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SOLITONS IN A SEMI-INFINITE FERROMAGNET

WITH ANISOTROPY OF THE EASY AXIS TYPE

V. V. Kiselev∗†

We propose a special variant of the inverse scattering transform method to construct and analyze soliton

excitations in a semi-infinite sample of an easy-axis ferromagnet in the case of a partial pinning of spins

at its surface. We consider the limit cases of free edge spins and spins that are fully pinned at the sample

boundary. We find frequency and modulation characteristics of solitons localized near the sample surface.

In the case of different degrees of edge spin pinning, we study changes in the cores of moving solitons as

a result of their elastic reflection from the sample boundary. We obtain integrals of motion that control

the dynamics of magnetic solitons in a semi-infinite sample.
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1. Introduction

To date, the nonlinear dynamics of quasi-one-dimensional solitons and waves in extended magnetic

media [1]–[3] has been studied most comprehensively. The fact is that the basic equations of the theory

of magnetism often admit representations in the form of commutativity conditions for two differential

operators. In unbounded samples, these representations are used to map the magnetization distributions

into the scattering data of auxiliary spectral problems. The evolution of the scattering data is determined by

linear equations and can be calculated explicitly using the initial magnetization distributions. The inverse

map gives the complete solution of each specific initial boundary-value problem.

Unfortunately, this technique (the inverse scattering transform method) runs into significant difficulties

when extended to finite-size systems. For bounded samples, there is no simple map of the initial–boundary

conditions into the scattering data [4]–[6]. The exceptions are semi-infinite samples with a preferred class of

boundary conditions [7]–[10]. In principle, an approach similar to the method of “images” in electrostatics

can be used for them [11]–[13]. The initial boundary-value problem on the semiaxis (the spatial coordinate

0 ≤ x < ∞) with a certain symmetry can be continued to the entire axis −∞ < x < ∞. After that, the

problem is solved in accordance with the traditional integration scheme for a nonlinear model on the line.

For basic equations of magnetism, physically meaningful integrable boundary conditions were described

in [14]. However, the nonlinear magnetization dynamics in semi-infinite samples was barely studied until

now. In [15], [16], the features of magnetic solitons in semi-infinite samples were analyzed in the framework

of the nonlinear Schrödinger equation and the Landau–Lifshitz equation for an isotropic Heisenberg ferro-

magnet. The interaction of solitons with the sample boundary leads to special dynamical properties that

are absent in an infinite medium and are useful for technological applications.

∗Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russia, e-mail:

kiseliev@imp.uran.ru.
†Institute of Physics and Technology, Ural Federal University, Ekaterinburg, Russia.

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 219, No. 1, pp. 55–79, April, 2024. Received

December 12, 2023. Revised December 12, 2023. Accepted January 14, 2024.

576 0040-5779/24/2191-0576 © 2024 Pleiades Publishing, Ltd.

https://www.doi.org/10.1134/S0040577924040068


In this paper, we take the effect of the crystallographic magnetic anisotropy into account and study

the nonlinear dynamics of an easy-axis ferromagnet in a semi-infinite sample with the energy

H =
1

2

∫ ∞

0

dx [α(∂xM)2 −K(M2
3 −M2

0 )] + hM3(x, t)|x=0. (1.1)

Here, M(x, t) is the material magnetization (M2(x, t) = M2
0 = const); α > 0 and K > 0 are the exchange

interaction and magnetic anisotropy constants; he is the external magnetic field along the boundary x = 0

of the sample or the effective unidirectional-anisotropy field of surface spins [17]–[19], e = (0, 0, 1); and

0 ≤ x < ∞ and 0 ≤ t < ∞ are the spatial coordinate and the time.

After passing to the dimensionless variables

x′ = x

√
K

α
, t′ = γM0Kt, h′ =

h

M0

√
Kα

, n = − M

M0
,

where γ is the magnetomechanical ratio and M0 is the nominal magnetization, the Landau–Lifshitz equation

for the calculation of the normalized magnetization n(x, t) becomes

∂t′n = [n× (∂2
x′n+ e(n · e))], n2 = 1, (1.2)

where 0 < x′ < ∞, 0 < t′ < ∞, with the integrable boundary conditions

n → e, ∂x′n → 0 for x′ → +∞, (1.3)

[n× (∂x′n+ h′e)]|x′=0 = 0 (1.4)

and the given initial magnetization field perturbation

n(x′, t′)|t′=0 = n0(x
′). (1.5)

We omit the primes over the dimensionless variables in what follows. The choice of asymptotic boundary

condition (1.3) corresponds to the energy minimum of the homogeneous ground state.

Mixed boundary condition (1.4) takes the partial pinning of spins at the sample boundary x = 0 into

account. In the limit cases h = 0 and |h| → ∞, we obtain the corresponding problem for free edge spins

[n× ∂xn]|x=0 = 0 (1.6)

and the problem with the full spin pinning at the sample boundary

n3|x=0 = ±1. (1.7)

We choose the sign in the right-hand side of (1.7) in the course of further analysis.

We note that in [20], the simplest nonlinear excitation localized near the end of a semibounded spin

chain was first obtained. The considered model in the continuum approximation reduces to the Landau–

Lifshitz equation of an easy-axis ferromagnet. Its approximate solution was found under a dynamical

condition reflecting the absence of neighbors in the region x < 0 at the edge spin of the chain. In this

paper, we present a complete study of the nonlinear dynamics of solitons and dispersive spin waves in

a semibounded easy-axis ferromagnet with boundary conditions that describe the partial pinning of spins

at the sample boundary.
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This paper is organized as follows. In Sec. 2, we substantiate the application of the method of “images.”

In Sec. 3, we present basic formulas that are necessary to describe the nonlinear dynamics of a semi-infinite

sample. In Sec. 4, we obtain and analyze two classes of new solitons. As in [15], [16], the first one

contains solitons localized near the sample boundary. The second class includes moving solitons, which are

characterized by elastic collisions with each other and the sample boundary. Edge solitons have specific

frequency and modulation properties. Moving solitons change the core structures during the collision with

the sample boundary. It is shown in Sec. 5 that any perturbation of a semi-infinite sample can be described

in terms of the ideal gas of magnetic solitons and quasiparticles of the spin wave spectrum. We obtain

a series of new conservation laws guaranteeing that solitons satisfy the correct conditions at the sample

boundaries.

2. Method of “images”

We recall that when integrating the Landau–Lifshitz model

∂tS = [S× (∂2
xS+ e(S · e))], S2 = 1, (2.1)

in the interval −∞ < x < ∞, the field S(x, t) is assumed to be differentiable with respect to x and t

a required number of times. Equation (2.1) is then equivalent to the commutativity condition for two

differential operators [3], [21]:

[∂x − L, ∂t −A] = 0, (2.2)

L = −i

3∑
α=1

wα(λ)Sασα, A = −i

3∑
α=1

(wα(λ)[S × ∂xS]α + 2aα(λ)Sα)σα,

where wα(λ) are rational functions of the spectral parameter:

w1 = w2 =
1

4
(λ+ λ−1), w3 =

1

4
(λ− λ−1),

σα are the Pauli matrices, and a1(λ) = −w2(λ)w3(λ), with cyclic permutations of subscripts 1, 2, 3 for other

coefficients aα(λ).

