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The existence of stationary solutions of singularly perturbed systems of reaction–diffusion–advection equa-

tions is studied in the case of fast and slow reaction–diffusion–advection equations with nonlinearities

containing the gradient of the squared sought function (KPZ nonlinearities). The asymptotic method

of differential inequalities is used to prove the existence theorems. The boundary layer asymptotics of

solutions are constructed in the case of Neumann and Dirichlet boundary conditions. The case of quasi-

monotone sources and systems without the quasimonotonicity requirement is also considered.

Keywords: singular perturbation, reaction–diffusion–advection equations, stationary solutions, KPZ

nonlinearities, asymptotic method of differential inequalities, boundary layer, Lyapunov stability

DOI: 10.1134/S0040577924070092

1. Introduction. Statement of the problem

We consider a system of fast and slow reaction–diffusion–advection equations with KPZ nonlinearities,

which is a special case important for applications and allowing one to obtain constructive conditions for the

existence and Lyapunov stability of solutions such as the stationary solutions of the corresponding parabolic

problem

Nu(u, v) := ε2
d2u

dx2
− ε2A(u, x)

(
du

dx

)2

− g(u, v, x, ε) = 0,

Nv(u, v) :=
d2v

dx2
−B(v, x)

(
dv

dx

)2

− f(u, v, x, ε) = 0, 0 < x < 1,

(1)

where ε ∈ (0; ε0] is a small parameter. Such systems naturally arise in modeling fast bimolecular reactions in

the case where one of the sources (reaction, nonlinear source, interaction) is intensive (of the order of 1/ε2)

and the other one is of the order of unity (see, e.g., [1]).

We assume that the function u(x) satisfies one of the following versions of boundary conditions:

u′(0) = u0, u′(1) = u1, (N)

u(0) = u0, u(1) = u1. (D)

For the function v(x), we pose the Dirichlet condition

v(0) = v0, v(1) = v1. (2)
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In what follows, we respectively let (1.N) and (1.D) denote the problems where either the Neumann

condition (N) or the Dirichlet condition (D) is imposed for u(x). We omit the letter notation in the cases

where the form of the form of the boundary condition is unimportant.

A special feature of the problem under study is the presence of terms containing the gradient of the

sought function squared. The nonlinearities of this type are called Kardar–Parisi–Zhang (KPZ) nonlin-

earities and are widely used in modeling population dynamics processes (the squared gradient describes

nonlocal interactions [2]), the free surface growth in the theory of polymers and in the nonlinear theory

of thermal conductivity (see, e.g., [3] and the references therein). We note that this system of equations

is also of definite theoretical interest: the square is the maximum (limit) exponent at which the Bernstein

conditions for the nonlinearity growth are satisfied (the nonlinearity belongs to the class of Nagumo func-

tions, see[4]–[9]). The stationary solutions with boundary and internal layers of the initial boundary value

problem were considered in [10] only in the case of a fast equation.

Let the following conditions be satisfied.

Condition A1. Let the functions g(u, v, x, ε), f(u, v, x, ε) be defined on the set Ω1 := (u, v, x, ε) ∈
Iu×Iv×[0; 1]×(0; ε0], and let A(u, x) and B(v, x) be respectively defined on the sets Ω2 := (u, x) ∈ Iu×[0; 1]

and Ω3 := (v, x) ∈ Iv × [0; 1] and be sufficiently smooth functions of their arguments.

We consider the degenerate differential-algebraic system

g(u, v, x, 0) = 0,

d2v

dx2
−B(v, x)

(
dv

dx

)2

− f(u, v, x, 0) = 0, 0 < x < 1.
(3)

We require that the following solvability condition be satisfied for this system.

Condition A2. Let the equation g(u, v, x, 0) = 0 have a solution u = ϕ(v, x) such that

gu(ϕ(v, x), v, x, 0) > 0 for (v, x) ∈ Ω3 and let the problem

d2v

dx2
−B(v, x)

(
dv

dx

)2

− f(ϕ(v, x), v, x, 0) = 0, 0 < x < 1,

v(0) = v0, v(1) = v1,

(4)

have an isolated solution v = v̄0(x).

We set ū0(x) = ϕ(v̄0(x), x), x ∈ [0, 1]. It also follows from Condition A2 that ḡu(x) ≡ gu(ū0(x),

v̄0(x), x, 0) > 0, x ∈ [0, 1] (here and hereafter, the bar over a function or over its derivative means that its

value is taken at the point (ū0(x), v̄0(x), x, 0)).

In problem (1.D), we require the satisfaction of the standard condition that the boundary values u0, u1

belong to the domain of influence of a root of the degenerate equation.

Condition A3. Let the following inequalities be satisfied:

∫ ũ

ũ0(0)

g(s, v̄0(0), 0, 0) exp

(
2

∫ ũ

s

A(σ, 0) dσ

)
ds > 0 for all ũ ∈ (ū0(0), u

0],

∫ ũ

ũ0(1)

g(s, v̄0(1), 1, 0) exp

(
2

∫ ũ

s

A(σ, 1) dσ

)
ds > 0 for all ũ ∈ (ū0(1), u

1].

