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The focusing coupled modified Korteweg–de Vries equation with nonzero boundary conditions is inves-

tigated by the Riemann–Hilbert approach. Three symmetries are formulated to derive compact exact

solutions. The solutions include six different types of soliton solutions and breathers, such as dark–dark,

bright–bright, kink–dark–dark, kink–bright–bright solitons, and a breather–breather solution.
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1. Introduction

The modified Korteweg–de Vries (mKdV) equation was first introduced by Miura [1] as a natural

extension of the KdV equation. It appears in many physical contexts, such as meandering ocean currents [2],

acoustic waves in a certain anharmonic lattice [3], the Alfvén waves in a cold collision-free plasma [4], and

so on. As a consequence, the equation has been studied extensively and many important results have been

obtained [5]–[12].

In recent years, multicomponent integrable models have attracted considerable attention because of

their physical significance in many fields such as optical fibers [13], [14], Bose–Einstein condensate [15], [16],

and nonlinear optics [13]. An extension to the multicomponent equations is needed to describe different

physical phenomena. For example, we know that the scalar nonlinear Schrödinger (NLS) equation controls

the propagation of light pulses with fixed polarization, but when we consider the polarization effect in

the pulse propagation along an optical fiber [17], we should use its two-component version. And when

it comes to the effects of polarization or anisotropy in birefringent fibers [18], the short-pulse equation

characterizing the propagation of ultrashort optical pulses in nonlinear media should be replaced by its two-

component counterpart to describe the propagation of ultrashort pulses in birefringent fibers. Moreover,

multicomponent integrable systems are rich in mathematical structures, and therefore their studies from

different standpoints offer completely different experiences and challenges. Generalizations of the mKdV

equation to the multicomponent case have been proposed and studied by several authors [19]–[24].
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In this paper, we consider the focusing coupled modified Korteweg–de Vries (fcmKdV) equation

qt + qxxx + 3‖q‖2qx + 3qTqxq = 0, q = (q1, q2)
T, (1.1)

where the superscripts T and ‖ · ‖ represent the matrix transpose and the standard Euclidean norm, and

0 denotes a zero matrix of the appropriate size. In 2017, multisoliton solutions of the fcmKdV equation

decaying rapidly for large |x| were obtained in [25] by using the inverse scattering transform (IST) method.

In 2020, Wang et al. [26] obtained the nonlinear stability of breather solutions of the fcmKdV equation.

To better understand nonlinear phenomena of integrable systems, it is important to use various meth-

ods to find their exact solutions, among which the Riemann–Hilbert approach is always considered as an

effective tool for solving initial-value problems. The Riemann–Hilbert approach is the modern version of

the IST method. It has become evident that this method is also applicable to the long-time asymptotics

of solutions to a wide range of integrable systems [27]–[29]. In addition, integrable nonlinear systems with

nonzero boundary conditions (NZBCs) have numerous applications. Recent experiments with Bose–Einstein

condensates have shown a proliferation of dark–dark vector solitons in the dynamics of two miscible super-

fluids experiencing fast counterflow in a narrow (cigar-shaped) condensate [16]. Problems with NZBCs are

also relevant for the modulational instability in optics and the generation of rogue waves [30], [31]. In this

paper, we use IST to solve the fcmKdV equation with the NZBCs

lim
x→±∞q(x, t) = q±, ‖q±‖ = q0 > 0, (1.2)

where q± = (q1±, q2±)T. We note that the defocusing cmKdV equation with NZBCs was considered in [19].

Compared with the latter problem, we show that the focusing one in this paper has a more complicated

spectral structure and richer classification of the discrete spectrum, leading to abundance of soliton solutions.

We also want to explore the soliton classification for this problem.

This paper is organized as follows. In Sec. 2, for the potential q(x, t) such that q( · , t)−q± ∈ L1(R), the

Jost eigenfunctions and scattering coefficients are defined in the direct problem. The auxiliary eigenfunctions

that can comprise a complete set of analytic eigenfunctions are given. The symmetries and asymptotic

behavior of the eigenfunctions and scattering coefficients are systematically obtained. In Sec. 3, a matrix

Riemann–Hilbert problem (RHP) for the inverse problem is formulated, and the trace formula and the

asymptotic phase difference are given. In Sec. 4, a compact matrix-form formula for general soliton solutions

is derived in the reflectionless case, including an arbitrary combination of six different types of solitons.

The conclusions are given in Sec. 5.

2. Direct problem

The Lax pair for Eq. (1.1) is given by

ϕx = Xϕ, X(x, t, k) = ikσ +Q,

ϕt = Tϕ, T(x, t, k) = 4k2Q+ 2ik(2k2σ + σQ2 +Qxσ) + 2Q3 − [Q,Qx]−Qxx,
(2.1)

where

σ = diag(−1, 1, 1), Q(x, t) =

(
0 qT

−q 0

)
, (2.2)

and [ · , · ] denotes matrix commutator.
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2.1. Jost eigenfunctions and the scattering matrix. To introduce Jost solutions, we must first

study the asymptotic spectral problem for (2.1) as x → ±∞,

φ±,x = X±φ±, X± = ikσ +Q±,

φ±,t = T±φ±, T± = 4k2Q± + 2ik(2k2σ + σQ2
±) + 2Q3

±,
(2.3)

where

Q± =

(
0 qT

±
−q± 0

)
.

The eigenvalues of X± are ik and ±iλ, where

λ(k) =
√
k2 + q20 . (2.4)

We note that λ(k) is multivalued. As usual, this situation can be obviated by introducing the two-sheeted

Riemann surface defined by (2.4). Its branch points are the values of k for which λ(k) = 0, i.e., k = ±iq0.

This Riemann surface is constructed by gluing two copies along the branch cut i[−q0, q0]. We define λ(k)

such that Imλ(k) > 0 is the upper-half plane on the sheet I and the lower-half plane on the sheet II, and

Imλ(k) < 0 is the lower-half plane on the sheet I and the upper-half plane on the sheet II.

For convenience, we introduce the uniformization variable as

z = k + λ, (2.5)

whose inverse map is given by

k =
1

2
(z − ẑ), λ =

1

2
(z + ẑ), (2.6)

where ẑ := q20/z. Let C0 be the circle of radius q0 centered at the origin in the complex z plane. Then the

branch cut on either sheet is mapped onto C0: the first sheet CI is mapped onto the exterior of C0, and

the second sheet CII is mapped onto the interior of C0. We also have z(k, λI)z(k, λII) = q20 .

We next perform the IST on the complex z plane. On either sheet of the Riemann surface, we can

take the asymptotic eigenvector matrices in the form

E±(z) =

(
1 0 −iq0/z

−iq±/z q⊥±/q0 q±/q0

)
, (2.7)

whence
E−1

± X±E± = iΛ1, Λ1(z) = diag(−λ, k, λ),

E−1
± T±E± = iΛ2, Λ2(z) = diag(−2λ(2k2 − q20), 4k

3, 2λ(2k2 − q20)),
(2.8)

where q⊥
± = (q2±,−q1±)T. For future reference, we note that

detE±(z) = 1 +
q20
z2

:= γ(z). (2.9)

The continuous spectrum k ∈ (R ∪ i[−q0, q0]) consists of all values of k (on either sheet) such that

λ(k) ∈ R. The corresponding set is Σ = R ∪ C0 in the complex z plane. In that way, for z ∈ Σ, we can

define ϕ±(x, t, z) as the Jost eigenfunctions with the boundary conditions

ϕ±(x, t, z) = E±(z)eiΘ(x,t,z) + o(1), x → ±∞, (2.10)
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where Θ(x, t, z) = Λ1(z)x + Λ2(z)t = diag(θ1(x, t, z), θ2(x, t, z),−θ1(x, t, z)). As usual, we introduce the

modified Jost eigenfunctions

μ±(x, t, z) = ϕ±(x, t, z)e−iΘ(x,t,z), (2.11)

such that

lim
x→±∞μ±(x, t, z) = E±(z), z ∈ Σ. (2.12)

The spectral problem for μ±(x, t, z) is defined by

(E−1
± μ±)x + i[E−1

± μ±,Λ1] = E−1
± ΔQ±μ±,

(E−1
± μ±)t + i[E−1

± μ±,Λ2] = E−1
± ΔT±μ±,

(2.13)

where ΔQ± = Q−Q± and ΔT± = T−T±. Using these linear equations, it can be proved that μ±(x, t, z)
are well defined.

Theorem 2.1. Let q( · , t)−q± ∈ L1(R). Then the columns of μ±(x, t, z) can be analytically extended

to the corresponding domains in the complex z plane,

μ−,1 : D1, μ−,2 : C−, μ−,3 : D4,

μ+,1 : D2, μ+,2 : C+, μ+,3 : D3,
(2.14)

where the analytic domains D1, . . . , D4 and C+, C− are

D1 = {z | Im z > 0, |z| > q0}, D2 = {z | Im z < 0, |z| > q0},
D3 = {z | Im z < 0, |z| < q0}, D4 = {z | Im z > 0, |z| < q0},
C− = {z | Im z < 0}, C+ = {z | Im z > 0}.