We rewrite representation (2.2) in the integrated form. For this, we introduce the matrix T0(x, y, λ)

of translation along the axis Ox from a point y to a point x [21]. Here and hereafter, whenever this does

not cause a misunderstanding, we do not indicate the dependence of functions on the time t. The matrix

function T0 satisfies the equations

∂xT0(x, y, λ) = L(x, λ)T0(x, y, λ), ∂yT0(x, y, λ) = −T0(x, y, λ)L(y, λ),

∂tT0(x, y, λ) = A(x, λ)T0(x, y, λ)− T0(x, y, λ)A(y, λ)
(2.3)

with the normalization condition T0(x, x, λ) = I, where I is the unit matrix. Hence, in view of the

tracelessness of the matrix L, we obtain detT0(x, y, λ) = 1. The superposition property

T0(x, y, λ)T0(y, z, λ) = T0(x, z, λ)

holds. Because the matrices L(λ) and A(λ) have the special forms

L(−λ−1) = σ3L(λ)σ3, L∗(λ∗) = σ2L(λ)σ2,

A(−λ−1) = σ3A(λ)σ3, A∗(λ∗) = σ2A(λ)σ2,
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Eqs. (2.3) imply the involution properties

T0(x, y,−λ−1) = σ3T0(x, y, λ)σ3, T ∗
0 (x, y, λ

∗) = σ2T0(x, y, λ)σ2.

To make initial boundary-value problem (1.2)–(1.5) on the semiaxis 0 ≤ x < ∞ tractable by the

traditional scheme of the inverse scattering transform method, we continue the field n(x, t) to the negative

axis as an even function:

S(x, t) =

⎧⎨
⎩
n(x, t), 0 ≤ x < +∞,

n(−x, t), −∞ < x < 0.
(2.4)

The continuation S(x, t) is continuous at x = 0,

S(−0, t) = S(+0, t) = n(x = +0, t), (2.5)

but its first derivative with respect to x has a jump:

∂xS|x=+0 − ∂xS|x=−0 = 2∂xn|x=+0.

Taking these formulas into account, we treat initial boundary condition (1.4) for the field n(x, t) as

additional constraints imposed on the choice of the functions S(x, t):

ΔS|x=0 = 0, [S× (Δ∂xS+ 2he)]|x=0 = 0, (2.6)

where Δf |x=0 = f(x = +0)− f(x = −0).

It was shown in [14] that constraint (2.6) is equivalent to the matrix relation

A+(λ)K(λ) −K(λ)A−(λ) = 0, (2.7)

where A±(λ) ≡ A(x, λ)|x=±0, K(λ) = 2w3(λ)I + ihσ3. Following [11], [12], to take Eq. (2.7) into account,

we modify T0(x, y, λ) and introduce the new translation matrix

T (x, y, λ) =

⎧⎪⎪⎨
⎪⎪⎩

T0(x, y, λ), xy > 0,

T0(x,+0, λ)K(λ)T0(−0, y, λ), x > 0 > y,

T0(x,−0, λ)K−1(λ)T0(+0, y, λ), x < 0 < y,

(2.8)

which is not unimodular:

detT (x, y, λ) = [4w2
3(λ) + h2](sgn x−sgn y)/2.

Its normalization and superposition properties change,

T (x, x, λ) = I for x �= 0, T (x, y, λ) = T−1(y, x, λ),

T (+0,−0, λ) = T−1(−0,+0, λ) = K(λ),
(2.9)

but the involutions

T (x, y,−λ−1) = σ3T (x, y, λ)σ3, T ∗(x, y, λ∗) = σ2T (x, y, λ)σ2 (2.10)
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are preserved. In accordance with (2.3) and (2.8), the translation matrix T (x, y, λ) satisfies the differential

equations

∂xT (x, y, λ) = L(x, λ)T (x, y, λ), ∂yT (x, y, λ) = −T (x, y, λ)L(y, λ),

∂tT (x, y, λ) = A(x, λ)T (x, y, λ) − T (x, y, λ)A(y, λ),
(2.11)

which coincide with Eqs. (2.3) for T0(x, y, λ) on the interval −∞ < x < ∞. This allows including initial

boundary-value problem (1.2)–(1.5) for the Landau–Lifshitz equation on the semiaxis into the traditional

scheme of the inverse scattering transform method on the interval −∞ < x < ∞. The distinctions are

related to the necessity to take the additional symmetry of the field S(x, t) into account:

S(−x, t) = S(x, t). (2.12)

We next consider this in more detail.

3. Jost functions and spectral data

Symmetry (2.12) generates new properties of the operators:

A(−x,−λ) = A(x, λ), L(−x,−λ) = −L(x, λ), (4w2
3(λ) + h2)K−1(λ) = −K(−λ);

if they are taken into account, relations (2.11) imply the proportionality of the translation matrices T (x, y, λ)

and T (−x,−y,−λ). The proportionality coefficient is fixed by the last equality in (2.9):

T (x, y, λ) = sgn(xy)T (−x,−y,−λ) [4w2
3(λ) + h2](sgn x−sgn y)/2. (3.1)

Following the standard scheme of the inverse scattering transform method for an infinite medium,

we introduce the Jost functions

T±(x, λ, t) = lim
y→±∞[T (x, y, λ)e−iw3(λ)yσ3 ],

detT±(x, λ) = [4w2
3(λ) + h2](sgn x∓1)/2. (3.2)

They serve as fundamental solutions of the auxiliary linear system

∂xT± = L(λ)T± (3.3)

under the asymptotic boundary conditions

T±(x, t, λ) → ϕ0(x, λ) ≡ e−iw3(λ)xσ3 , x → ±∞, (3.4)

which are consistent with the behavior of the initial field n(x, t) (1.3) as x → ±∞.

The Jost solutions are defined simultaneously on the real λ axis and are therefore related to each other

by a transition matrix Q(λ):

T−(x, λ) = T+(x, λ)Q(λ), λ ∈ R. (3.5)

In what follows, we use the notation Ψ(1) and Ψ(2) for the first and second columns of the matrix Ψ. The

column vectors T
(1)
− (x, λ) and T

(2)
+ (x, λ) of the matrices T±(x, λ) are analytically continued from the real λ

axis to the domain Imλ > 0, and the columns T
(2)
− (x, λ) and T

(1)
+ (x, λ) are analytic functions in the lower

half-plane Imλ < 0, except, possibly, the simple poles of the function T+(x, λ) at points that are roots of

the equations 2w3(λ)± ih = 0. These poles are inherited from the matrix K−1(λ) (see (2.8) and (3.2)).

580



The properties of the symmetry of translation matrix (2.10), (3.1) and of asymptotic conditions (3.4)

are taken over by Jost solutions (3.2) and can be continued from the real λ axis to the complex plane:

T ∗
±(x, λ

∗) = σ2T±(x, λ)σ2, T±(x,−λ−1) = σ3T±(x, λ)σ3,

T±(x, λ) = ± sgnxσ2T
∗
∓(−x,−λ∗)σ2[4w

2
3(λ) + h2](sgn x∓1)/2. (3.6)

These relations refine the algebraic structure of the transition matrix:

Q(λ) =

(
a(λ) −b̄(λ)

b(λ) ā(λ)

)
, a(λ)ā(λ) + b(λ)b̄(λ) = 4w2

3(λ) + h2,

a(λ) = a(−λ−1) = −a∗(−λ∗), Imλ ≥ 0, ā(λ) = a∗(λ∗), Imλ ≤ 0,

b̄(λ) = b∗(λ), b(−λ) = b(λ) = −b(−λ−1), λ ∈ R.