Below, we formulate additional conditions used to construct the asymptotics and to prove the existence

of a solution with the constructed asymptotics.
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2. Asymptotics of the solution

The formal asymptotic approximations of the solutions of problems (1.D) and (1.N) are constructed

by the Vasil’eva method (see [7]) in the form

U(x, ε) = ū(x, ε) + Lu(τ, ε) +Ru(η, ε),

V (x, ε) = v̄(x, ε) + Lv(τ, ε) +Rv(η, ε),
(5)

where the regular parts become

ū(x, ε) = ū0(x) + εū1(x) + · · ·+ εnūn(x) + · · · ,
v̄(x, ε) = v̄0(x) + εv̄1(x) + · · ·+ εnv̄n(x) + · · · ,

(6)

and the boundary parts in a neighborhood of x = 0 for u0 and v0 and in a neighborhood of x = 1 for u1

and v1 are
Lu(τ, ε) = Lu0(τ) + εLu1(τ) + · · ·+ εnLun(τ) + · · · ,
Lv(τ, ε) = Lv0(τ) + εLv1(τ) + · · ·+ εnLvn(τ) + · · · ,
Ru(η, ε) = Ru0(η) + εRu1(η) + · · ·+ εnRun(η) + · · · ,
Rv(η, ε) = Rv0(η) + εRv1(η) + · · ·+ εnRvn(η) + · · · ,

(7)

where τ = x/ε, η = (1− x)/ε are extended variables in neighborhoods of the points x = 0 and x = 1.

We introduce the functions

G

(
ε
du

dx
, u(x), v(x), x, ε

)
:= A(u, x)

(
ε
du

dx

)2

+ g(u, v, x, ε),

F

(
dv

dx
, u(x), v(x), x, ε

)
:= B(v, x)

(
dv

dx

)2

+ f(u, v, x, ε).

For these functions, we use the Vasil’eva representation, separating the regular and boundary components,

G = G+ LG+RG, F = F + LF +RF,

where

G = G

(
ε
dū

dx
(x, ε), ū(x, ε), v̄(x, ε), x, ε

)
,

LG = G

(
ε
dū

dx
(τε, ε) +

dLu

dτ
(τ, ε), ū(τε, ε) + Lu(τ, ε), v̄(τε, ε) + Lv(τ, ε), τε, ε

)
−

−G

(
ε
dū

dx
(τε, ε), ū(τε, ε), v̄(τε, ε), τε, ε

)
,

RG = G

(
ε
dū

dx
(1− ηε, ε) +

dRu

dη
(τ, ε), ū(1− ηε, ε) +Ru(η, ε), v̄(1 − ηε, ε) +Rv(η, ε), 1− ηε, ε

)
−

−G

(
ε
dū

dx
(1− ηε, ε), ū(1− ηε, ε), v̄(1− ηε, ε), 1− ηε, ε

)
,

(8)

and the terms in the representation for F are similar. Further, the original system standardly splits into

regularly perturbed equations for regular and boundary layer parts of the asymptotics (for the regular part,
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the differential operator in the first approximation is subordinate, i.e., the first equation is considered as

a finite equation):

ε2
d2ū

dx2
= G,

d2v̄

dx2
= F,

d2Lu

dτ2
= LG,

d2Ru

dη2
= RG,

d2Lv

dτ2
= ε2LF,

d2Rv

dη2
= ε2RF.

(9)

These equations are related by the boundary conditions supplemented with the standard conditions of

decrease in the extended argument at infinity for the boundary functions: in the case of Neumann boundary

conditions,

dLu

dτ
(0, ε) + ε

dū

dx
(0, ε) = εu0,

dRu

dη
(0, ε) + ε

dū

dx
(1, ε) = εu1,

Lu(+∞, ε) = 0, Ru(+∞, ε) = 0,

in the case of Dirichlet boundary conditions,

Lu(0, ε) + ū(0, ε) = u0, Ru(0, ε) + ū(1, ε) = u1,

Lu(+∞, ε) = 0, Ru(+∞, ε) = 0

and
Lv(0, ε) + v̄(0, ε) = v0, Rv(0, ε) + v̄(1, ε) = v1,

Lv(+∞, ε) = 0, Rv(+∞, ε) = 0.
(10)

The coefficients of asymptotic representation (5) are determined in the following order. At the kth

step, we first determine the boundary functions of the v component, then find the functions ūk and v̄k, and

then determine the boundary functions of the u component. It follows from Eqs. (9) and the conditions

at infinity that Lvk(τ) = Rvk(η) = 0 for k = 0, 1, 2 in the case of Neumann boundary conditions and for

k = 0, 1 in the case of Dirichlet boundary conditions. The regular part of the asymptotics, i.e., the functions

ū0(x) and v̄0(x), are determined from the degenerate system defined in Condition A2.

In the case of the Dirichlet condition, the problems for Lu0 and Ru0 become

d2Lu0
dτ2

= A(ū0(0) + Lu0(τ), 0)

(
dLu0
dτ

)2

+ g(ū0(0) + Lu0(τ), v̄0(0), 0, 0),

d2Ru0
dη2

= A(ū0(1) +Ru0(η), 1)

(
dRu0
dη

)2

+ g(ū0(1) +Ru0(η), v̄0(1), 1, 0),

Lu0(0) = u0 − ū0(0), Ru0(0) = u1 − ū0(1), Lu0(+∞) = 0, Ru0(+∞) = 0.

(11)

It is well known that the solvability of these problems is guaranteed by Condition A3. In this case, there

exists a unique monotone solution of each problem. The solutions of problems (11) are determined in

quadratures and have a standard exponential estimate (see, e.g., [8]). In the case of Neumann boundary

conditions, these problems have zero solutions.

Because Lv1(τ) = Rv1(η) = 0, the functions ū1(x) and v̄1(x) in the regular part of the asymptotics

can be found from the boundary value problem for the linear differential-algebraic system of equations with

zero boundary conditions:

ḡuū1 + ḡvv̄1 + ḡε = 0,

d2v̄1
dx2

− 2B
dv̄0
dx

dv̄1
dx

−Bv

(
dv̄0
dx

)2

v̄1 − f̄uū1 − f̄vv̄1 − f̄ε = 0, 0 < x < 1,

v̄1(0) = 0, v̄1(1) = 0.