(2.15)

We next introduce the scattering matrix in a standard way. Because trX = ik and trT = 4ik3,

it follows from the Abel theorem that

∂

∂x
det[ϕ±(x, t, z)e−iΘ(x,t,z)] =

∂

∂t
det[ϕ±(x, t, z)e−iΘ(x,t,z)] = 0, (2.16)

which implies that

detϕ±(x, t, z) = γ(z)eiθ2(x,t,z), z ∈ Σ. (2.17)

As a result, for z ∈ Σ0 := Σ \ {±iq0}, ϕ+(x, t, z) and ϕ−(x, t, z) are two fundamental solutions of linear

system (2.1), and hence a 3× 3 scattering matrix A(z) must exist such that

ϕ−(x, t, z) = ϕ+(x, t, z)A(z). (2.18)

Because of the explicit time dependence of boundary condition (2.10), A(z) is independent of time. Com-

bining (2.18) with (2.17) yields

detA(z) = 1, z ∈ Σ0. (2.19)

We set B(z) := A−1(z) = (bij(z)) for convenience. Furthermore, we obtain the following theorem.

Theorem 2.2. Under the same hypotheses as in Theorem 2.1, the scattering coefficients can be ana-

lytically extended to the corresponding domains in the complex z plane:

a11(z) : D1, a22(z) : C−, a33(z) : D4,

b11(z) : D2, b22(z) : C+, b33(z) : D3.
(2.20)
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2.2. Auxiliary eigenfunctions. To formulate a complete RHP, four more eigenfunctions for (2.1)

that are respectively analytic in four fundamental domains must be constructed. For this, as in [32], we turn

to the adjoint problem

ϕ̃x = X̃(z)ϕ̃, ϕ̃t = T̃(z)ϕ̃, (2.21)

where X̃(z) = X∗(z∗) and T̃(z) = T∗(z∗). As before, for z ∈ Σ, we define the adjoint Jost eigenfunctions

ϕ̃±(x, t, z) for (2.21) satisfying boundary conditions

ϕ̃±(x, t, z) = E∗
±(z

∗)e−iΘ(x,t,z) + o(1), x → ±∞. (2.22)

Under the same assumption as in Theorem 2.1, by introducing the modified adjoint Jost eigenfunctions

μ̃±(x, t, z) = ϕ̃±(x, t, z)eiΘ(x,t,z), it can be shown that the columns of μ̃±(x, t, z) can be analytically extended

to the corresponding domains:

μ̃−,1 : D2, μ̃−,2 : C+, μ̃−,3 : D3,

μ̃+,1 : D1, μ̃+,2 : C−, μ̃+,3 : D4.
(2.23)

For z ∈ Σ, we have det ϕ̃±(x, t, z) = γ(z)e−iθ2(x,t,z). Consequently, for z ∈ Σ0, we introduce the corre-

sponding scattering matrix as

ϕ̃−(x, t, z) = ϕ̃+(x, t, z)Ã(z). (2.24)

By simple calculation, we can obtain the following fact.

Proposition 2.1. If p̃(x, t, z) and q̃(x, t, z) are any two solutions to adjoint problem (2.21), then

r(x, t, z) = eiθ2(x,t,z)[p̃× q̃](x, t, z) (2.25)

is a solution of the original Lax pair (2.1), where × denotes the usual cross product.

Recalling the definition of the adjoint problem, we conclude that

ϕ̃±(x, t, z) = ϕ∗
±(x, t, z

∗), z ∈ Σ. (2.26)

By the above results, we can build four new solutions of the original spectral problem (2.1), referred to as

the auxiliary eigenfunctions, as

χ1(x, t, z) = eiθ2(x,t,z)[ϕ∗
+,1 × ϕ∗

−,2](x, t, z
∗), z ∈ D1,

χ2(x, t, z) = eiθ2(x,t,z)[ϕ∗
−,1 × ϕ∗

+,2](x, t, z
∗), z ∈ D2,

χ3(x, t, z) = eiθ2(x,t,z)[ϕ∗
+,2 × ϕ∗

−,3](x, t, z
∗), z ∈ D3,

χ4(x, t, z) = eiθ2(x,t,z)[ϕ∗
−,2 × ϕ∗

+,3](x, t, z
∗), z ∈ D4.

(2.27)

The corresponding modified auxiliary eigenfunctions are defined as

mj(x, t, z) = χj(x, t, z)e
iθ1(x,t,z), z ∈ Dj , j = 1, 2,

ml(x, t, z) = χl(x, t, z)e
−iθ1(x,t,z), z ∈ Dl, l = 3, 4.

(2.28)

By using above results again, we establish the following relation in a straightforward way.
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Lemma 2.1. For all cyclic permutations of the indices j, l, and m with z ∈ Σ,

ϕ±,j(x, t, z) = eiθ2(x,t,z)
[ϕ∗

±,l × ϕ∗
±,m](x, t, z∗)
γj(z)

, (2.29)

where γ1(z) = γ3(z) = 1 and γ2(z) = γ(z).

It is useful to note that

(detϕ±)I = (ϕ±,2 × ϕ±,3, ϕ±,3 × ϕ±,1, ϕ±,1 × ϕ±,2)ϕ
T
±, z ∈ Σ0, (2.30)

where I denotes the 3 × 3 identity matrix. Thanks to this identity and scattering relation (2.18), we have

the following corollary.

Corollary 2.1. The scattering matrices A(z) and Ã(z) satisfy the relation

Ã(z) = Γ(z)[A−1(z)]TΓ−1(z), z ∈ Σ0, (2.31)

where Γ(z) = diag(1, γ(z), 1).

Applying scattering relation (2.24) and relation (2.29) to the auxiliary eigenfunctions (2.27) and then

using (2.31) yields the following statement.

Corollary 2.2. For z ∈ Σ0, the Jost eigenfunctions ϕ±,1(x, t, z), ϕ±,3(x, t, z) have the decompositions

ϕ−,1(x, t, z) =
1

a22(z)
[χ3(z) + a21(z)ϕ−,2(z)] =

1

a33(z)
[χ4(z) + a31(z)ϕ−,3(z)],

ϕ−,3(x, t, z) =
1

a11(z)
[χ1(z) + a13(z)ϕ−,1(z)] =

1

a22(z)
[χ2(z) + a23(z)ϕ−,2(z)],

ϕ+,1(x, t, z) =
1

b33(z)
[χ3(z) + b31(z)ϕ+,3(z)] =

1

b22(z)
[χ4(z) + b21(z)ϕ+,2(z)],

ϕ+,3(x, t, z) =
1

b11(z)
[χ2(z) + b13(z)ϕ+,1(z)] =

1

b22(z)
[χ1(z) + b23(z)ϕ+,2(z)].

(2.32)

2.3. Symmetries. Symmetries of the eigenfunctions and scattering coefficients determine the dis-

tribution of the discrete spectrum, degrees of freedom of the soliton parameters, and solvability of the

problem.

2.3.1. First symmetry. We first consider the transformation z �→ z∗. The following result is

a straightforward consequence of the fact that Q† = −Q and σQ = −Qσ, where † denotes the conju-

gate transpose.

Lemma 2.2. The Jost eigenfunctions ϕ±(x, t, z) admit the symmetry relation

ϕ†
±(x, t, z

∗) = C(z)ϕ−1
± (x, t, z), z ∈ Σ, (2.33)

where C(z) = diag(γ(z), 1, γ(z)).

Using identity (2.30) and symmetry (2.33), substituting the (2.32) into it, and applying the Schwartz

reflection principle, we obtain the following lemma.
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Lemma 2.3. The Jost eigenfunctions satisfy the symmetry relations

ϕ∗
−,1(z

∗) =
e−iθ2(x,t,z)

a22(z)
[ϕ−,2 × χ2](x, t, z), z ∈ D2,

ϕ∗
−,2(z

∗) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e−iθ2(x,t,z)

γ(z)a11(z)
[χ1 × ϕ−,1](x, t, z), z ∈ D1,

e−iθ2(x,t,z)

γ(z)a33(z)
[ϕ−,3 × χ4](x, t, z), z ∈ D4,

ϕ∗
−,3(z

∗) =
e−iθ2(x,t,z)

a22(z)
[χ3 × ϕ−,2](x, t, z), z ∈ D3,

ϕ∗
+,1(z

∗) =
e−iθ2(x,t,z)

b22(z)
[ϕ+,2 × χ1](x, t, z), z ∈ D1,

ϕ∗
+,2(z

∗) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e−iθ2(x,t,z)

γ(z)b33(z)
[ϕ+,3 × χ3](x, t, z) z ∈ D3,

=
e−iθ2(x,t,z)

γ(z)b11(z)
[χ2 × ϕ+,1](x, t, z), z ∈ D2,

ϕ∗
+,3(z

∗) =
e−iθ2(x,t,z)

b22(z)
[χ4 × ϕ+,2](x, t, z), z ∈ D4.