(3.7)

In writing formulas (3.7) for a(λ) and ā(λ), we took into account that the relation between Jost solu-

tions (3.5) leads to the representations

a(λ) =
det[T

(1)
− (x, λ), T

(2)
+ (x, λ)]

detT+(x, λ)
, ā(λ) =

det[T
(1)
+ (x, λ), T

(2)
− (x, λ)]

det T+(x, λ)
, (3.8)

where det T+(x, λ) = [4w2
3(λ) + h2](sgn x−1)/2. It hence follows that the functions a(λ) and ā(λ) can be

analytically continued from the real λ axis to the respective domains Imλ > 0 and Imλ < 0 (except,

possibly, the points where 2w3(λ) ± ih = 0).

In the domain of its analyticity, the function a(λ) can have zeros λ = λj (Imλj > 0), which we

assume to be simple. In addition, it can vanish at the points λ = λ0 (Im λ0 > 0), which are roots of the

equations 2w3(λ) ± ih = 0. In what follows, we show that the zeros λj parameterize solitons, and the

zeros λ0 do not define soliton states. The positions of the zeros of the coefficient a(λ) (if they exist) must

satisfy constraints (3.7):

a(λj) = a(−λ−1
j ) = −a∗(−λ∗

j ) = 0.

Therefore, imaginary zeros combine to form the pairs

λ = ibs, ib
−1
s , bs > 0, s = 1, 2, . . . ,M, (3.9)

and the complex zeros combine to form “quartets”:

λ = λk, −λ−1
k , −λ∗

k, (λ
∗
k)

−1, Imλk > 0, k = 1, 2, . . . , N. (3.10)

It follows from representation (3.8) that the condition a(λj) = 0 implies the proportionality of the

columns T
(1)
− (x, λj) and T

(2)
+ (x, λj):

T
(1)
− (x, λj) = γ(λj)T

(2)
+ (x, λj). (3.11)

Reductions (3.6) lead to constraints imposed on the choice of the normalization constants γ(λj):

γ(ib−1
s ) = −γ(ibs), |γ(ibs)|2 = 4w2

3(ibs) + h2 > 0, s = 1, 2, . . . ,M ; (3.12)

γ(−λ−1
k ) = −γ(λk), γ(λk)γ(−λ∗

k) = 4w2
3(λk) + h2, k = 1, 2, . . . , N. (3.13)
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Relations (3.12) are valid only for

|h| > max
s

[
bs + b−1

s

2

]
. (3.14)

The transition matrix Q(λ) is independent of the coordinate x. Hence, using formulas (2.8), (2.9),

(3.5), and (3.6), we obtain the representation

Q(λ) = T−1
+ (x, λ)|x=+0 K(λ)T−(x, λ)|x=−0 =

= σ2T
T
+ (x, λ)|x=+0 σ2K(λ)σ2T

∗
+(x,−λ∗)|x=+0 σ2 =

= T †
+(x, λ

∗)|x=+0 K(λ)σ2T
∗
+(x,−λ∗)|x=+0 σ2, (3.15)

which is useful for the further analysis. Here, the superscript T denotes transposition and the symbol †,
Hermitian conjugation.

We calculate the matrix element a(λ) using the formula that is next to the last one in chain (3.15):

a(λ) = (2w3(λ) + ih)[T+(x, λ)|x=+0]22[T
∗
+(x,−λ∗)|x=+0]22 +

+ (2w3(λ) − ih)[T+(x, λ)|x=+0]12[T
∗
+(x,−λ∗)|x=+0]12. (3.16)

To calculate b(λ), we use the last expression in the right-hand side of (3.15). The element b(λ) is then

expressed in terms of the same functions as a(λ):

b(λ) = (2w3(λ) + ih)[T ∗
+(x, λ

∗)|x=+0]12[T
∗
+(x,−λ∗)|x=+0]22 −

− (2w3(λ)− ih)[T ∗
+(x, λ

∗)|x=+0]22[T
∗
+(x,−λ∗)|x=+0]12. (3.17)

The function b(λ) is defined for λ ∈ R. Therefore, the right-hand side of (3.17) contains the limits of the

components of T
(2)
+ (λ) on the real λ axis taken in the domain of their definition Imλ > 0.

To construct solutions of Landau–Lifshitz equation (1.2) and the conservation laws, we need information

about the asymptotic behavior of the function a(λ) as λ → ∞. In accordance with (3.16), finding a series

in powers of λ−1 for a(λ) reduces to expanding the Jost function T+(x, λ) for x > 0, |λ| 
 1.

We seek the required solution of system (3.3), (3.4) in the form [3], [21]

T+(x, λ) = (I +Φ(x, λ))e−iw3(λ)xσ3+Z(x,λ), (3.18)

where we represent the antidiagonal (Φ) and diagonal (Z) matrix functions as series

Φ(x, λ) =

∞∑
n=1

Φn(x)

λn
, Z(x, λ) =

∞∑
n=1

Zn(x)

λn

with the asymptotic behavior

Φ(x, λ) → 0, Z(x, λ) → 0 for x → +∞.

We substitute (3.18) in Eq. (3.3) and separate the diagonal and antidiagonal parts. After simple calculations,

we obtain

Z(x, λ) = i

∫ ∞

x

[w3(λ)(n3(x
′)− 1)σ3 + w1(λ)[n1(x

′)σ1 + n2(x
′)σ2]Φ(x

′, λ)] dx′,

∂xΦ+ 2iw3n3σ3Φ− iw1Φ(n1σ1 + n2σ2)Φ + iw1(n1σ1 + n2σ2) = 0.

(3.19)
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Equating the coefficients at like powers of λ, we sequentially calculate the coefficients Φn(x) and Zn(x).

We present the first ones:

Φ0 =
(n1σ1 + n2σ2)σ3

1 + n3
, 2Z0 = ln

1 + n3

2
+ iσ3

∫ ∞

x

dx′p(x′),

where p(x) = (n1∂xn2 − n2∂xn1)/(1 + n3),

Φ1 = −2i∂x

(
n1σ1 + n2σ2

1 + n3

)
,

Z1 = −i

(
σ3∂xn3

1 + n3
− ip

)
+

iσ3

2

∫ ∞

x

dx′ [(∂x′n)2 + 1− n2
3].

(3.20)

For x > 0, |λ| 
 1, the leading term of the asymptotic expansion of T+(x, λ) has the form

T+(x, λ) = (I +Φ0(x) +O(λ−1)) exp

[
− iλx

4
σ3 + Z0(x) +O(λ−1)

]
. (3.21)

The asymptotic expansion of the Jost function T−(x, λ) in powers of λ−1 for x > 0 follows from T+(x, λ)

by the formal replacement

n(x) → S(x),

∫ +∞

x

→
∫ −∞

x

.

