

)

=

=

n3∑

n4=0

((
n1 + n2 + n3 + n4 + 1

2n4

)

+

(
n1 + n2 + n3 + n4

2n4

))(
n1 + n3 − n4

2(n3 − n4)

)

, (15)

(
2n1 + n2 + 2n3 + 2

2n3

)

+

(
n2 + 2n3

2n3

)

=

=

n3∑

n4=0

(
n1 + n2 + n3 + n4 + 1

2n4

)((
n1 + n3 − n4 + 1

2(n3 − n4)

)

+

(
n1 + n3 − n4

2(n3 − n4)

))

. (16)
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For any nonnegative integers m and n, we have

f
(m+2n)
+ (x) + f

(m)
+ (x)x2n =

n∑

k=0

((
2n− k

k

)

+

(
2n− k − 1

k − 1

))

f
(m+k)
+ (x)xk,

f
(m+2n+1)
+ (x) + f

(m)
+ (x)x2n+1 =

n∑

k=0

(
2n− k

k

)
(
f
(m+k+1)
+ (x)xk + f

(m+k)
+ (x)xk+1

)
.

2. Relation (15) is equivalent to the relation

σ(P2n) =

n∑

m=1

((
2n−m

m

)

+

(
2n−m− 1

m− 1

))

P (m)
m .

3. Relation (16) is equivalent to the relation

σ(P2n+1) =

n∑

m=0

(
2n−m

m

)
(
P

(m)
m+1 + P (m+1)

m

)
.

Proof of Theorem 4. We verify the corresponding conditions in Proposition 4 with Mathematica:

In[1]:= FullSimplify[Binomial[2n+m+2l+1,2l]+

Binomial[m+2l,2l]-

Sum[(Binomial[n+m+l+k+1,2k]+Binomial[n+m+l+k,2k])

Binomial[n+l-k,2(l-k)],{k,0,l}],

Element[n|m|l,Integers]&&n>=0&&m>=0&&l>=0]

Out[1]= 0

In[2]:= FullSimplify[Binomial[2n+m+2l+2,2l]+

Binomial[m+2l,2l]-

Sum[Binomial[n+m+l+k+1,2k](Binomial[n+l-k+1,2(l-k)]+

Binomial[n+l-k,2(l-k)]),{k,0,l}],

Element[n|m|l,Integers]&&n>=0&&m>=0&&l>=0]

Out[2]= 0

In[3]:= Fplus[n_][x_]:=((x+1)^n+(x-1)^n)/2

In[4]:= Simplify[Fplus[m+2n][x]+Fplus[m][x]x^(2n)-

Sum[(Binomial[2n-k,k]+Binomial[2n-k-1,k-1])

Fplus[m+k][x]x^k,{k,0,n}],

Element[m|n,Integers]&&m>=0&&n>=0]

Out[4]= 0

In[5]:= Simplify[Fplus[m+2n+1][x]+Fplus[m][x]x^(2n+1)-

Sum[Binomial[2n-k,k](Fplus[m+k+1][x]x^k+

Fplus[m+k][x]x^(k+1)),{k,0,n}],

Element[m|n,Integers]&&m>=0&&n>=0]

Out[5]= 0
�
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