(2.34)

We now explore the impact of the first symmetry on the scattering matrix. The next lemma follows

from symmetry (2.33) and scattering relation (2.18).

Lemma 2.4. For z ∈ Σ0, the relation between the scattering matrices A(z) and B(z) is

A†(z∗) = C(z)B(z)C−1(z). (2.35)

Recalling the analyticity of the scattering coefficients, we conclude from the Schwartz reflection principle

that

b11(z) = a∗11(z
∗), z ∈ D2,

b22(z) = a∗22(z
∗), z ∈ C+,

b33(z) = a∗33(z
∗), z ∈ D3.

(2.36)

2.3.2. Second symmetry. We next discuss the transformation z �→ −z∗. It is easy to prove the

following lemma.

Lemma 2.5. The Jost eigenfunctions ϕ±(x, t, z) have the symmetry

ϕ±(x, t, z) = ϕ∗
±(x, t,−z∗), z ∈ Σ. (2.37)

We now discuss the symmetry of the scattering matrix in the context of the second symmetry. Substi-

tuting (2.37) in scattering relation (2.18), we obtain the following statement.

Lemma 2.6. For z ∈ Σ0, the scattering matrices satisfy the symmetries

A(z) = A∗(−z∗), B(z) = B∗(−z∗). (2.38)
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Then the Schwartz reflection principle allows us to conclude that

a11(z) = a∗11(−z∗), z ∈ D1,

a22(z) = a∗22(−z∗), z ∈ C−,

a33(z) = a∗33(−z∗), z ∈ D4.

(2.39)

Finally, we combine symmetries (2.37) with definitions (2.27) of the auxiliary eigenfunctions to arrive at

the following lemma.

Lemma 2.7. The auxiliary eigenfunctions admit the symmetry relations

χj(x, t, z) = χ∗
j (x, t,−z∗), z ∈ Dj , j = 1, . . . , 4. (2.40)

2.3.3. Third symmetry. Finally, we study the transformation z �→ −ẑ.

Lemma 2.8. The Jost eigenfunctions ϕ±(x, t, z) satisfy the symmetry

ϕ±(x, t, z) = ϕ±(x, t,−ẑ)Π(z), z ∈ Σ, (2.41)

where

Π(z) =

⎛
⎜⎝ 0 0 −iq0/z

0 1 0

−iq0/z 0 0

⎞
⎟⎠ .

Combining symmetry (2.41) with scattering relation (2.18) yields the following lemma.

Lemma 2.9. For z ∈ Σ0, the scattering matrices A(z) and B(z) admit the symmetries

A(−ẑ) = Π(z)A(z)Π−1(z), B(−ẑ) = Π(z)B(z)Π−1(z). (2.42)

Using the Schwartz reflection principle, we conclude that

a11(z) = a33(−ẑ), z ∈ D1,

a22(z) = a22(−ẑ), z ∈ C−.
(2.43)

To see how the third symmetry affects the symmetry of the auxiliary eigenfunctions, we substitute (2.41)

in (2.27).

Lemma 2.10. The auxiliary eigenfunctions obey the symmetries

χ1(x, t, z) = − iq0
z

χ4(x, t,−ẑ), z ∈ D1,

χ2(x, t, z) = − iq0
z

χ3(x, t,−ẑ), z ∈ D2.

(2.44)
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2.3.4. Reflection coefficients. We note that we cannot exclude the possible existence of zeros for

a11(z) and b22(z) along Σ. To solve the RHP, we focus on the potentials without spectral singularities [33].

For z ∈ Σ, there are three reflection coefficients in the inverse problem, which are given by

ρ1(z) =
a21(z)

a11(z)
, ρ2(z) =

a31(z)

a11(z)
, ρ3(z) =

a32(z)

a22(z)
. (2.45)

They have the following symmetries. We first consider the effect from the first symmetry:

ρ1(z) = γ(z)
b∗12(z

∗)
b∗11(z∗)

, ρ2(z) =
b∗13(z

∗)
b∗11(z∗)

, ρ3(z) =
1

γ(z)

b∗23(z
∗)

b∗22(z∗)
. (2.46)

Next, the second symmetry leads to the relations

ρj(z) = ρ∗j (−z∗), j = 1, 2, 3. (2.47)

Finally, due to the third symmetry, we obtain that

ρ1(−ẑ) =
iz

q0

a23(z)

a33(z)
=

izγ(z)

q0

b∗32(z
∗)

b∗33(z∗)
, ρ2(−ẑ) =

a13(z)

a33(z)
=

b∗31(z
∗)

b∗33(z∗)
,

ρ3(−ẑ) = − iq0
z

a12(z)

a22(z)
= − iq0

zγ(z)

b∗21(z
∗)

b∗22(z∗)
.

(2.48)

2.4. Asymptotic behavior. We next study the asymptotic behavior of the eigenfunctions and scat-

tering coefficients as k → ∞. Because z(∞I) = ∞ and z(∞II) = 0, we discuss the asymptotics both as

z → ∞ and as z → 0. Specifically, substituting the corresponding standard Wentzel–Kramers–Brillouin

expansions in differential equations (2.13) with boundary conditions (2.12) leads to the following lemma.

Lemma 2.11. As z → ∞, the columns of the modified Jost eigenfunctions μ±(x, t, z) in the corre-

sponding analyticity domains have the following asymptotic behavior:

μ±,1(x, t, z) =

⎛
⎝1 +

1

z

∫ x

±∞
i[q20 − ‖q(y, t)‖2] dy

−iq(x, t)/z

⎞
⎠+ o(z−2), (2.49a)

(μ±,2(x, t, z), μ±,3(x, t, z)) =

(
0 0

q⊥
±/q0 q±/q0

)
+ o(z−1). (2.49b)

Using the last two terms in (2.49a), we obtain the following proposition.

Proposition 2.2. The solution q(x, t) = (q1(x, t), q2(x, t))
T of the fcmKdV equation with NZBCs can

be expressed as

qj(x, t) = i lim
z→∞[zμ±(x, t, z)](j+1)1. (2.50)

Lemma 2.12. As z → 0, the columns of the modified Jost eigenfunctions μ±(x, t, z) in the corre-

sponding analyticity domains have the following asymptotic behavior:

(μ±,1(x, t, z), μ±,3(x, t, z)) =

(
0 −iq0/z

−iq±/z 0

)
+ o(1),

μ±,2(x, t, z) =

(
0

q⊥
±/q0

)
+ o(z).

(2.51)
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Substituting the above asymptotics in representations (2.28) for the modified auxiliary eigenfunctions

yields the following corollary.

Corollary 2.3. The modified auxiliary eigenfunctions mj(x, t, z) (j = 1, . . . , 4) in the corresponding

analyticity domains have the following asymptotics:

(m1,m2,m3,m4) =

(
0 0 qT

+q−/q20 qT
+q−/q20

q−/q0 q+/q0 0 0

)
+ o(z−1), z → ∞,

(m1,m2,m3,m4) =

(
−iqT

+q−/(zq0) −iqT
+q−/(zq0) 0 0

0 0 −iq+/z −iq−/z

)
+ o(1), z → 0.

(2.52)

Next, we investigate the asymptotic behavior of the scattering coefficients. Combining the asymptotics

of the Jost eigenfunctions in Lemmas 2.11 and 2.12 with scattering relation (2.18), we arrive at the following

statements.

Corollary 2.4. As z → ∞, the scattering coefficients in the corresponding analyticity domains have

the asymptotic behavior

a11(z) = 1 + o(z−1), a22(z) =
qT
+q−
q20

+ o(z−1), a33(z) =
qT
+q−
q20

+ o(z−1),

b11(z) = 1 + o(z−1), b22(z) =
qT
+q−
q20

+ o(z−1), b33(z) =
qT
+q−
q20

+ o(z−1).

(2.53)

Corollary 2.5. As z → 0, the scattering coefficients in the corresponding analyticity domains have

the asymptotics

a11(z) =
qT
+q−
q20

+ o(z), a22(z) =
qT
+q−
q20

+ o(z), a33(z) = 1 + o(z), (2.54a)

b11(z) =
qT
+q−
q20

+ o(z), b22(z) =
qT
+q−
q20

+ o(z), b33(z) = 1 + o(z). (2.54b)

3. Inverse problem

In what follows, we formulate the corresponding RHP and then obtain a reconstruction formula and

the trace formula.