We note that for x > 0, the identity

∫ −∞

x

dx′
(
S1∂x′S2 − S2∂x′S1

1 + S3

)
=

∫ +∞

x

dx′ p(x′)

holds. If these remarks are taken into account, the comparison of formulas (2.8) and (3.2) for T+(x, λ)

and T−(x, λ) leads to the conclusion that the leading term of the expansion of T−(x, λ) for x > 0, |λ| 
 1

differs from (3.21) only in the factor λ/2 inherited from the matrix K(λ):

T−(x, λ) =
λ

2
(I +Φ0(x) + O(λ−1)) exp

[
− iλx

4
σ3 + Z0(x) +O(λ−1)

]
. (3.22)

The series for the Jost functions T±(x, λ) in powers of |λ| � 1 near the second singular point λ = 0

are reconstructed from the asymptotic expansions for |λ| 
 1 using second reduction (3.6).

Taking these remarks into account, we use representation (3.16) to obtain the estimates

a(λ) =
λ

2
+O(1) for |λ| 
 1; a(λ) = − 1

2λ
+O(1) for |λ| � 1. (3.23)

The explicit form of the analytic function a(λ) can be reconstructed from its zeros, poles, asymptotic

behavior near singular points, and the reflection coefficient b(λ) [3], [21]:

a(λ) = [2w3(λ) + iα]

M∏
s=1

(
λ− ibs
λ+ ibs

)(
λ− ib−1

s

λ+ ib−1
s

) N∏
k=1

(
λ− λk

λ+ λk

)
×

×
(
λ+ λ∗

k

λ− λ∗
k

)(
λ+ λ−1

k

λ− λ−1
k

)(
λ− (λ∗

k)
−1

λ+ (λ∗
k)

−1

)
×

× exp

(
1

2πi

∫ +∞

−∞
dμ

ln[1− |b(μ)|2(4w2
3(μ) + h2)−1]

μ− λ

)
. (3.24)
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Here, Imλ ≥ 0, α2 = h2. To have a specific relation between the parameters α and h, we set λ = 1 in

representation (3.16). Using reductions (3.6), we bring the result to the form

a(λ = 1) = ih detT+(+0, λ = 1) = ih.

On the other hand, from (3.24) with λ = 1, we find

a(λ = 1) = iα(−1)M .

In the calculations, we took the symmetry properties of the functions b(λ) and w3(λ) into account. The com-

parison of the formulas yields a relation between the parameters h and α,

h = α(−1)M , (3.25)

which depends only on the number M of pairs of imaginary zeros of the coefficient a(λ).

Thus, using auxiliary equation (3.3), we mapped the solutions of the initial boundary-value problem

for the Landau–Lifshitz model on the semiaxis into the complete set of scattering data. This set contains

the spectral densities b(λ), −∞ < λ < +∞, discrete zeros λj of the coefficient a(λ), and the normalization

constants γ(λj), j = 1, 2, . . . , 2M +4N . In the new variables, the integration of the Landau–Lifshitz model

reduces to solving linear differential equations. From the second equation in (2.11), we obtain the usual

time dependence of scattering data [3]:

a(t, λ) = a(0, λ), b(t, λ) = b(0, λ)e−4iw2
1(λ)t, γ(t, λj) = γ(0, λj)e

−4iw2
1(λj)t. (3.26)

We determine the values of the integration constants a(0, λ), b(0, λ), γ(0, λj) from (3.3) using the given

initial distribution of magnetization n0(x) in Eq. (1.5).

From the physical standpoint, the spectral densities b(λ, t) parameterize dispersive spin waves, and the

discrete parameters λj parameterize particle-like magnetic solitons. In the next section, we calculate purely

soliton states in a semi-infinite sample in the absence of dispersive waves (for b(λ) = b̄(λ) ≡ 0).

4. Construction of soliton solutions using the Riemann problem

To pass from the scattering data to the description of magnetization in the sample, methods of the

theory of functions of complex variables are to be used. The inverse spectral transform on the semi-

axis 0 < x < +∞ differs from the spectral transform on the interval −∞ < x < 0. However, it is possible to

write the underlying Riemann problems uniformly using piecewise constant functions of the coordinate x.

We introduce matrix functions P+(x, λ) and P−(x, λ) that are analytic in the respective upper (Im λ > 0)

and lower (Im λ < 0) half-planes of the complex λ-plane:

P+(x, λ) = (T
(1)
− (x, λ), T

(2)
+ (x, λ))ϕ−1

0 (x, λ) diag[S∗
2 (x, λ

∗), S∗
1 (x, λ

∗)],

P−(x, λ) = (T
(1)
+ (x, λ), T

(2)
− (x, λ))ϕ−1

0 (x, λ) diag[S1(x, λ), S2(x, λ)].
(4.1)

Their explicit forms are different for x > 0 and x < 0 and are defined concretely by factors that are piecewise

constant with respect to x,

S1(x, λ) = H(x) + (2w3(λ) − iα)H(−x),

S−1
1 (x, λ) = H(x) + (2w3(λ)− iα)−1H(−x),

S2(x, λ) = H(−x) + (2w3(λ)− iα)−1H(x),

S−1
2 (x, λ) = H(−x) + (2w3(λ) − iα)H(x),

where H(x) = (1 + sgnx)/2 is the Heaviside step function. The calculation of P±(x, λ) reduces to solving

the matrix Riemann problem that is formulated as follows.
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In the domains Imλ ≥ 0 and Imλ ≤ 0, construct the respective analytic functions P+(x, λ) and

P−(x, λ) that satisfy the matching condition on the real λ axis

P−(x, λ) =
P+(x, λ)ϕ0(x, λ)

am(x, λ)

(
1 −b̄m(x, λ)

−bm(x, λ) 1

)
ϕ−1
0 (x, λ), λ ∈ R, (4.2)

and the constraints

P±(x,−λ−1) = σ3P±(x, λ)σ3,

P±(x, λ) = ∓i sgnxσ2P
∗
±(−x,−λ∗)σ1 diag[θ(∓x, λ), θ(±x,−λ)], (4.3)

P+(x, λ) = σ2P
∗
−(x, λ

∗)σ2. (4.4)

To simplify the expressions, we use the notation

am(x, λ) = detP+(x, λ) = a(λ)S−1
1 (x, λ)S∗

2 (x, λ
∗), Imλ ≥ 0,

ām(x, λ) = detP−(x, λ) = a∗m(x, λ∗), Imλ ≤ 0;

bm(x, λ) = b(λ)[S∗
1 (x, λ

∗)]−1S∗
2 (x, λ

∗), b̄m(x, λ) = b∗m(x, λ), λ ∈ R;

θ(x, λ) = H(x) + f(λ)H(−x), f(λ) =
iα− 2w3(λ)

iα+ 2w3(λ)
.

Matching condition (4.2) is another form of the relation between Jost solutions (3.5) for λ ∈ R.