(12)
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Investigating the identity g(ϕ(v, x), v, x, 0) = 0 in Condition A2, we obtain a relation between ḡu and ḡv,

ḡuϕ̄v + ḡv = 0.

We express ū1 from the first equation of the system and, taking this relation into account, substitute it in

the second differential equation. We then obtain the problem

d2v̄1
dx2

− 2B
dv̄0
dx

dv̄1
dx

−
(
Bv

(
dv̄0
dx

)2

+ f̄v + ϕ̄v f̄u

)
v̄1 = f1, 0 < x < 1,

v̄1(0) = 0, v̄1(1) = 0,

(13)

where f1 is a known function. The linear differential operator of problem (13) is not self-adjoint (it reduces

to the divergence form by a well-known change of variables). We now formulate a condition that ensures the

existence and uniqueness of the solution of the boundary value problem and hence of differential-algebraic

system (12) (also see Theorem 3 in [11]).

Condition A4. Assume that the inequality

Bv

(
dv̄0
dx

)2

+ f̄v + ϕ̄v f̄u > −λ0

holds for all x ∈ [0, 1], where λ0 is the principal eigenvalue of the problem

d2Ψ̃

dx2
− 2B

dv̄0
dx

dΨ̃

dx
+ λΨ̃ = 0, 0 < x < 1,

Ψ̃(0) = 0, Ψ̃(1) = 0.

(14)

The existence of a positive principal eigenvalue λ0 and of the corresponding positive eigenfunction

Ψ̃(x), x ∈ (0, 1), of problem (14) is a will-known result (see [12], Theorem 4.3).

For Neumann boundary condition, we obtain the following problems for Lu1 and Ru1:

d2Lu1
dτ2

= ḡu(0)Lu1,

d2Ru1
dη2

= ḡu(1)Ru1,

dLu1
dτ

(0) = u0 − dū0
dx

(0),
dRu1
dη

(0) = u1 − dū0
dx

(1),

Lu1(+∞) = 0, Ru1(+∞) = 0.

(15)

Each of equations (15) is an equation with constant coefficients. Their solutions up to a factor are expo-

nential functions with the respective exponents −√
ḡu(0)τ and −√

ḡu(1)η.

For the Dirichlet condition, the problems for Lu1 and Ru1 become

d2Lu1
dτ2

− 2A(ū0(0) + Lu0(τ), 0)
dLu0
dτ

dLu1
dτ

−
(
∂A

∂u
(ū0(0) + Lu0(τ), 0)×

×
(
dLu0
dτ

)2

+
∂g

∂u
(ū0(0) + Lu0(τ), v̄0(0), 0, 0)

)
Lu1 = Lg1(τ),

d2Ru1
dη2

− 2A(ū0(1) +Ru0(η), 1)
dRu0
dη

dRu1
dη

−
(
∂A

∂u
(ū0(1) +Ru0(η), 1)×

×
(
dRu0
dη

)2

+
∂g

∂u
(ū0(1) +Ru0(η), v̄0(1), 1, 0)

)
Ru1 = Rg1(η),

Lu1(0) = −u1(0), Ru1(0) = −u1(1), Lu1(+∞) = 0, Ru1(+∞) = 0,

(16)
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where Lg1 and Rg1 are known exponentially decreasing functions, standardly expressed in terms of the

coefficients of the asymptotic approximation obtained at the preceding stage. In particular, Lg1 has the form

Lg1(τ) =

(
∂A

∂u
(ū0(0) + Lu0(τ), 0)

(
dLu0
dτ

)2

+
∂g

∂u
(ū0(0) + Lu0(τ), v̄0(0), 0, 0)

)(
dū0
dx

(0)τ + ū1(0)

)
+

+

(
∂A

∂x
(ū0(0) + Lu0(τ), 0)

(
dLu0
dτ

)2

+
∂g

∂x
(ū0(0) + Lu0(τ), v̄0(0), 0, 0)

)
τ +

+
∂g

∂ε
(ū0(0) + Lu0(τ), v̄0(0), 0, 0) + 2A(ū0(0) + Lu0(τ), 0)

dū0
dx

(0)
dLu0
dτ

+

+
∂g

∂v
(ū0(0) + Lu0(τ), v̄0(0), 0, 0)

(
dv̄0
dx

(0)τ + v̄1(0)

)
. (17)

The solutions of problems (16) can be obtained explicitly; for example, for Lu1(τ), we have

Lu1(τ) = −ū1(0) ṽ(τ)
ṽ(0)

− ṽ(τ)

∫ τ

0

1

p(s)(ṽ(s))2

∫ +∞

s

p(η)ṽ(κ)Lg1(κ) dκ ds, (18)

where

p(ξ) = exp

(
−2

∫ ξ

0

A(ū0(0) + Lu0(y), 0)ṽ(y) dy

)
, ṽ(τ) =

dLu0
dτ

.

The boundary functions of the u component in the next orders are determined from similar problems

(with the same differential operator), and their solutions can be obtained in explicit form.