3.1. Riemann–Hilbert problem. We start by introducing the piecewise meromorphic function

M(x, t, z) =

(
μ−,1(x, t, z)

a11(z)
, μ+,2(x, t, z),

m1(x, t, z)

b22(z)

)
, z ∈ D1,

M(x, t, z) =

(
μ+,1(x, t, z),

μ−,2(x, t, z)

a22(z)
,
m2(x, t, z)

b11(z)

)
, z ∈ D2,

M(x, t, z) =

(
m3(x, t, z)

b33(z)
,
μ−,2(x, t, z)

a22(z)
, μ+,3(x, t, z)

)
, z ∈ D3,

M(x, t, z) =

(
m4(x, t, z)

b22(z)
, μ+,2(x, t, z),

μ−,3(x, t, z)

a33(z)

)
, z ∈ D4.

(3.1)

We next study the jump conditions of the matrix function M(x, t, z) across the contour Σ. Thus, we set

M±(x, t, z) = lim
ź→z
ź∈D±

M(x, t, ź), z ∈ Σ,
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where D+ = D1 ∪ D3, D− = D2 ∪ D4. Here, Σ = Σ1 ∪ Σ2 ∪ Σ3 ∪ Σ4, where Σj is the boundary of

Dj ∩ D(j+1) mod 4. We define the orientation of the boundary Σj , j = 1, . . . , 4, such that D+ is always

on its left side. Then by combining scattering relation (2.18) with decompositions (2.32), we conclude that

the following lemma holds.

Lemma 3.1. The function M(x, t, z) satisfies the jump conditions

M+(x, t, z) = M−(x, t, z)G(x, t, z), z ∈ Σ, (3.2)

where

G(x, t, z) = eiΘ(x,t,z)Gj(z)e
−iΘ(x,t,z), z ∈ Σj , j = 1, . . . , 4, (3.3)

with

G1(z) =

⎛
⎜⎜⎝
1 +

1

γ(z)
|ρ1(z)|2 + |ρ2(z)|2 1

γ(z)
ρ∗1(z) ρ∗2(z)− ρ∗1(z)ρ∗3(z)

ρ1(z) 1 −γ(z)ρ∗3(z)
ρ2(z)− ρ1(z)ρ3(z) −ρ3(z) 1 + γ(z)|ρ3(z)|2

⎞
⎟⎟⎠ , z ∈ Σ1,

G2(z) =

⎛
⎜⎝1− ρ∗2(z

∗)ρ2(ẑ) 0 ρ∗2(z
∗)

0 1 0

−ρ2(ẑ) 0 1

⎞
⎟⎠ , z ∈ Σ2,

(3.4)

G3(z) =

⎛
⎜⎜⎜⎜⎝

1 + |ρ2(ẑ)|2 − b12(z)

a22(z)a33(z)
−ρ∗2(ẑ)

− a21(z)

b22(z)b33(z)

1

a22(z)b22(z)
γ(z)ρ∗3(z)

−ρ2(ẑ) ρ3(z) 1

⎞
⎟⎟⎟⎟⎠ , z ∈ Σ3,

G4(z) =

⎛
⎜⎝1− ρ2(z)ρ

∗
2(ẑ

∗) 0 −ρ∗2(ẑ
∗)

0 1 0

ρ2(z) 0 1

⎞
⎟⎠ , z ∈ Σ4.

The following symmetry holds:

G(x, t, z) = C−1(z)G†(x, t, z∗)C(z), z ∈ Σ. (3.5)

Moreover, using the asymptotics of the eigenfunctions and scattering coefficients with the restriction that

q+ is parallel to q−, we derive the following result.

Lemma 3.2. The matrix M(x, t, z) admits the normalization conditions

M(x, t, z) = M∞ + o(z−1), z → ∞,

M(x, t, z) = − i

z
M0 + o(1), z → 0,

(3.6)

where

M∞ =

(
1 0 0

0 q⊥
+/q0 q+/q0

)
, M0 =

(
0 0 q0

q+ 0 0

)
. (3.7)

The next lemma follows from (2.36), (2.39), and (2.43).
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Lemma 3.3. If z0 ∈ D1, then

b22(z0) = 0 ⇐⇒ a22(z
∗
0) = 0 ⇐⇒ a22(−ẑ∗0) = 0 ⇐⇒ b22(−ẑ0) = 0 ⇐⇒ b22(−z∗0) = 0 ⇐⇒

⇐⇒ a22(−z0) = 0 ⇐⇒ a22(ẑ0) = 0 ⇐⇒ b22(ẑ
∗
0) = 0,

a11(z0) = 0 ⇐⇒ b11(z
∗
0) = 0 ⇐⇒ b33(−ẑ∗0) = 0 ⇐⇒ a33(−ẑ0) = 0 ⇐⇒ a11(−z∗0) = 0 ⇐⇒

⇐⇒ b11(−z0) = 0 ⇐⇒ b33(ẑ0) = 0 ⇐⇒ a33(ẑ
∗
0) = 0.

(3.8)

These relations indicate that it suffices to study the zeros of a11(z) and b22(z) for z ∈ D1. In this

paper, we consider the zeros in the simple cases. Hence, there are six possible types of discrete eigenvalues:

1. {ξn}N1
n=1 is the set of all type-I eigenvalues; a11(ξn) = 0 and b22(ξn) �= 0 for Re ξn = 0;

2. {ωn}N2
n=1 is the set of all type-II eigenvalues; a11(ωn) = 0 and b22(ωn) �= 0 for Reωn �= 0;

3. {ηn}N3
n=1 is the set of all type-III eigenvalues; a11(ηn) �= 0 and b22(ηn) = 0 for Re ηn = 0;

4. {zn}N4
n=1 is the set of all type-IV eigenvalues; a11(zn) �= 0 and b22(zn) = 0 for Re zn �= 0;

5. {νn}N5
n=1 is the set of all type-V eigenvalues; a11(νn) = b22(νn) = 0 for Re νn = 0;

6. {ζn}N6
n=1 is the set of all type-VI eigenvalues; a11(ζn) = b22(ζn) = 0 for Re ζn �= 0.

Lemma 3.4. The meromorphic matrix M(x, t, z) satisfies the residue conditions

Res
z=ξn

M(x, t, z) = An(M3(ξn),0,0),

Res
z=−ξ̂∗n

M(x, t, z) = − q20
(ξ∗n)2

A∗
n(M3(−ξ̂∗n),0,0),

Res
z=ξ∗n

M(x, t, z) = −A∗
n(0,0,M1(ξ

∗
n)),

Res
z=−ξ̂n

M(x, t, z) =
q20
ξ2n

An(0,0,M1(−ξ̂n));

(3.9)

Res
z=ωn

M(x, t, z) = Bn(M3(ωn),0,0),

Res
z=−ω̂∗

n

M(x, t, z) = − q20
(ω∗

n)
2
B∗

n(M3(−ω̂∗
n),0,0),

Res
z=ω∗

n

M(x, t, z) = −B∗
n(0,0,M1(ω

∗
n)),

Res
z=−ω̂n

M(x, t, z) =
q20
ω2
n

Bn(0,0,M1(−ω̂n)),

Res
z=−ω∗

n

M(x, t, z) = −B∗
n(M3(−ω∗

n),0,0),

Res
z=ω̂n

M(x, t, z) =
q20
ω2
n

Bn(M3(ω̂n),0,0),

Res
z=−ωn

M(x, t, z) = Bn(0,0,M1(−ωn)),

Res
z=ω̂∗

n

M(x, t, z) = − q20
(ω∗

n)
2
B∗

n(0,0,M1(ω̂
∗
n));

(3.10)
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Res
z=ηn

M(x, t, z) = Cn(0,0,M2(ηn)),

Res
z=−η̂∗

n

M(x, t, z) =
iq30
(η∗n)3

C∗
n

γ(η∗n)
(0,M1(−η̂∗n),0),

Res
z=η∗

n

M(x, t, z) = − C∗
n

γ(η∗n)
(0,M3(η

∗
n),0),

Res
z=−η̂n

M(x, t, z) =
iq0
ηn

Cn(M2(−η̂n),0,0);

(3.11)

Res
z=zn

M(x, t, z) = Dn(0,0,M2(zn)),

Res
z=−ẑ∗

n

M(x, t, z) =
iq30
(z∗n)3

D∗
n

γ(z∗n)
(0,M1(−ẑ∗n),0),

Res
z=z∗

n

M(x, t, z) = − D∗
n

γ(z∗n)
(0,M3(z

∗
n),0),

Res
z=−ẑn

M(x, t, z) =
iq0
zn

Dn(M2(−ẑn),0,0),

Res
z=−z∗

n

M(x, t, z) = −D∗
n(0,0,M2(−z∗n)),

Res
z=ẑn

M(x, t, z) =
iq30
z3n

Dn

γ(zn)
(0,M1(ẑn),0),

Res
z=−zn

M(x, t, z) =
Dn

γ(zn)
(0,M3(−zn),0),

Res
z=ẑ∗

n

M(x, t, z) =
iq0
z∗n

D∗
n(M2(ẑ

∗
n),0,0);

(3.12)