Reductions (4.3) and (4.4) follow from reductions (3.6) for the Jost functions. It is useful for the further

analysis to rewrite relation (4.4) in another form

P−1
+ (x, λ) =

σ2P
T
+ (x, λ)σ2

detP+(x, λ)
=

P †
−(x, λ

∗)
am(x, λ)

, Imλ ≥ 0. (4.5)

We note that solutions of Riemann problem (4.2) are defined up to multiplication by a nondegenerate

matrix that is independent of λ. We use asymptotic formulas for P±(x, λ) as λ → ∞ to eliminate this

arbitrariness. An important feature of the used approach is that solutions of Riemann problem (4.2)–(4.4)

on the intervals −∞ < x < 0 and 0 < x < ∞ are calculated independently. To obtain the magnetization

field in the sample, it suffices to carry out calculations only on the semiaxis 0 ≤ x < ∞. For x > 0,

as λ → ∞, the asymptotics of the function P−(x, λ) is given by formulas (3.21) and (3.22):

P−(λ) → g0 =

⎛
⎝ 1 − n−

1 + n3n+

1 + n3
1

⎞
⎠
(
r 0

0 r∗

)
,

r =

√
1 + n3

2
exp

(
i

2

∫ ∞

x

dx′ p(x′)
)
, (4.6)

where n± = n1 ± in2 and g†0g0 = I.

We then restrict ourself to constructing purely soliton excitations (b = b̄ = 0). Matching condition (4.2)

is then simplified: for x > 0 and with expression (4.5) taken into account, it becomes

P−(λ)P
†
−(λ

∗) = I, λ ∈ R. (4.7)

The soliton matrix P−(λ) is a meromorphic function in the complex λ plane. Its poles coincide with zeros

λ = λj (Eqs. (3.9) and (3.10)) of the expression

detP †
−(λ

∗) =
a(λ)

2w3(λ) + iα
.
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Therefore, P−(λ) admits the representation

P−(λ) = g0Ψ(λ), Ψ(λ) = I +
2M+4N∑

k=1

Ak

λ− λk
. (4.8)

The requirement of the absence of poles in the left-hand side of (4.7) leads to the 2M + 4N independent

matrix equations

P−(λ∗
j )A

†
j = 0, j = 1, 2, . . . , 2M + 4N,

which imply that the matrix Aj is degenerate and can be written in the form [21], [22]

(Aj)αβ = (Xj)α(ξ
∗
j )β , α, β = 1, 2,

where ξj ∈ KerP−(λ∗
j ), i.e.,

P−(λ∗
j )ξj = 0. (4.9)

Using formulas (3.11) and (4.1), we find the algebraic structure of the second degenerate matrix P−(λ∗
j )

for x > 0:

P−(λ∗
j ) = (T

(1)
+ (λ∗

j ), T
(2)
− (λj))ϕ

−1
0 (λ∗

j ) diag[1, (2w3(λ
∗
j )− iα)−1] =

= iσ2(T
∗(2)
+ (λ∗

j ),−γ∗(λj)T
∗(2)
+ (λ∗

j ))ϕ
−1
0 (λ∗

j ) diag[1, (2w3(λ
∗
j )− iα)−1].

Hence, we immediately find the vectors ξj :

ξj =

(
ν∗j (x, t)

1

)
, νj(x, t) = κ(λj)e

2iw3(λj)x−4iw2
1(λj)t. (4.10)

The constant complex parameters

κ(λj) =
γ(λj , t)|t=0

2w3(λj) + iα

satisfy the constraints

κ(−λ−1
j ) = −κ(λj), κ(λj)κ

∗(−λ∗
j ) = f(λj), (4.11)

where f(λ) = [iα− 2w3(λj)]/[iα+ 2w3(λj)]. The values of λj are the same as in (3.9) and (3.10).

As a result of the substitution of ξj defined in (4.10) in Eq. (4.9), we obtain a linear system for the

vectors Xk,

ξj +

4N+2M∑
k=1

MjkXk = 0, Mjk =
(ξ∗k · ξj)
λ∗
j − λk

.

Its solution determines the soliton matrix function P−(x, t, λ) for x > 0:

P−(λ) = g0Ψ(λ),

Ψαβ(λ) = δαβ −
4N+2M∑
k,j=1

(M−1)kj(ξj)α(ξ
∗
k)β

λ− λk
, α, β = 1, 2,

(4.12)

where

(M−1)kj =
∂ ln detM

∂Mjk
.
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We substitute the expression for P−(λ) (4.12) in the first formula in (4.3) and set λ = 0 in the obtained

equality. This leads to a matrix equation for the components of the easy-axis ferromagnet magnetization:

g†0σ3g0 =

(
n3 −n−eiγ0

−n+e
iγ0 −n3

)
= Ψ(λ)|λ=0 σ3, γ0 =

∫ +∞

x

dx′ p(x′). (4.13)

The further calculation is simplified by the parameterization

n = (sin θ cosΦ, sin θ sinΦ, cos θ),

where

n3 = cos θ, n+ = sin θeiΦ, γ0 =

∫ ∞

x

(1− cos θ)∂x′Φ dx′. (4.14)

Using formulas (4.13) and (4.14), we reconstruct the fields θ(x, t) and Φ(x, t) of magnetic solitons in a semi-

infinite sample:

cos θ = Ψ11(λ)|λ=0, ∂xΦ =
1

2i

[
1

Ψ11(x, λ)

∂

∂x
ln

Ψ21(x, λ)

Ψ∗
21(x, λ)

]∣∣∣∣∣
λ=0

. (4.15)

We show in what follows that for soliton solutions, the integral that defines the Φ field can be calculated

in explicit form.

5. Interaction of solitons with the sample boundary

5.1. Edge solitons. Magnetic solitons on the semiaxis are divided into two classes as functions of

the choice of zeros of the coefficient a(λ). Imaginary zeros (3.9) parameterize fixed solitons, whose cores

are localized near the sample surface. A pair of zeros of a(λ)

λ1 = ieρ, λ2 = ie−ρ, −∞ < ρ < ∞

corresponds to the simplest soliton. Its structure is specified by the functions νj(x, t) in (4.10),

ν1(x, t) = −ν2(x, t) =

√
α− cosh ρ

α+ cosh ρ
e−x cosh ρ+it sinh2 ρ,

where |α|> cosh ρ. Consequently, such solitons form in a threshold manner in the case where the surface

field amplitude is |h| > cosh ρ. In formulas (4.13) and (4.15),
Ψ∗

21

Ψ21

∣∣
λ=0

= e2it sinh
2 ρ; hence, after simple

calculations, we find

n3 = 1− 2

1 + sinh2 y tanh2 ρ
, n+ = n1 + in2 =

2 sinh y tanh ρ

1 + sinh2 y tanh2 ρ
ei(t sinh

2 ρ+ϕ0), (5.1)

where ϕ0 is an arbitrary real integration constant,

y = x cosh ρ− 1

2
ln

α− cosh ρ

α+ cosh ρ
.

In this case, M = 1, and therefore solution (5.1) satisfies boundary condition (1.4) with h = −α (3.25).
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In the soliton core, magnetization vector (5.1) performs uniform precession with the frequency

ω = sinh2 ρ around the axis Oz. The position of the soliton center and its core structure depend on the value

and the sign of the surface field h. In relatively weak positive fields cosh ρ < h ≤ √
cosh(2ρ), the soliton

core has the width

d = x2 − x1 =
2

cosh ρ
ln

(
coth ρ+

√
1 + coth2 ρ

)

(see Fig. 1), where x1,2 are the points where the n3 component vanishes.