The boundary functions of the v component of an order k � 3 in the case of Neumann boundary

conditions and of and order k � 2 in the case of Dirichlet boundary conditions are determined from

inhomogeneous equations whose solutions can also be written explicitly. The problems for Lvk and Rvk are

d2Lvk
dτ2

= LFk−2(τ),
d2Rvk
dη2

= RFk−2(η),

where LFk−2, RFk−2 are the coefficients of εk−2 in the expansion of LF and RF in a power series in ε. In

the case of the Neumann condition, we obtain LF0 = 0 because Lu0 = 0, Lv0 = 0, and Lv1 = 0. Therefore,

we also have Lv2 = 0. We similarly obtain Rv2 = 0. For Lv3, we have the problem

d2Lv3
dτ2

= LF1(τ) = fu(ū0(0), v̄0(0), 0, 0)Lu1(τ),

Lv3(∞) = 0.

(19)

For Lv2, in the case of the Dirichlet condition,

LF0(τ) = f(ū0(0) + Lu0(τ), v̄0(0), 0, 0)− f(ū0(0), v̄0(0), 0, 0)

is an exponentially decreasing nonzero function, and the function Lv2 is determined from the problem

d2Lv2
dτ2

= LF0(τ), Lv2(∞) = 0. (20)

Obviously, after double integration of exponentially decreasing functions LF0(τ), LF1(τ) in (19) and (20),

we also obtain exponentially decreasing functions. An arbitrary linear part arising in these functions is

identically zero due to the conditions Lv2(∞) = 0 and Lv3(∞) = 0.
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Thus, the conditions at infinity are sufficient for uniquely determining the functions Lv2(τ) and Lv3(τ)

in problems (19) and (20). We similarly determine Rv2(η) and Rv3(η). The boundary functions of the

v component in the next orders are determined from similar problems similar to (19) and (20), and the

solutions of these problems are also obtained by double integration.

The functions ūk(x) and v̄k(x) in the regular part of the asymptotics in the next orders in ε are deter-

mined from the boundary value problems with the same differential-algebraic operator as in the problem

for ū1(x) and v̄1(x).

The process of finding the coefficients of asymptotics (5) can be extended to any order in ε. It standardly

follows from the method for constructing the asymptotics that the nth-order partial sums Un(x, ε) for the u

component and Vn(x, ε) for the v component satisfy the first equation of system (1) with a discrepancy

O(εn+1) and the second equation with a discrepancy O(εn−1).

3. Existence and asymptotics of the stationary solution

To prove the existence of a solution in each of the cases discussed in what follows, we use the asymptotic

method of differential inequalities (see survey [6] and the references therein). The main idea of this method

is to modify the obtained asymptotic form so as to obtain the lower and upper solutions of the problem

under study. We recall the definition of upper and lower solutions.

Definition 1. Functions

β(x, ε) = (βu(x, ε), βv(x, ε)) and α(x, ε) = (αu(x, ε), αv(x, ε))

are called an upper and a lower solution of problem (1) if they satisfy the following conditions.

1. The ordering condition: αu,v(x) � βu,v(x, ε), x ∈ [0; 1].

2. The action of the operator on the upper and lower solutions:

for all x ∈ (0; 1), αv(x, ε) ≤ v ≤ βv(x, ε),

Nu(β
u, v) := ε2

d2βu

dx2
− ε2A(βu, x)

(
dβu

dx

)2

− g(βu, v, x, ε) ≤ 0,

0 ≤ Nu(α
u, v) := ε2

d2αu

dx2
− ε2A(αu, x)

(
dαu

dx

)2

− g(αu, v, x, ε),

and for all x ∈ (0; 1), αu(x, ε) ≤ u ≤ βu(x, ε),

Nv(u, β
v) :=

d2βv

dx2
−B(βv, x)

(
dβv

dx

)2

− f(u, βv, x, ε) ≤ 0,

0 ≤ Nv(u, α
v) :=

d2αv

dx2
−B(αv, x)

(
dαv

dx

)2

− f(u, αv, x, ε).

3. The condition on the boundary:

αv(0, ε) ≤ v0 ≤ βv(0, ε), αv(1, ε) ≤ v1 ≤ βv(1, ε),

in the case of Neumann boundary conditions,

dαu

dx
(0, ε) ≥ u0 ≥ dβu

dx
(0, ε),

dαu

dx
(1, ε) ≤ u1 ≤ dβu

dx
(1, ε),

and in the case of Dirichlet boundary conditions,

αu(0, ε) ≤ u0 ≤ βu(0, ε), αu(1, ε) ≤ u1 ≤ βu(1, ε).
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It is well known (see, e.g., [13] and the references therein) that if there exists a lower and an upper

solution of problem (1), then this problem has a solution (u(x, ε), v(x, ε)) such that, for all x ∈ [0, 1],

αu(x, ε) ≤ u(x, ε) ≤ βu(x, ε),

αv(x, ε) ≤ v(x, ε) ≤ βv(x, ε).
(21)

3.1. Neumann boundary conditions. We consider problem (1.N) with the following quasimono-

tonicity condition.

Condition A5. Assume that the vector function (g, f) is quasimonotone nonincreasing in (u, v) in

the domain of definition for a sufficiently small ε > 0.

This condition means that gv ≤ 0 for a fixed u and fu ≤ 0 for a fixed v in their range.

We consider the differential-algebraic system

ḡu(x)γ1 + ḡv(x)γ2 = h1(x),

d2γ2
dx2

− 2B
dv̄0
dx

dγ2
dx

−Bv

(
dv̄0
dx

)2

γ2 − [f̄u(x)γ1 + f̄v(x)γ2] = h2(x), x ∈ (0, 1),

γ2(0) > 0, γ2(1) > 0,

(22)

where h1(x) > 0, h2(x) < 0 for x ∈ [0, 1]. The following result holds.