Res
z=νn

M(x, t, z) = En(M2(νn),0,0),

Res
z=−ν̂∗

n

M(x, t, z) =
iq30
(ν∗n)3

E∗
n

γ(ν∗n)
(0,M3(−ν̂∗n),0),

Res
z=ν∗

n

M(x, t, z) = − E∗
n

γ(ν∗n)
(0,M1(ν

∗
n),0),

Res
z=−ν̂n

M(x, t, z) =
iq0
νn

En(0,0,M2(−ν̂n));

(3.13)

Res
z=ζn

M(x, t, z) = Fn(M2(ζn),0,0),

Res
z=−ζ̂∗

n

M(x, t, z) =
iq30
(ζ∗n)3

F ∗
n

γ(ζ∗n)
(0,M3(−ζ̂∗n),0),

Res
z=ζ∗

n

M(x, t, z) = − F ∗
n

γ(ζ∗n)
(0,M1(ζ

∗
n),0),

Res
z=−ζ̂n

M(x, t, z) =
iq0
ζn

Fn(0,0,M2(−ζ̂n)),

Res
z=−ζ∗

n

M(x, t, z) = −F ∗
n(M2(−ζ∗n),0,0),

Res
z=ζ̂n

M(x, t, z) =
iq30
ζ3n

Fn

γ(ζn)
(0,M3(ζ̂n),0),

Res
z=−ζn

M(x, t, z) =
Fn

γ(ζn)
(0,M1(−ζn),0),

Res
z=ζ̂∗

n

M(x, t, z) =
iq0
ζ∗n

F ∗
n(0,0,M2(ζ̂

∗
n))

(3.14)
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with the normalization constants

An =
anb22(ξn)

a′11(ξn)
e−2iθ1(ξn), Bn =

bnb22(ωn)

a′11(ωn)
e−2iθ1(ωn), Cn =

cn
b′22(ηn)

ei(θ1+θ2)(ηn),

Dn =
dn

b′22(zn)
ei(θ1+θ2)(zn), En =

en
a′11(νn)

ei(θ2−θ1)(νn), Fn =
fn

a′11(ζn)
ei(θ2−θ1)(ζn),

where an, bn, cn, dn, en, and fn are constants satisfying

an = a∗n, cn = c∗n, en = e∗n, (3.15)

and where n = 1, . . . , N1 for equations involving ξn, n = 1, . . . , N2 for equations involving ωn, n = 1, . . . , N3

for equations involving ηn, n = 1, . . . , N4 for equations involving zn, n = 1, . . . , N5 for equations involving

νn, and n = 1, . . . , N6 for equations involving ζn.

When there are no zeros of a11(z) and b22(z), that is, the RHP is regular, the uniqueness of its solution

is equivalent to the vanishing Lemma [34], [35].

Lemma 3.5. Suppose that no discrete spectrum is present, or the RHP has no poles. Then the RHP

defined in (3.1)–(3.7) has a unique solution.

However, the RHP defined in (3.1)–(3.15) has many singularities. According to [36], the RHP with

poles can be mapped into a regular one. This RHP can be regularized by subtracting the leading terms

of the asymptotic behavior and the pole contributions from the jump conditions. Then by the Plemelj’s

formula [37], we obtain the following theorem.

Theorem 3.1. The general solution of the RHP is given by

M(x, t, z) = E+(z) +

N1∑
n=1

(
Resz=ξn M

z − ξn
+

Resz=ξ∗n M

z − ξ∗n
+

Resz=−ξ̂∗n
M

z + ξ̂∗n
+

Resz=−ξ̂n
M

z + ξ̂n

)
+

+

N2∑
n=1

(
Resz=ωn M

z − ωn
+

Resz=−ω∗
n
M

z + ω∗
n

+
Resz=ω∗

n
M

z − ω∗
n

+
Resz=−ωn M

z + ωn
+

+
Resz=−ω̂∗

n
M

z + ω̂∗
n

+
Resz=ω̂n

M

z − ω̂n
+

Resz=−ω̂n
M

z + ω̂n
+

Resz=ω̂∗
n
M

z − ω̂∗
n

)
+

+

N3∑
n=1

(
Resz=ηn M

z − ηn
+

Resz=η∗
n
M

z − η∗n
+

Resz=−η̂∗
n
M

z + η̂∗n
+

Resz=−η̂n M

z + η̂n

)
+

+

N4∑
n=1

(
Resz=zn M

z − zn
+

Resz=−z∗
n
M

z + z∗n
+

Resz=z∗
n
M

z − z∗n
+

Resz=−zn M

z + zn
+

+
Resz=−ẑ∗

n
M

z + ẑ∗n
+

Resz=ẑn M

z − ẑn
+

Resz=−ẑn M

z + ẑn
+

Resz=ẑ∗
n
M

z − ẑ∗n

)
+

+

N5∑
n=1

(
Resz=νn M

z − νn
+

Resz=ν∗
n
M

z − ν∗n
+

Resz=−ν̂∗
n
M

z + ν̂∗n
+

Resz=−ν̂n M

z + ν̂n

)
+

+

N6∑
n=1

(
Resz=ζn M

z − ζn
+

Resz=−ζ∗
n
M

z + ζ∗n
+

Resz=ζ∗
n
M

z − ζ∗n
+

Resz=−ζn M

z + ζn
+

+
Resz=−ζ̂∗

n
M

z + ζ̂∗n
+

Resz=ζ̂n
M

z − ζ̂n
+

Resz=−ζ̂n
M

z + ζ̂n
+

Resz=ζ̂∗
n
M

z − ζ̂∗n

)
+

+
1

2πi

∫
Σ

M−(x, t, ζ)(G(x, t, ζ) − I)

ζ − z
dζ, z ∈ C \ Σ. (3.16)
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Using the symmetries of the eigenfunctions, we can simplify the columns of M(x, t, z) as

M1(z) = E+,1(z) +

N1∑
n=1

KnM3(kn)

z − kn
+

N2∑
n=1

LnM2(ln)

z − ln
+

1

2πi

∫
Σ

M−(G− I)1(ζ)

ζ − z
dζ,

M2(z) = E+,2(z)−
N2∑
n=1

L∗
nM1(l

∗
n)

z + l̂∗n − ẑ − l∗n
+

1

2πi

∫
Σ

M−(G− I)2(ζ)

ζ − z
dζ,

(3.17)

M3(z) = E+,3(z)−
N1∑
n=1

K∗
nM1(k

∗
n)

z − k∗n
+

N2∑
n=1

iq0LnM2(ln)

ln(z + l̂n)
+

+
1

2πi

∫
Σ

M−(G− I)3(ζ)

ζ − z
dζ,

where kn, Kn and ln, Ln are given in Appendix A.1 with N1 = 2N1+4N2 and N2 = N3+2N4+N5+2N6.

From formula (2.50), we deduce the following theorem.

Theorem 3.2 (reconstruction formula). The solution q(x, t) = (q1(x, t), q2(x, t))
T of the fcmKdV

equation (1.1) with NZBCs (1.2) is reconstructed as

qj(x, t) = qj+ + i

N1∑
n=1

KnM(j+1)3(kn) + i

N2∑
n=1

LnM(j+1)2(ln)− 1

2π

∫
Σ

[M−(G− I)](j+1)1(z) dz. (3.18)

3.2. Trace formula and the asymptotic phase difference. We next reconstruct the analytic

scattering coefficients in terms of scattering data. Thus can be achieved by constructing another RHP,

as shown in Appendix A.2.

Lemma 3.6 (trace formula). The analytic scattering coefficients a11(z) and b22(z) can be expressed as

b22(z) = δ

N3∏
n=1

(z − ηn)(z + η̂n)

(z − η∗n)(z + η̂∗n)

N4∏
n=1

(z − zn)(z + z∗n)(z + ẑn)(z − ẑ∗n)
(z − z∗n)(z + zn)(z + ẑ∗n)(z − ẑn)

×

×
N5∏
n=1

(z − νn)(z + ν̂n)

(z − ν∗n)(z + ν̂∗n)

N6∏
n=1

(z − ζn)(z + ζ∗n)(z + ζ̂n)(z − ζ̂∗n)

(z − ζ∗n)(z + ζn)(z + ζ̂∗n)(z − ζ̂n)
×

× exp

[
− 1

2πi

∫
R

J0(ζ)

ζ − z
dζ

]
, z ∈ C+, (3.19a)

a11(z) =

N1∏
n=1

(z − ξn)(z + ξ̂∗n)

(z − ξ∗n)(z + ξ̂n)

N2∏
n=1

(z − ωn)(z + ω∗
n)(z + ω̂∗

n)(z − ω̂n)

(z − ω∗
n)(z + ωn)(z + ω̂n)(z − ω̂∗

n)
×

×
N3∏
n=1

z + η̂n
z + η̂∗n

N4∏
n=1

(z + ẑn)(z − ẑ∗n)
(z + ẑ∗n)(z − ẑn)

N5∏
n=1

z − νn
z − ν∗n

N6∏
n=1

(z − ζn)(z + ζ∗n)
(z − ζ∗n)(z + ζn)

×

× exp

[
1

2πi

∫
Σ

J(ζ)

ζ − z
dζ

]
, z ∈ D1, (3.19b)

where δ = ±1 and the matrices J0(z) and J(z) are respectively defined in (A.5b) and (A.9a)–(A.9d).
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Next, comparing the asymptotic behavior of the trace formula for a11(z) as z → 0 with the result

in (2.54a), we obtain that

δ = (−1)N3+N5 exp

[
1

2πi

∫
Σ

J(z)

z
dz

]
. (3.20)

Furthermore, we decompose the above integral term into

H1 =

∫ −q0

−∞

J1(z)

z
dz, I1 =

∫ −π/2

−π

iJ2(q0e
iα) dα,

H3 =

∫ 0

q0

J3(z)

z
dz, I3 =

∫ π/2

π

iJ4(q0e
iα) dα,

H2 =

∫ ∞

q0

J1(z)

z
dz, I2 =

∫ 0

−π/2

iJ2(q0e
iα) dα,

H4 =

∫ −q0

0

J3(z)

z
dz, I4 =

∫ 0

π/2

iJ4(q0e
iα) dα.