Fig. 1. (a) The n3 component of soliton (5.1) and (b) the spatial distribution of spins in the soliton

for field values cosh ρ < h ≤ √
cosh(2ρ).

We recall that in the exchange approximation, near-boundary solitons have no constraints imposed

on their size [16]. The presence of a uniaxial-anisotropy field gives rise to a finite domain of the spatial

localization of solitons. In dimensional variables, the characteristic localization scale is determined in units

of the magnetic length l0 =
√
K/α. In dimensionless variables, l0 = 1.

At the center x0 = [2 cosh ρ]−1 ln[(h+ cosh ρ)/(h− cosh ρ)] of soliton (5.1), the magnetization reaches

the value n3 = −1. At the sample boundary x = 0, for cosh ρ < h <
√
cosh(2ρ), the value n3(x)|x=0 =

−1 + 2 sinh2 ρ/(h2 − 1) ≡ n
(0)
3 varies in the range 0 ≤ n

(0)
3 < 1. In the soliton localization domain, the

vector n rotates about the axis Oz in an in-phase way; on the left and on the right of the center (for x < x0

and x > x0), the rotation phases differ by π.

In strong positive fields h >
√
cosh(2ρ), the left soliton edge closely approaches the sample boundary.

The soliton has a width of the order of x0 + d/2, and n3 varies in the range −1 ≤ n
(0)
3 < 0 at the sample

boundary (Fig. 2a).

Fig. 2. The n3 component of soliton (5.1) for the field values (a) h >
√

cosh(2ρ), (b) −√
cosh(2ρ) <

h < − cosh ρ, and (c) in the case of the full pinning of surface spins.

Edge solitons of another structure form in the case of the opposite direction of the surface field,

h ≤ − cosh ρ. In the range −√cosh(2ρ) � h < − coshρ, such solitons are small-amplitude ones (Fig. 2b).

In this case, the center of soliton (5.1) coincides with the sample boundary x = 0. The remagnetization

in the soliton core enhances as |h| increases. At the sample boundary, the magnetization approaches the

saturation n3 ≈ −1.
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In the limit h → −∞, solution (5.1) becomes

n3 = 1− 2

1 + [sinh(x cosh ρ) tanh ρ]2
, n+ =

2 sinh(x cosh ρ) tanh ρeit sinh
2 ρ+iϕ0

1 + [sinh(x cosh ρ) tanh ρ]2

and describes a precessing soliton in the case of the full pinning of edge spins (Fig. 2c):

n3|x=0 = −1, n3 → 1 for x → +∞.

The center of such a soliton coincides with the sample boundary. The magnetization precession is concen-

trated on the near-boundary layer with a width of the order of cosh−1 ρ.

In [20], an approximate solution describing a nonlinear excitation localized near the chain end was

described for a semibounded spin chain with a weak exchange anisotropy. In this paper, we discuss the

dynamics of the easy-axis ferromagnet with different boundary conditions, one-soliton state (5.1) is close in

its structure to the localized excitation obtained in [20]. The soliton can localize near the sample boundary

only in the case of a sufficiently nonuniform magnetization field near the sample surface. Therefore, for the

formation of solitons (5.1), there is a threshold with respect to the absolute value of the surface anisotropy h.

At the same time, the core structures of near-boundary solitons and hence their energies are different as

functions of the sign of h. In Sec. 6, we calculate the total energy of a semibounded sample in the presence

of solitons and magnons in it (see (6.5)). The case where an even number of precessing solitons for h > 0

and an odd number of them for h < 0 are localized near the sample boundary is energetically advantageous.

The interaction of precessing edge solitons is manifested in additional oscillations of their cores at

combination frequencies. We discuss the two-soliton solution of problem (1.2)–(1.5) with four imaginary

zeros (3.9) of the coefficient a(λ). The final formulas are simplified if the parameterization

λ1,2 = ie±ρ1 , λ3,4 = ie±ρ2 , −∞ < ρ1,2 < ∞

is used. In this case, the vectors ξj in (4.10) are

ξ1,2 =

(
±ν∗1
1

)
, ξ3,4 =

(
±ν∗2
1

)
,

ν1,2 = e−y1,2+is1,2 , y1,2 = x cosh ρ1,2 − 1

2
ln

α− cosh ρ1,2
α+ cosh ρ1,2

, s1,2 = t sinh2 ρ1,2 + s
(0)
1,2,

where s
(0)
1,2 are real constants of integration. The independent elements of the matrix Ψ(λ = 0) in Eq. (4.12)

can be represented as

Ψ11(λ)|λ=0 =
|u|2 − |q|2
|u|2 + |q|2 , Ψ21(λ)|λ=0 =

2uq

|u|2 + |q|2 , (5.2)

where the functions u(x, t) and q(x, t) are

q = γ[tanh ρ2 sinh y2e
is1 − tanh ρ1 sinh y1e

is2 ], γ =
cosh ρ1 − cosh ρ2
cosh ρ1 + cosh ρ2

,

u =
1

2
tanh ρ1 tanh ρ2[γ

2 cosh(y1 + y2)− cosh(y1 − y2)] +
sinh2 ρ1e

−i(s2−s1) + sinh2 ρ2e
i(s2−s1)

(cosh ρ1 + cosh ρ2)2
.

(5.3)

589



If relations (5.2) and (5.3) are used, the right-hand side of the second equation in (4.15) can be written as

a derivative,

1

2iΨ11
∂x ln

Ψ21

Ψ∗
21

∣∣∣∣∣
λ=0

=
1

2i
∂x ln

u∗q
q∗u

. (5.4)

Therefore, the angles θ and Φ, and hence the magnetization components of the two-soliton excitation can

be explicitly calculated as

n3 = 1− 2|q|2
|u|2 + |q|2 , n+ =

2u∗q
|u|2 + |q|2 . (5.5)

We recall that in this case,M = 2, and therefore solution (5.3), (5.5) satisfies mixed boundary condition (1.4)

with h = α (3.25). It describes a nonlinear superposition of two edge solitons (5.1). We note that two-

soliton excitation (5.3), (5.5) forms only under the condition that the surface field is larger than a certain

threshold value: |h| > maxs=1,2 cosh ρs.

To be more specific, we assume that ρ1 > ρ2. Then it is easy to verify that the first soliton (the one

with ρ = ρ1) is always located closer to the sample boundary than the second one. In the cores of solitons of

type (5.1), the magnetization n precesses with frequencies ω1,2 = sinh2 ρ1,2 around the anisotropy axis Oz.

The soliton interaction is manifested in that at the sample boundary x = 0, the magnetization component n3

does not remain constant, as in the case of single solitons, but oscillates with the frequency ω1 − ω2 equal

to the difference between the precession frequencies of individual solitons,

n3(x, t)|x=0,t=0 = nmin
3 ≤ n3(x, t)|x=0 ≤ nmax

3 = n3(x, t)|x=0,t=T/2,

where T = 2π/(ω1 − ω2) is the oscillation period.

Two-soliton complex (5.3), (5.5) periodically approaches the sample boundary and is then repulsed

from it. It then moves as a single whole. The longitudinal shift of the multisoliton as a whole is accompanied

by transverse magnetization modulations along the axisOz with the frequency ω1−ω2 and hence by nutation

oscillations of the magnetization precession axis about the Oz direction.