Lemma 1. Under Conditions A1, A2, A4, and A5, differential-algebraic system (22) has a solution

γ1(x) > 0, γ2(x) > 0.

To prove the lemma, we express γ1(x) in terms of γ2(x) and obtain a problem for γ2(x) (similar to

problem (12) for v̄1(x)),

d2γ2
dx2

− 2B
dv̄0
dx

dγ̄2
dx

−
(
Bv

(
dv̄0
dx

)2

+ f̄v + ϕ̄v f̄u

)
γ2 = h(x), 0 < x < 1,

γ2(0) > 0, γ2(1) > 0,

(23)

where h(x) is a known function with h(x) < 0 for x ∈ [0, 1] due to Condition A5 (f̄u(x) ≤ 0) and the

condition h1(x) > 0. Obviously, α = 0 is a lower solution of problem (23). One can show that for

a sufficiently large positive constant M and a positive eigenfunction W (x), the function β = MW (x)

corresponding to the principal eigenvalue of the problem

d2Ψ

dx2
− 2B

dv̄0
dx

dΨ

dx
+ kΨ = 0, −δ < x < 1 + δ, δ > 0,

Ψ(−δ) = 0, Ψ(1 + δ) = 0,

(24)

for sufficiently small δ is an upper solution of problem (23). The condition γ2(x) > 0 and the first equation

in the differential-algebraic system imply that γ1(x) > 0.

Theorem 1N. If Conditions A1, A2, A4, and A5 are satisfied, then a solution (u(x, ε), v(x, ε)) of

problem (1) exists for sufficiently small ε and has the asymptotic representation

u(x, ε) =

n∑
k=0

εkūk(x) +

n∑
k=0

εkLuk(τ) +

n∑
k=0

εkRuk(η) +O(εn+1),

v(x, ε) =
n∑

k=0

εkv̄k(x) +
n∑

k=0

εkLvk(τ) +
n∑

k=0

εkRvk(η) +O(εn+1), x ∈ [0, 1].
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Proof. We choose a lower and an upper solution of problem (1.N), (αu
n+1, α

v
n+1) and (βu

n+1, β
v
n+1) as

a modification of the formal asymptotics of the order (n + 1). For the slow component v, these are the

functions

αv
n+1(x, ε) =

n+1∑
k=0

εkv̄k(x) +

n+3∑
k=3

εk(Lvk(τ) +Rvk(η))− εn+1γ2(x),

βv
n+1(x, ε) =

n+1∑
k=0

εkv̄k(x) +

n+3∑
k=3

εk(Lvk(τ) +Rvk(η)) + εn+1γ2(x),

(25)

and for the fast component u, the functions

αu
n+1(x, ε) =

n+1∑
k=0

εk(ūk(x) + Luk(τ) +Ruk(η)) − εn+1γ1(x) − εn+2[e−κτ + e−κη],

βu
n+1(x, ε) =

n+1∑
k=0

εk(ūk(x) + Luk(τ) +Ruk(η)) + εn+1γ1(x) + εn+2[e−κτ + e−κη].

(26)

In expressions (25) and (26), the positive functions γ1(x) and γ2(x) are defined in Lemma 1. The standard

exponentially decreasing extra terms in the lower and upper solutions ensure the satisfaction of the boundary

inequalities. Ordering condition 1 (see Definition 1) is then obviously satisfied. The differential inequalities

can be verified by substitution. For the upper solution, by the quasimonotonicity condition, the following

differential inequalities must be satisfied:

Nu(β
u
n+1(x, ε), β

v
n+1(x, ε)) ≤ 0, Nv(β

u
n+1(x, ε), β

v
n+1(x, ε)) ≤ 0. (27)

Substituting βu
n+1 and βv

n+1 defined in (25) and (26) in (27), after simple transformations based on the use

of equations for the terms of the formal asymptotics, we obtain

Nu(β
u
n+1(x, ε), β

v
n+1(x, ε)) = −εn+1[ḡu(x)γ1 + ḡv(x)γ2] +O(εn+2) = −εn+1h1(x) +O(εn+2) ≤ −cεn+1,

Nv(β
u
n+1(x, ε), β

v
n+1(x, ε)) = εn+1

(
d2γ2
dx2

− 2B
dv̄0
dx

dγ2
dx

−Bv

(
dv̄0
dx

)2

γ2 − f̄uγ1 − f̄vγ2

)
+O(εn+2) =

= εn+1h2(x) +O(εn+2) ≤ −cεn+1

(28)

for sufficiently small ε due to Lemma 1. The differential inequalities for the lower solution can be verified

similarly. Thus, all conditions for determining the lower and upper solutions are satisfied. The solution of

problem (1) exists and satisfies the inequalities

αu
n+1(x, ε) ≤ u(x, ε) ≤ βu

n+1(x, ε),

αv
n+1(x, ε) ≤ v(x, ε) ≤ βv

n+1(x, ε),

which imply the estimate in Theorem 1N.

We now consider problem (1.N) under the following quasimonotonicity condition.

Condition A5∗. Assume that the vector function (g, f) is quasimonotone nondecreasing in (u, v) in

the domain of definition for sufficiently small ε.