(3.21)

Applying the symmetries of the reflection coefficients to the jump matrices Jj(z) shows that H1 = −H2,

H3 = −H4, I1 = −I4, and I2 = −I3. It hence follows that

δ = (−1)N3+N5 . (3.22)

Corollary 3.1 (asymptotic phase difference). The potential q(x, t) has the same boundary condition

q+ = q− at infinity when N3 + N5 is even. The potential q(x, t) has the opposite boundary condition

q+ = −q− at infinity when N3 +N5 is odd.

4. Reflectionless potential and soliton solutions

We now explicitly construct the potential q(x, t) in the case of a reflectionless potential, that is,

ρ1(z) = ρ2(z) = ρ3(z) = 0. In this case, there is no jump across the contour Σ in the RHP, allowing the

solution q(x, t) to be found from a closed algebraic system (3.17).

Theorem 4.1. In the case of a reflectionless potential, the solution q(x, t) of the fcmKdV equa-

tion (1.1) with NZBCs (1.2) can be expressed as

q(x, t) =
1

detG

(
detGaug

1

detGaug
2

)
, Gaug

k =

(
qk+ YT

Bk G

)
, k = 1, 2, (4.1)

with the (N1 +N2)× (N1 +N2) matrix G = I+F, Bk = (Bk1, . . . , Bk(N1+N2))
T, Y = (Y1, . . . , Y(N1+N2))

T

and

Yn =

⎧⎨
⎩iKn, n = 1, . . . ,N1,

iLn−N1 , n = N1 + 1, . . . ,N1 +N2,
(4.2)

Bkn =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

qk+
q0

+
∑N1

m=1

iqk+K
∗
m

k∗m(kn − k∗m)
, n = 1, . . . ,N1,

(−1)k̄qk̄+
q0

+
∑N2

m=1

iqk+L
∗
m

l∗m(ln−N1 + l̂∗m − l̂n−N1 − l∗m)
,

n = N1 + 1, . . . ,N1 +N2,

(4.3)
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Fnj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑N1

m=1

K∗
mKj

(kn − k∗m)(k∗m − kj)
, n, j = 1, . . . ,N1,

− iq0Lj−N1

lj−N1 (kn + l̂j−N1)
+
∑N1

m=1

K∗
mLj−N1

(kn − k∗m)(k∗m − lj−N1 )
,

n = 1, . . . ,N1, j = N1 + 1, . . . ,N1 +N2,∑N2

m=1

L∗
mKj

(ln−N1 + l̂∗m − l̂n−N1 − l∗m)(l∗m − kj)
,

n = N1 + 1, . . . ,N1 +N2, j = 1, . . . ,N1,∑N2

m=1

L∗
mLj−N1

(ln−N1 + l̂∗m − l̂n−N1 − l∗m)(l∗m − lj−N1)
,

n, j = N1 + 1, . . . ,N1 +N2,

(4.4)

where k̄ = 3− k.

Next, we focus on the soliton solutions corresponding to the six different types of discrete eigenvalues

and explore their properties.

4.1. Type-I solitons. In the case N1 = 1 and N2 = N3 = N4 = N5 = N6 = 0, in general, we take

the discrete eigenvalue and the proportionality constant in the form

ξ1 = iZ, a1 = eξ+i(m−1)π, Z > q0, ξ ∈ R, m = 0, 1.

Substituting these quantities in the general formula (4.1) yields the explicit one-soliton solution

q(x, t) =
coshχ+ (−1)m sech(ln(Z/q0)) cosh(2 ln(Z/q0))

coshχ+ (−1)m sech(ln(Z/q0))
q+, (4.5)

where

χ = − q60
Z3

t+

(
Z − q20

Z

)
(3q20t− x) + Z3t+ ξ.

The solutions are completely determined by m and the vector q+. Some examples of such one-soliton

solutions describing the dark–dark and bright–bright solitons are shown in Figs. 1 and 2. The soliton

classification in this case is given in detail in Sec. 4.7.

4.2. Type-II solitons. In the case N2 = 1 and N1 = N3 = N4 = N5 = N6 = 0, in general, we take

the soliton parameters in the form

ω1 = Zeiθ, b1 = eα+iβ , Z > q0, θ ∈
(
0,

π

2

)
∪
(
π

2
, π

)
, α, β ∈ R.

From (4.1), we can obtain the breather–breather solutions of the fcmKdV equation. An example of such

a solution is plotted in Fig. 3.

4.3. Type-III solitons. In the case N3 = 1 and N1 = N2 = N4 = N5 = N6 = 0, in general, we take

the discrete eigenvalue and proportionality constant in the form

η1 = iZ, c1 = eη+i(m−1)π, Z > q0, η ∈ R, m = 0, 1.

Substituting these parameters in the general formula (4.1) generates the one-soliton solution

q(x, t) = − tanh

(
χ+ ln

Z
√
Z2 + q20

Z2 − q20

)
q+ − (−1)m

√
Z2 + q20
Z

sech

(
χ+ ln

Z
√
Z2 + q20

Z2 − q20

)
q⊥
+, (4.6)
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where

χ =
q60
Z3

t+
q20
Z
(3q20t− x) + η.

The solutions are also completely determined by m and q+. Some examples of such solitons describing

the kink–bright–dark and kink–dark–bright solitons are given in Figs. 4 and 5. In this paper, the pair

of a kink–bright soliton for the component q1(x, t) and a kink–dark soliton for the component q2(x, t) is

simply referred to as the kink–bright–dark soliton, and so on. The soliton classification is given in detail in

Sec. 4.7.

4.4. Type-IV solitons. In the case N4 = 1 and N1 = N2 = N3 = N5 = N6 = 0, in general, we take

the soliton parameters in the form

z1 = Zeiθ, d1 = eα+iβ , Z > q0, θ ∈
(
0,

π

2

)
∪
(
π

2
, π

)
, α, β ∈ R.

From (4.1), we can obtain the W (type)–S (type) or the breather–breather solutions for the fcmKdV

equation. Examples of such solutions are shown in Figs. 6 and 7.

4.5. Type-V solitons. In the case N5 = 1 and N1 = N2 = N3 = N4 = N6 = 0, in general, we take

the discrete eigenvalue and proportionality constant in the form

ν1 = iZ, e1 = eν+i(m−1)π, Z > q0, ν ∈ R, m = 0, 1.

Substituting these quantities in (4.1) yields the explicit one-soliton solution

q(x, t) = − tanh

(
χ+ ln

Z√
Z2 + q20

)
q+ + (−1)m

√
Z2 + q20
q0

sech

(
χ+ ln

Z√
Z2 + q20

)
q⊥
+, (4.7)

where

χ = Z3t+ Z(3q20t− x) + ν.

The type-V solitons are similar to those of type-III, and are also determined by m and q+. Some examples

of such soliton solutions describing the kink–dark–dark and kink–bright–bright solitons are plotted in Figs. 8

and 9. The soliton classification is given in Sec. 4.7.

4.6. Type-VI solitons. In the case N6 = 1 and N1 = N2 = N3 = N4 = N5 = 0, in general, we take

the soliton parameters in the form

ζ1 = Zeiθ, f1 = eα+iβ , Z > q0, θ ∈
(
0,

π

2

)
∪
(
π

2
, π

)
, α, β ∈ R.

From (4.1), we can obtain the breather–breather solution for the fcmKdV equation. An example of such

a solution is shown in Fig. 10.