The component n3 for two-soliton solution (5.3), (5.5) is schematically shown in Fig. 3 for h > 0 and

h < 0 at the time instants t = 0 (solid lines) and t = T/2 (dashed lines). For positive values of the field h,

the component n3 has only one extremum point, a minimum at point B. For negative values of h, the n3

component has two extremum points at any instant of time: a maximum at point A and a minimum that

periodically shifts between limit positions B and B′. Point A barely shifts with time: A = A′. At point A′,
n3 = 1; and at point B′, n3 = −1.

Fig. 3. The n3 component of two-soliton excitation (5.3), (5.5) for (a) h > 0 and (b) h < 0 at the

time instants t = 0 (solid lines) and t = T/2 (dashed lines).
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Fig. 4. Trajectories traced by the end of the vector n(x = const, t) on the surface of the sphere n2 = 1

for soliton (5.3), (5.5) for different values of x in the case h < 0 and ρ2 � ρ1.

The peak-to-peak magnitude Δx of longitudinal oscillations of two-soliton excitation (5.3), (5.5) essen-

tially depends on the ratio of the quantities ρ1 and ρ2 that parameterize the solitons. For ρ2 � ρ1, the

longitudinal oscillations are not pronounced, and the magnetization dynamics in the two-soliton complex

is predominantly determined by nutation oscillations about the precession axis. In such a case, the mag-

netization behavior in soliton (5.3), (5.5) is illustrated by Fig. 4, which, for h < 0, shows the trajectories

traced by the end of the vector n with time at different sample points x. Figure 4a shows the trajectory

located on the right of point A and slightly away from it (Fig. 3b). In Fig. 4(b–d), as x increases, the

projection of n3 decreases gradually. Figure 4e corresponds to point x located between limit positions B

and B′. In Fig. 4(f–i), the projection of n3 increases, tending to the limit value n3 = 1 as the distance from

the sample boundary increases.

In the limit |h| = |α| → ∞, we have

ln

(
α− cosh ρs
α+ cosh ρs

)
→ 0, s = 1, 2.

Therefore, for x = 0, the relations y1,2 = 0 and q(x, t)|x=0 = 0 are valid, and hence two-soliton solu-

tion (5.3), (5.5) describes near-boundary magnetization oscillations in the case of the full pinning of surface

spins in accordance with the edge condition n3|x=0 = 1, which differs from boundary condition (1.3) by the

sign of the right-hand side for the one-soliton state. Thus, depending on the character of the full pinning

of edge spins, the sample boundary captures either an even or an odd number M of precessing solitons:

n3|x=0 = (−1)M . (5.6)

The same dependence was established in [16] for edge solitons in the Heisenberg ferromagnet model.
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For ρ2 ∼ ρ1, excitation (5.3), (5.5) periodically shifts to the sample boundary at a significant distance,

of the order of its width. In the limit ρ1 = ρ2 + ε, ρ2 ≡ ρ (ε � 1), the peak-to-peak magnetization of

longitudinal oscillations increases without bound. As ε → 0, we obtain a degenerate exponential–polynomial

solution. It is described by (5.5) where u and q are

u =
tanh2 ρ

2
[sinh2 y − x̄2 cosh2 ρ− 4t2 cosh4 ρ] +

coth2 ρ

2
+ 2it cosh2 ρ,

q = −[2 sinh−1(2ρ) sinh y + x̄ sinh ρ cosh y − it sinh(2ρ) sinh y]eit sinh
2 ρ+is0 , (5.7)

y = x cosh ρ− 1

2
ln

(
h− cosh ρ

h+ cosh ρ

)
, x̄ = x+

h

h2 − cosh2 ρ
,

where s0 is a real constant of integration. Excitation (5.5), (5.7) is the soliton in Eq. (5.1) moving towards

the sample boundary for t � −1 and away from it for t 
 1:

n3(x, |t| 
 1) = 1− 2

1 + sinh2[y − ln(4|t| cosh2 ρ)] tanh2 ρ ,

n+(x, |t| 
 1) = n1 + in2 =
2 sinh[y − ln(4|t| cosh2 ρ)] tanh ρ

1 + sinh2[y − ln(4|t| cosh2 ρ)] tanh2 ρe
it sinh2 ρ+is0 i sgn t.

(5.8)

The velocity of soliton (5.8) is V � (cosh ρ|t|)−1 as |t| → ∞. Approaching the sample boundary x = 0

at t = 0, soliton (5.8) is reflected from it, acquiring an additional phase shift by π. This follows from the

presence of the factor sgn t in formula (5.8).

The soliton width (the distance between the points where n3 = 0) barely changes in this case. In the

case of different field values at the collision instant, the magnetization component n3 in excitation (5.5), (5.7)

is qualitatively the same as in Fig. 3(a, b) at t = 0 (solid lines). However, it is interesting that at the instant

of collision with the boundary (at t = 0), all spins in excitation (5.5), (5.7) simultaneously land on the plane

obtained by rotating the Oxz plane counterclockwise through the angle s0 about the Oz axis. In Fig. 5a,

for clarity, we assume that s0 = 0. Then at t = 0 all spins land on the plane Oxz. In this case, for positive

field values h > 0, all of them are tilted in the direction towards the sample boundary: n1(x, t)|t=0 ≤ 0

(Fig. 5a); for negative field values h < 0, only spins located to the left of the point where n3 = 1 (Fig. 5b)

are tilted towards the sample boundary.

Fig. 5. Excitation (5.5), (5.7) at the instant t = 0 of collision with the sample boundary for (a) h > 0

and (b) h < 0.
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5.2. Reflection of solitons from the sample boundary. Complex zeros (3.10) of the function a(λ)

parameterize another class of solitons. It is formed by moving precessing objects that typically experience

elastic pair collisions with each other and elastic reflections from the sample boundary. In the process

of approaching the boundary, each such soliton significantly changes its internal structure. It is therefore

impossible to describe the soliton motion in finite-size samples in the framework of the traditional nonlinear

perturbation theory, which suggests small changes in the structures and dynamical properties of solitons in

unbounded mediums.

The simplest soliton moving in a semi-infinite sample is parameterized by four zeros (3.10) of a(λ).

We write them in the form

λ1 = λ0, λ2 = −λ−1
0 , λ3 = −λ∗

0, λ4 = λ∗−1
0 , λ0 = eρ+iδ,

−∞ < ρ < ∞, 0 < δ < π. Then the functions νj(x, t) are defined by formulas (4.10):

ν1 = κ(λ0) exp[ix sinh(ρ+ iδ)− it cosh2(ρ+ iδ)], ν2 = −ν1,

ν3 =
f∗(λ0)

κ∗(λ0)
exp[−ix sinh(ρ− iδ)− it cosh2(ρ− iδ)], ν4 = −ν3,

(5.9)

where f(λ0) = [iα− sinh(ρ+ iδ)]/[iα+ sinh(ρ+ iδ)]and κ(λ0) is an arbitrary complex constant.

Straightforward but more tiresome algebraic calculations lead to the above representation (5.2) for

independent elements of the soliton matrix Ψ(λ)|λ=0 and to Eqs. (4.15) and (5.4) for the angles θ and Φ.