This condition means that gv ≥ 0 for a fixed u and fu ≥ 0 for a fixed v in their range. In this case, due

to the quasimonotonicity condition, the following differential inequalities must be satisfied for the upper

solution:

Nu(β
u
n+1(x, ε), α

v
n+1(x, ε)) ≤ 0, Nv(α

u
n+1(x, ε), β

v
n+1(x, ε)) ≤ 0. (29)
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In this case, the key role in the proof of an analogue of Theorem 1N is played by the positivity of the

solutions of the boundary value problem for the differential-algebraic system

ḡu(x)γ1 − ḡv(x)γ2 = h1(x),

d2γ2
dx2

− 2B
dv̄0
dx

dγ2
dx

−Bv

(
dv̄0
dx

)2

γ2 + f̄u(x)γ1 − f̄v(x)γ2 = h2(x), x ∈ (0, 1),

γ2(0) > 0, γ2(1) > 0,

where h1(x) > 0, h2(x) < 0 for x ∈ [0, 1]. The proof is completely similar to the proof of Lemma 1. Thus,

the following theorem similar to Theorem 1N holds.

Theorem 2N. If Conditions A1, A2, A4, and A5∗ are satisfied, then a solution (u(x, ε), v(x, ε)) of

problem (1) exists for sufficiently small ε and has the asymptotic representation

u(x, ε)− Un(x, ε) = O(εn+1), v(x, ε)− Vn(x, ε) = O(εn+1), x ∈ [0, 1],

where Un(x, ε) and Vn(x, ε) are nth-order partial sums of the asymptotics of problem (1.N) constructed in

Sec. 2.

We consider problem (1.N) in the case where the quasimonotonicity condition is not satisfied. This

means that gv for a fixed u and fu for a fixed v change the sign in the domain of definition (between the

lower and upper solutions). In this case, the following differential inequalities (see Definition 1) must be

satisfied for the upper solution:

Nu(β
u
n+1(x, ε), v) ≤ 0, αv

n+1(x, ε) ≤ v ≤ βv
n+1(x, ε),

Nv(u, β
v
n+1(x, ε)) ≤ 0, αu

n+1(x, ε) ≤ u ≤ βu
n+1(x, ε).

(30)

These differential inequalities, just as in the cases considered above, are ensured by the positivity of solutions

of the differential-algebraic system that takes the form

ḡu(x)γ1 − s1ḡv(x)γ2 = h1(x),

d2γ2
dx2

− 2B
dv̄0
dx

dγ2
dx

−Bv

(
dv̄0
dx

)2

γ2 + s2f̄u(x)γ1 − f̄v(x)γ2 = h2(x), x ∈ (0, 1),

γ2(0) > 0, γ2(1) > 0,

(31)

with some choice of h1(x) > 0 and h2(x) < 0 for x ∈ [0, 1], si ∈ [−1, 1]. Following the scheme of the proof

of Lemma 1, we can show that γ1(x) and γ2(x) are positive if the following condition is satisfied.

Condition A5∗∗. Assume the condition

Bv

(
dv̄0
dx

)2

+ f̄v − |ϕ̄v f̄u| > −λ0

to be satisfied for all x ∈ [0, 1], where λ0 is the principal eigenvalue of the problem defined in Condition A4.

Theorem 3N. If Conditions A1, A2, A4, and A5∗∗ are satisfied, then a solution (u(x, ε), v(x, ε)) of

problem (1) exists for sufficiently small ε and has the asymptotic representation

u(x, ε)− Un(x, ε) = O(εn+1), v(x, ε)− Vn(x, ε) = O(εn+1), x ∈ [0, 1],

where Un(x, ε) and Vn(x, ε) are nth-order partial sums of the asymptotics of problem (1.N) constructed in

Sec. 2.
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3.2. Dirichlet boundary conditions. In the case of Dirichlet boundary conditions for the u com-

ponent, we consider problem (1.D) following a similar strategy with necessary variations in the structure of

the upper and lower solutions. If quasimonotonicity Condition A5 is satisfied, then we have the following

theorem.

Theorem 1D. If Conditions A1–A5 are satisfied, then a solution (u(x, ε), v(x, ε)) of problem (1) exists

for sufficiently small ε and has the asymptotic representation

u(x, ε)− Un(x, ε) = O(εn+1), v(x, ε)− Vn(x, ε) = O(εn+1), x ∈ [0, 1],

where Un(x, ε) and Vn(x, ε) are nth-order partial sums of the asymptotics of problem (1.D) constructed in

Sec. 2.

The proof of Theorem 1D is similar to the proof of Theorem 1N. The lower and upper solutions of

problem (1.D) are given by

αu
n+1(x, ε) =

n+1∑
k=0

εk(ūk(x) + Luk(τ) +Ruk(η)) − εn+1γ1(x)− εn+1(Luα(τ) +Ruα(η)),

βu
n+1(x, ε) =

n+1∑
k=0

εk(ūk(x) + Luk(τ) +Ruk(η)) + εn+1γ1(x) + εn+1(Luβ(τ) +Ruβ(η))

(32)

and

αv
n+1(x, ε) =

n+1∑
k=0

εkv̄k(x) +

n+3∑
k=2

εk(Lvk(τ) +Rvk(η))− εn+1γ2(x) − εn+3(Lvα(τ) +Rvα(η)),

βv
n+1(x, ε) =

n+1∑
k=0

εkv̄k(x) +

n+3∑
k=2

εk(Lvk(τ) +Rvk(η)) + εn+1γ2(x) + εn+3(Lvβ(τ) +Rvβ(η)),

where the positive functions γ1(x) and γ2(x) are defined in Lemma 1 and the positive functions Luα(τ),

Ruα(η), Lvα(τ), and Rvα(η) are to be found from the problems

d2Luα
dτ2

− 2A(ū0(0) + Lu0(τ), 0)
dLu0
dτ

dLuα
dτ

−
(
∂A

∂u
(ū0(0) +

+ Lu0(τ), 0)