4.7. Discussions. First, the results for the soliton solutions admit the asymptotic phase difference,

that is, only when N3 +N5 is odd, there are kink solitons. The soliton classification of type-I, III, and V

discrete eigenvalues in terms of m and q+ is summarized in respective Tables 1, 2, and 3. In addition, the

similarities between type-III and V solitons can be traced to their expressions in (4.6) and (4.7): their bright-

soliton part always follows an orthogonal polarization to that of the dark-soliton part. And their solutions

are any combinations of kink–dark or kink–bright solitons, where kink–dark solitons have rich complex

soliton dynamics in Bose–Einstein condensates [38], [39] and nano-optical fibers [40]. Thus, we expect that

our results could be beneficial to the development of the one-dimensional two-component Bose–Einstein

condensate systems. Finally, type-II, IV, and VI solutions all have breather–breather solutions.
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Fig. 1. One dark–dark soliton of the fcmKdV equation with NZBCs obtained by taking m = 1,

Z = 3/2, ξ = ln 2, q+ = (
√
3/2, 1/2)T, and q0 = 1.

Fig. 2. One bright–bright soliton of the fcmKdV equation with NZBCs obtained by taking m = 0,

Z = 3/2, ξ = ln 2, q+ = (
√
3/2, 1/2)T, and q0 = 1.
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Fig. 3. One breather–breather solution of the fcmKdV equation with NZBCs obtained by taking

ω1 = 2 + i/2, α = 0, β = π/4, q+ = (
√
2/2,

√
2/2)T, and q0 = 1.

Fig. 4. One kink–bright–dark soliton of the fcmKdV equation with NZBCs obtained by taking m = 1,

Z = 3/2, η = ln 3, q+ = (
√
2/2,

√
2/2)T, and q0 = 1.
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Fig. 5. One kink–dark–bright soliton of the fcmKdV equation with NZBCs obtained by taking m = 0,

Z = 3/2, η = ln 3, q+ = (
√
2/2,

√
2/2)T, and q0 = 1.

Fig. 6. One W (type)–S (type) soliton of the fcmKdV equation with NZBCs obtained by taking

z1 = 2 + 2i, α = β = 0, q+ = (1, 0)T, and q0 = 1.
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Fig. 7. One breather–breather solution of the fcmKdV equation with NZBCs obtained by taking

z1 = 1 + i/2, α = β = 0, q+ = (1, 0)T, and q0 = 1.

Fig. 8. One kink–dark–dark soliton of the fcmKdV equation with NZBCs obtained by taking m = 1,

Z = 3/2, ν = ln 2, q+ = (−√
3/2, 1/2)T, and q0 = 1.
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Fig. 9. One kink–bright–bright soliton of the fcmKdV equation with NZBCs obtained by taking

m = 0, Z = 3/2, ν = ln 2, q+ = (−√
3/2, 1/2)T, and q0 = 1.

Fig. 10. One breather–breather solution of the fcmKdV equation with NZBCs obtained by taking

ζ1 = 3/2 + i/4, α = β = 0, q+ = (
√
3/2, 1/2)T, and q0 = 1.
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Table 1. Soliton classification of type I

q1+ > 0 q1+ > 0 q1+ < 0 q1+ < 0

q2+ > 0 q2+ < 0 q2+ > 0 q2+ < 0

m = 1 dark–dark dark–bright bright–dark bright–bright

m = 0 bright–bright bright–dark dark–bright dark–dark

Table 2. Soliton classification of type III

q1+ > 0 q1+ > 0 q1+ < 0 q1+ < 0

q2+ > 0 q2+ < 0 q2+ > 0 q2+ < 0

m = 1 kink–bright–dark kink–dark–dark kink–bright–bright kink–dark-bright

m = 0 kink–dark–bright kink–bright–bright kink–dark–dark kink–bright–dark

Table 3. Soliton classification of type V

q1+ > 0 q1+ > 0 q1+ < 0 q1+ < 0

q2+ > 0 q2+ < 0 q2+ > 0 q2+ < 0

m = 1 kink–dark–bright kink–bright–bright kink–dark–dark kink–bright-dark

m = 0 kink–bright–dark kink–dark–dark kink–bright–bright kink–dark–bright

Of course, (4.1) allows us to easily generate the multisoliton solutions by including any combinations of

any number of the six types of solitons. For example, Fig. 11 shows the interaction between two dark–dark

solitons, Fig. 12 shows the interaction between two bright–bright solitons, Fig. 13 shows the interaction

between kink–dark–bright and W (type)–S (type) solitons, and Fig. 14 describes the interaction between

kink–dark–bright and breather–breather solutions.

5. Conclusions

In this paper, we applied the IST to the fcmKdV equation with NZBCs. This problem has three

symmetries, resulting in six different types of discrete eigenvalues. Thus, six types of soliton solutions

are obtained. Furthermore, the soliton classification for the types I, III, and V are constructed. Several

two-soliton solutions having interesting structures are displayed.

We note that this paper is more involved than the defocusing counterpart in [19] due to the four

fundamental domains of analyticity instead of two. Specifically, four new auxiliary eigenfunctions and a more

complex RHP including four jump relations had to be formulated. In addition, although they both have

three symmetries, the focusing case has more discrete eigenvalues, which leads to more diverse solutions.

Within the framework of the IST method with NZBCs, we also note that the differences between the

focusing Manakov system [41] and the fcmKdV equation are mainly manifested in four aspects: 1) the Jost

eigenfunctions of the fcmKdV equation have three symmetries, with a total of 4N1 + 8N2 + 4N3 + 8N4 +

4N5+8N6 discrete eigenvalues; 2) the fcmKdV equation has a simpler asymptotic phase difference, which is

direct information to characterize solitons; 3) the potential of the fcmKdV equation is real, and the formula

of its exact solutions is more compact; 4) the fcmKdV equation has richer soliton solutions and breathers,

including dark–dark, bright–bright, W (type)–S (type), kink solitons, and breather–breather solutions.
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Fig. 11. One two-dark–dark soliton of the fcmKdV equation with NZBCs obtained by taking N1 = 2,

N2 = N3 = N4 = N5 = N6 = 0, ξ1 = 3i/2, ξ2 = 4i/3, a1 = 2, a2 = −3, q+ = (
√
3/2, 1/2)T, and

q0 = 1.

Fig. 12. One two-bright–bright soliton of the fcmKdV equation with NZBCs obtained by taking

N1 = 2, N2 = N3 = N4 = N5 = N6 = 0, ξ1 = 3i/2, ξ2 = 4i/3, a1 = −2, a2 = 3, q+ = (
√
3/2, 1/2)T,

and q0 = 1.
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Fig. 13. One kink–dark-bright, W (type)–S (type) soliton of the fcmKdV equation with NZBCs

obtained by taking N3 = N4 = 1, N1 = N2 = N5 = N6 = 0, η1 = 2i, c1 = −1, z1 = 1 + 2i, d1 = 1,

q+ = (
√
2/2,

√
2/2)T, and q0 = 1.

Fig. 14. One kink–dark-bright, breather–breather soliton of the fcmKdV equation with NZBCs

obtained by taking N5 = N6 = 1, N1 = N2 = N3 = N4 = 0, ν1 = 3i/2, e1 = 1, ζ1 = 3/2 + i, f1 = 1,

q+ = (
√
2/2,

√
2/2)T, and q0 = 1.
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Appendix A

A.1. The RHP solution. The coefficients kn, Kn, and ln, Ln appearing in Theorem 3.1 are defined

as follows:

for n = 1, . . . , N1

kn = ξn, Kn = An, (A.1a)

for n = N1 + 1, . . . , 2N1

kn = −ξ̂∗n−N1
, Kn = − q20

(ξ∗n−N1
)2
A∗

n−N1
, (A.1b)

for n = 2N1 + 1, . . . , 2N1 +N2

kn = ωn−2N1 , Kn = Bn−2N1 , (A.1c)

for n = 2N1 +N2 + 1, . . . , 2N1 + 2N2

kn = −ω̂∗
n−2N1−N2

, Kn = − q20
(ω∗

n−2N1−N2
)2
B∗

n−2N1−N2
, (A.1d)

for n = 2N1 + 2N2 + 1, . . . , 2N1 + 3N2

kn = −ω∗
n−2N1−2N2

, Kn = −B∗
n−2N1−2N2

, (A.1e)

for n = 2N1 + 3N2 + 1, . . . ,N1

kn = ω̂n−2N1−3N2 , Kn =
q20

ω2
n−2N1−3N2

Bn−2N1−3N2 , (A.1f)

for n = 1, . . . , N3

ln = −η̂n, Ln = − iln
q0

Cn, (A.2a)

for n = N3 + 1, . . . , N3 +N4

ln = −ẑn−N3, Ln = − iln
q0

Dn−N3 , (A.2b)

for n = N3 +N4 + 1, . . . , N3 + 2N4

ln = ẑ∗n−N3−N4
, Ln =

iln
q0

D∗
n−N3−N4

, (A.2c)

for n = N3 + 2N4 + 1, . . . , N3 + 2N4 +N5

ln = νn−N3−2N4 , Ln = En−N3−2N4 , (A.2d)

for n = N3 + 2N4 +N5 + 1, . . . , N3 + 2N4 +N5 +N6

ln = ζn−N3−2N4−N5 , Ln = Fn−N3−2N4−N5 , (A.2e)

for n = N3 + 2N4 +N5 +N6 + 1, . . . ,N2

ln = −ζ∗n−N3−2N4−N5−N6
, Ln = −F ∗

n−N3−2N4−N5−N6
. (A.2f)