(
dLu0
dτ

)2

+
∂g

∂u
(ū0(0) + Lu0(τ), v̄0(0), 0, 0)

)
Luα =

= Lgα(τ) − C0e
−κ0τ ≡ ψα(τ),

d2Ruα
dη2

− 2A(ū0(1) +Ru0(η), 1)
dRu0
dη

dRuα
dη

−
(
∂A

∂u
(ū0(1) +

+Ru0(η), 1)

(
dRu0
dη

)2

+
∂g

∂u
(ū0(1) +Ru0(η), v̄0(1), 1, 0)

)
Ruα =

= Rgα(η) − C1e
−κ1η ≡ ψα(η),

d2Lvα
dτ2

= Lfα(τ),
d2Rvα
dη2

= Rfα(η),

Luα(0) = 0, Ruα(0) = 0, Luα(+∞) = 0, Ruα(+∞) = 0,

Lvα(+∞) = 0, Rvα(+∞) = 0,

(33)
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where C0, C1, κ0, and κ1 are some positive constants chosen such that ψα(τ) and ψα(η) are negative and

Lgα(τ), Rgα(η), Lfα(τ), and Rfα(η) are known standard exponentially decreasing functions arising after

substituting the modified lower solutions in the regular parts of the asymptotics. For example, Lgα(τ) and

Lfα(τ) are given by

Lgα(τ) =

(
∂A

∂u
(ū0(0) + Lu0(τ), 0)

(
dLu0
dτ

)2)
γ1(0) +

+

(
∂g

∂u
(ū0(0) + Lu0(τ), v̄0(0), 0, 0)− ∂g

∂u
(ū0(0), v̄0(0), 0, 0)

)
γ1(0) +

+

(
∂g

∂v
(ū0(0) + Lu0(τ), v̄0(0), 0, 0)− ∂g

∂v
(ū0(0), v̄0(0), 0, 0)

)
γ2(0),

Lfα(τ) =

(
∂f

∂u
(ū0(0) + Lu0(τ), v̄0(0), 0, 0)− ∂f

∂u
(ū0(0), v̄0(0), 0, 0)

)
×

× (γ1(0) + Luα(τ)) +

(
∂f

∂v
(ū0(0) + Lu0(τ), v̄0(0), 0, 0)

)
γ2(0)−

− ∂f

∂v
(ū0(0), v̄0(0), 0, 0)γ2(0).

(34)

The functions Rgα(η), Rfα(η) have a similar form. The functions Luβ(τ) and Ruβ(η) in the upper

solution are determined from similar problems, with ψβ(τ) and ψβ(η) being negative. The exponentially

decreasing positive corrections to the lower and upper solutions of the u component are determined by

formulas similar to (18). The exponential corrections to the lower and upper solutions of the v component are

determined by double integration, and they are chosen such that, when verifying differential inequalities (27),

the coefficient of εn+1 containing the functions Lu0(τ), Luα(τ), Ru0(η), and Ruα(η) vanish. The functions

Lvβ(τ) and Rvβ(η) are determined similarly.

Differential inequalities (27) can be verified standardly. Ordering condition 1 in Definition 1 is obviously

satisfied. For the upper solution, by Lemma 1, we have

Nu(β
u
n+1(x, ε),β

v
n+1(x, ε)) = −εn+1[ḡu(x)γ1 + ḡv(x)γ2]− εn+1(C0e

−κ0τ + C1e
−κ1η) +O(εn+2) =

= −εn+1h1(x)− εn+1(C0e
−κ0τ + C1e

−κ1η) +O(εn+2) ≤ −cεn+1,

Nv(β
u
n+1(x, ε), β

v
n+1(x, ε)) = εn+1

(
d2γ2
dx2

− 2B
dv̄0
dx

dγ2
dx

−Bv

(
dv̄0
dx

)2

γ2 − f̄uγ1 − f̄vγ2

)
+O(εn+2) =

= εn+1h2(x) +O(εn+2) ≤ −cεn+1

(35)

for sufficiently small for sufficiently small ε. The differential inequalities for the lower solution can be

verified similarly.

If quasimonotonicity Condition A5∗ is satisfied, then the following theorem holds.

Theorem 2D. If Conditions A1–A5∗ are satisfied, then a solution (u(x, ε), v(x, ε)) of problem (1)

exists for sufficiently small ε and has the asymptotic representation

u(x, ε)− Un(x, ε) = O(εn+1), v(x, ε)− Vn(x, ε) = O(εn+1), x ∈ [0, 1],

where Un(x, ε) and Vn(x, ε) are nth-order partial sums of the asymptotics of problem (1.D) constructed in

Sec. 2.

The verification of differential inequalities in this case practically repeats that in the proof of Theo-

rem 1D.
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We next consider the case where the quasimonotonicity condition is not satisfied. In this case, inequal-

ities (30) must be satisfied for the upper solution. Proceeding as in the proof of Theorem 1D, we see that

expressions (35) have the same form as in the proof of Theorem 1D. But the functions γ1(x) and γ2(x)

are then determined as solutions of differential-algebraic system (31) under Condition A5∗∗. These func-

tions are also used to determine boundary layer corrections for the upper and lower solutions in (32). The

following theorem holds.

Theorem 3D. If Conditions A1–A5∗∗ are satisfied, then a solution (u(x, ε), v(x, ε)) of problem (1)

exists for sufficiently small ε and has the asymptotic representation

u(x, ε)− Un(x, ε) = O(εn+1), v(x, ε)− Vn(x, ε) = O(εn+1), x ∈ [0, 1],

where Un(x, ε) and Vn(x, ε) are nth-order partial sums of the asymptotics of problem (1.D) constructed in

Sec. 2.