A.2. Trace formula. The scattering coefficients a22(z) and b22(z) has a jump across R. We recall

that a22(z) is analytic in C− and has simple zeros

{η∗n,−η̂∗n}N3
n=1, {z∗n,−zn,−ẑ∗n, ẑn}N4

n=1, {ν∗n,−ν̂∗n}N5
n=1, {ζ∗n,−ζn,−ζ̂∗n, ζ̂n}N6

n=1,

while b22(z) is analytic in C+ and has simple zeros

{ηn,−η̂n}N3
n=1, {zn,−z∗n,−ẑn, ẑ

∗
n}N4

n=1, {νn,−ν̂n}N5
n=1, {ζn,−ζ∗n,−ζ̂n, ζ̂

∗
n}N6

n=1.
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We therefore define

β(z) = δb22(z)

N3∏
n=1

(z − η∗n)(z + η̂∗n)
(z − ηn)(z + η̂n)

N4∏
n=1

(z − z∗n)(z + zn)(z + ẑ∗n)(z − ẑn)

(z − zn)(z + z∗n)(z + ẑn)(z − ẑ∗n)
×

×
N5∏
n=1

(z − ν∗n)(z + ν̂∗n)
(z − νn)(z + ν̂n)

N6∏
n=1

(z − ζ∗n)(z + ζn)(z + ζ̂∗n)(z − ζ̂n)

(z − ζn)(z + ζ∗n)(z + ζ̂n)(z − ζ̂∗n)
, z ∈ C+, (A.3a)

β(z) = δa22(z)

N3∏
n=1

(z − ηn)(z + η̂n)

(z − η∗n)(z + η̂∗n)

N4∏
n=1

(z − zn)(z + z∗n)(z + ẑn)(z − ẑ∗n)
(z − z∗n)(z + zn)(z + ẑ∗n)(z − ẑn)

×

×
N5∏
n=1

(z − νn)(z + ν̂n)

(z − ν∗n)(z + ν̂∗n)

N6∏
n=1

(z − ζn)(z + ζ∗n)(z + ζ̂n)(z − ζ̂∗n)

(z − ζ∗n)(z + ζn)(z + ζ̂∗n)(z − ζ̂n)
, z ∈ C−. (A.3b)

It is easy to find that β(z) → 1 as z → ∞ and has no poles. Combining the fact that β+(z)β−(z) =

a22(z)b22(z) with the 2, 2 element of the identity B(z)A(z) = I, we obtain that

lnβ+(z) + lnβ−(z) = −J0(z), z ∈ R, (A.4)

where

β±(x, t, z) = lim
ź→z
ź∈C±

β(x, t, ź), z ∈ R, (A.5a)

J0(z) = ln

[
1 + γ(z)ρ3(z)ρ3(−z) +

z2γ(z)

q20
ρ3(ẑ)ρ3(−ẑ)

]
. (A.5b)

Then applying the Plemelj formula to (A.4) yields

β(z) = exp

[
− 1

2πi

∫
R

J0(ζ)

ζ − z
dζ

]
, z ∈ C+. (A.6)

The first half of the proof is completed by substituting (A.6) in (A.3a).

We recall that a11(z), b11(z), b33(z), and a33(z) are respectively analytic in D1, D2, D3, and D4.

For this reason, we can solve the problem by establishing a RHP as in Sec. 3.1. Based on the jump

conditions, we see from the identity B(z)A(z) = I that

b31(z)a13(z) + b32(z)a23(z) + b33(z)a33(z) = 1,

b11(z)a11(z) + b12(z)a21(z) + b13(z)a31(z) = 1,

b22(z) = a11(z)a33(z)− a31(z)a13(z),

a22(z) = b11(z)b33(z)− b31(z)b13(z).

It is worth noting that b22(z) and a22(z) are involved in the last two relations. Thus, the a11(z) trace

formula is related to the type-III and IV discrete eigenvalues.

Recalling the definition of the oriented contour Σ, we define

β̃(z) = a11(z)

N1∏
n=1

(z − ξ∗n)(z + ξ̂n)

(z − ξn)(z + ξ̂∗n)

N2∏
n=1

(z − ω∗
n)(z + ωn)(z + ω̂n)(z − ω̂∗

n)

(z − ωn)(z + ω∗
n)(z + ω̂∗

n)(z − ω̂n)

N3∏
n=1

z + η̂∗n
z + η̂n

×

×
N4∏
n=1

(z + ẑ∗n)(z − ẑn)

(z + ẑn)(z − ẑ∗n)

N5∏
n=1

z − ν∗n
z − νn

N6∏
n=1

(z − ζ∗n)(z + ζn)

(z − ζn)(z + ζ∗n)
, z ∈ D1, (A.7a)
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β̃(z) = b11(z)

N1∏
n=1

(z − ξn)(z + ξ̂∗n)

(z − ξ∗n)(z + ξ̂n)

N2∏
n=1

(z − ωn)(z + ω∗
n)(z + ω̂∗

n)(z − ω̂n)

(z − ω∗
n)(z + ωn)(z + ω̂n)(z − ω̂∗

n)

N3∏
n=1

z + η̂n
z + η̂∗n

×

×
N4∏
n=1

(z + ẑn)(z − ẑ∗n)
(z + ẑ∗n)(z − ẑn)

N5∏
n=1

z − νn
z − ν∗n

N6∏
n=1

(z − ζn)(z + ζ∗n)
(z − ζ∗n)(z + ζn)

, z ∈ D2, (A.7b)

β̃(z) = δb33(z)

N1∏
n=1

(z − ξ∗n)(z + ξ̂n)

(z − ξn)(z + ξ̂∗n)

N2∏
n=1

(z − ω∗
n)(z + ωn)(z + ω̂n)(z − ω̂∗

n)

(z − ωn)(z + ω∗
n)(z + ω̂∗

n)(z − ω̂n)

N3∏
n=1

z − ηn
z − η∗n

×

×
N4∏
n=1

(z + z∗n)(z − zn)

(z + zn)(z − z∗n)

N5∏
n=1

z + ν̂n
z + ν̂∗n

N6∏
n=1

(z + ζ̂n)(z − ζ̂∗n)

(z + ζ̂∗n)(z − ζ̂n)
, z ∈ D3, (A.7c)

β̃(z) = δa33(z)

N1∏
n=1

(z − ξn)(z + ξ̂∗n)

(z − ξ∗n)(z + ξ̂n)

N2∏
n=1

(z − ωn)(z + ω∗
n)(z + ω̂∗

n)(z − ω̂n)

(z − ω∗
n)(z + ωn)(z + ω̂n)(z − ω̂∗

n)

N3∏
n=1

z − η∗n
z − ηn

×

×
N4∏
n=1

(z + zn)(z − z∗n)
(z + z∗n)(z − zn)

N5∏
n=1

z + ν̂∗n
z + ν̂n

N6∏
n=1

(z + ζ̂∗n)(z − ζ̂n)

(z + ζ̂n)(z − ζ̂∗n)
, z ∈ D4. (A.7d)

Thus, β̃(z) → 1 as z → ∞ and has no poles. Also, the following jump conditions hold:

ln β̃+(z) + ln β̃−(z) = J(z), z ∈ Σ, (A.8)

where the jump matrices Jj(z) = J(z)|z∈Σj are

J1(z) = − ln

[
1 +

1

γ(z)
ρ1(z)ρ1(−z) + ρ2(z)ρ2(−z)

]
, z ∈ Σ1, (A.9a)

J2(z) =
1

2πi

∫
R

J0(ζ)

ζ − z
dζ − ln[1− ρ2(−z)ρ2(ẑ)], z ∈ Σ2, (A.9b)

J3(z) = − ln

[
1 +

q20
z2γ(z)

ρ1(ẑ)ρ1(−ẑ) + ρ2(ẑ)ρ2(−ẑ)

]
, z ∈ Σ3, (A.9c)

J4(z) = − 1

2πi

∫
R

J0(ζ)

ζ − z
dζ − ln[1− ρ2(−ẑ)ρ2(z)], z ∈ Σ4. (A.9d)

Applying the Plemelj formula to (A.8), we obtain the solutions of the RHP in the form

β̃(z) = exp

[
1

2πi

∫
Σ

J(ζ)

ζ − z
dζ

]
, z ∈ D1 ∪D3. (A.10)

Substituting the above result in (A.7a) yields Eq. (3.19a).
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