4. Asymptotic stability of solutions

The solution of boundary value problems (1.D) or (1.N), whose existence is proved in the theorems in

the preceding section, can be regarded as stationary solutions of the corresponding initial boundary value

parabolic problem for the system

Lu(u, v) := ε2
∂2u

∂x2
− ε2A(u, x)

(
∂u

∂x

)2

− ∂u

∂t
− g(u, v, x, ε) = 0,

Lv(u, v) :=
∂2v

∂x2
−B(v, x)

(
∂v

∂x

)2

− ∂v

∂t
− f(u, v, x, ε) = 0, 0 < x < 1, t > 0,

u(x, 0, ε) = u0(x, ε), v(x, 0, ε) = v0(x, ε), x ∈ [0, 1],

(36)

with prescribed boundary conditions for these problems. We let us(x, ε) and vs(x, ε) denote these solutions.

The Lyapunov stability of these solutions treated as stationary solutions of problem (36) obviously follows

from the fact that the lower and upper solutions of the boundary value problem are the lower and upper

solutions of problem (36) under the condition

αu
n+1(x, ε) ≤ u0(x, ε) ≤ βu

n+1(x, ε), αv
n+1(x, ε) ≤ v0(x, ε) ≤ βv

n+1(x, ε).

The proof of the asymptotic Lyapunov stability of the solutions us(x, ε) and vs(x, ε) as stationary solutions

of problem (36) is based on the use of the approach that is efficient in many classes of problems and amounts

to constructing the upper and lower solutions of a special structure (see [6] and the references therein).

We seek the upper and lower solutions of problem (36) in the form

Uβ(x, t, ε) = us(x, ε) + (βu
n+1(x, ε)− us(x, ε))e

−λεt,

Uα(x, t, ε) = us(x, ε) + (αu
n+1(x, ε)− us(x, ε))e

−λεt,

Vβ(x, t, ε)) = vs(x, ε) + (βv
n+1(x, ε)− vs(x, ε))e

−λεt,

Vα(x, ε) = vs(x, ε) + (αv
n+1(x, ε) − vs(x, ε))e

−λεt, x ∈ (0, 1), t ∈ R
+,

(37)

where (αu
n+1(x, ε), α

v
n+1(x, ε)) and (βu

n+1(x, ε), β
v
n+1(x, ε)) are the lower and upper solutions of this problem

and λ > 0 is a constant. The standard transformations based on the use of equations for the terms of the
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asymptotics of stationary solutions, differential inequalities for stationary lower and upper solutions, and

the estimates for the difference of the derivatives of the asymptotic solutions

∣∣∣∣dus(x, ε)dx
− dUn(x, ε)

dx

∣∣∣∣ = O(εn),

∣∣∣∣dvs(x, ε)dx
− dVn(x, ε)

dx

∣∣∣∣ = O(εn+1), (38)

which follow from the theorem proved in [7] for the general boundary value problem (see the proof of

a similar estimate in [14] for details), show that the corresponding differential inequalities are satisfied for

the upper and lower solutions determined by expressions (37). In particular, after the substitution and

under quasimonotonicity Condition A5 for the stationary solution, as defined in Theorem 1N, we have the

upper solutions

Lu(Uβ , Vβ) = e−λεt(Nu(β
u
n+1(x, ε), β

v
n+1(x, ε)) + ελ(βu

n+1 − us) +O(ε2n+2)) < 0,

Lv(Uβ , Vβ) = e−λεt(Nv(β
u
n+1(x, ε), β

v
n+1(x, ε)) + ελ(βv

n+1 − vs) +O(ε2n+2)) < 0
(39)

for sufficiently small ε and λ > 0 for n ≥ 0 due to differential inequalities (35) for Nu(β
u
n+1(x, ε), β

v
n+1(x, ε))

and Nv(β
u
n+1(x, ε), β

v
n+1(x, ε)), because (β

u
n+1−us) = O(εn+1) and (βv

n+1−vs) = O(εn+1). The differential

inequality for (Uα(x, t, ε), Vα(x, t, ε)) can be verified similarly.

The verification of the conditions of problem (1.D) is completely similar. It follows from (39) that

a solution of problem (36) exists under the condition αu
1 (x, ε) ≤ u0(x, ε) ≤ βu

1 (x, ε), α
v
1(x, ε) ≤ v0(x, ε) ≤

βv
1 (x, ε), where the lower and upper solutions are as in (37). The local uniqueness of the solution of boundary

value problem (1) follows from the uniqueness theorem for the solution of the problem and the structure of

the lower and upper solutions in (37).

Theorem 1NS. Under Conditions A1, A2, A4, and A5, for sufficiently small ε, the stationary solution

(us(x, ε), vs(x, ε)) is asymptotically Lyapunov stable as a solution of problem (36), with the stability domain

not less than

[αu
1 (x, ε);β

u
1 (x, ε)]× [αv

1(x, ε);β
v
1 (x, ε)],

and is locally unique as a solution of problem (1) in this domain.

Theorem 1DS. Under Conditions A1–A5, for sufficiently small ε, the stationary solution (us(x, ε),

vs(x, ε)) is asymptotically Lyapunov stable as a solution of problem (36) with the stability domain not less

than

[αu
1 (x, ε);β

u
1 (x, ε)]× [αv

1(x, ε);β
v
1 (x, ε)],

and is locally unique as a solution of problem (1) in this domain.

For stationary solutions whose existence was proved in Theorems 2N, 3N, 2D, and 3D, the corresponding

analogues of these theorems also hold.
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