Therefore, the magnetization distribution for a soliton moving in a semi-infinite ferromagnet can be written

in the same form (5.5) as previously. Only the functions u(x, t) and q(x, t) are different:

q =
tanh ρ cot δ

2| sinh(ρ+ iδ)|2
[
i sinh ρ coshρ

(
(|ν3|+ |ν3|−1)

ν1
|ν1| − (|ν1|+ |ν1|−1)

ν3
|ν3|

)
+

+ sin δ cos δ

(
(|ν1| − |ν1|−1)

ν3
|ν3| + (|ν3| − |ν3|−1)

ν1
|ν1|

)]
,

u =
1

4

[
(|ν1ν3|+ |ν1ν3|−1) tanh2 ρ cot2 δ| coth(ρ+ iδ)|2 +

(∣∣∣∣ν1ν3
∣∣∣∣+
∣∣∣∣ν3ν1
∣∣∣∣
)
(cot2 δ − tanh2 ρ) +

+
(ν∗1ν3 + ν1ν

∗
3 )

|ν1ν3| | coth(ρ+ iδ)|2
]
+

i

2

(∣∣∣∣ν1ν3
∣∣∣∣−
∣∣∣∣ν3ν1
∣∣∣∣
)
tanh ρ cot δ. (5.10)

In this case, M = 0, and therefore solution (5.5), (5.10) satisfies edge condition (1.4) with h = α (3.25).

To analyze the properties of soliton reflection from the boundary, we separate the real and imaginary

parts in the exponential factors of the fields νj(x, t) (5.9):

ν1 = κ(λ0)e
−y1+is1 , ν3 =

f∗(λ0)

κ∗(λ0)
e−y2−is2 ,

y1,2 = l−1
0 (x∓ V t), s1,2 = kx∓ ωt, l−1

0 = cosh ρ sin δ > 0,

V = 2 sinh ρ cos δ = 2k, ω = cosh2 ρ cos2 δ − sinh2 ρ sin2 δ.

(5.11)

We show that at large distances from the boundary, soliton (5.5), (5.10) moves as a single whole with the

velocity V or −V . The parameter l0 determines the characteristic thickness of domain walls bounding the

soliton core. The precession wave of the vector n with the frequency ω and wave number k propagates

through the core. The wave is generated near one soliton edge and disappears near another one. To sub-

stantiate these statements, we note that for x 
 1, at large times, the asymptotic behavior of fields n3

and n+ (5.5) is determined by the competition between exponentially increasing terms in the numerators
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and denominators of formulas (5.5). To be more specific, we assume that the parameter V is positive. Then

for x 
 1 and as t → ±∞, in the reference frame related to the soliton, where x∓V t = const, its structure

is described by the expressions

n3 = 1− 2

cot2 δ + tanh2 ρ

[
cosh2 y± +

sin2 δ

sinh2 ρ+ cos2 δ

]−1

,

n+ =
2κeiϕ±

|κ|(cot2 δ + tanh2 ρ)
(cot δ cosh y± ± i tanh ρ sinh y±)

[
cosh2 y± +

sin2 δ

sinh2 ρ+ cos2 δ

]−1

, (5.12)

where we introduce the notation

y± = l−1
0 (x∓ V t− x

(0)
+ ), x

(0)
+ = l0 ln

|κ sinh(ρ+ iδ)|
sinh ρ cos δ

,

x
(0)
− = x

(0)
+ + l0 ln

∣∣∣∣f(λ0)

κ(λ0)

∣∣∣∣, f(λ0) =
iα− sinh(ρ+ iδ)

iα+ sinh(ρ+ iδ)
,

ϕ± = ±(kx∓ ωt) + ϕ
(0)
± , ϕ

(0)
+ =

π

2
+

1

2i
ln

[
sinh(ρ+ iδ) cosh2(ρ− iδ)

sinh(ρ− iδ) cosh2(ρ+ iδ)

]
,

ϕ
(0)
− = −ϕ

(0)
+ − arg f(λ0), and κ(λ0) is an arbitrary complex integration constant. Formulas (5.12) describe

precessing breathers propagating with the velocities V and −V in an infinite easy-axis ferromagnet. The

complete analysis of their properties is contained in [1], [3]. Thus, at large distances from the sample

boundary, particle-like excitation (5.5), (5.10) transforms into a typical magnetic soliton in an unbounded

medium. The result of the soliton reflection from the sample edge amounts to a change in the internal

precession phase and a shift of the soliton center. The phase shift ϕ+ − ϕ− = 2ϕ+ + arg f(λ0) depends on

the spin pinning parameter α on the sample boundary and on the complex parameter sinh(ρ+ iδ), instead

of which observable quantities can be used such as, e.g., the soliton velocity V and size l0:

sinh(ρ+ iδ) =
V

2
+ il−1

0 .

It hence follows that the measurement of the phase shift acquired by the soliton after its reflection from

the sample boundary gives information about the parameter α, and therefore about the spin pinning on

the sample surface.

We note that in the limit case ρ → 0, δ �= π/2 (or δ → π/2, ρ �= 0), x± = const 
 1, expressions (5.12)

describe immovable breathers far from the sample boundary. Meanwhile, the breather localization near the

sample edge is impossible because q is zero in the complete solution (5.5), (5.10) at ρ = 0 or δ = π/2, and

therefore the soliton state does not exists.

Edge multisolitons form under the condition that the surface field |h| exceeds certain threshold values,

while there is no such constraint for the formation of moving solitons.

In the limit h → 0, we have the factor f(λ0) = −1 in formulas (5.5), (5.9), and (5.10); they can then

be simplified and determine a solution of Landau–Lifshitz equations (1.2) with free spins at the sample

boundary:

[n× ∂xn]|x=0 = 0.

In the opposite limit |h| → ∞, we have the factor f(λ0) = 1. Therefore, at x = 0, the equalities

ν3|x=0 = ν∗−1
1 |x=0, q|x=0 = 0

hold. It hence follows that in this limit, solution (5.5), (5.9), (5.10) describes the reflection of a precessing

soliton from the sample boundary with spins fully pinned at it:

n3|x=0 = 1.

Effects of the multisoliton reflection from the sample edge can be verified experimentally.
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6. Integrals of motion

As in an infinite medium, the element a(λ) of the transition matrix is independent of time and therefore

serves as a generating functional for integrals of motion for an infinite ferromagnet. We obtain their explicit

expressions from formula (3.16) for a(λ) by substituting asymptotic series for elements of Jost function (3.18)

there:

T+(x, t, λ) =

(
I +

∞∑
n=0

Φn(x, t)

λn

)
exp

(
−iw3(λ)xσ3 +

∞∑
k=0

Zk(x, t)

λk

)
. (6.1)

The expansion coefficients in (6.1) are defined recursively by Eqs. (3.19) and have the algebraic structure

Φn(x, t) =

(
0 −w∗

n(x, t)

wn(x, t) 0

)
, Zn(x, t) =

(
zn(x, t) 0

0 z∗n(x, t)

)
.

The first functions wn(x, t) and zn(x, t) are given by (3.20),

w0 =
n+

1 + n3
, w1 = −2i ∂xw0, z0 =

1

2
ln

1 + n3

2
+

i

2

∫ ∞

x

p(x′) dx′,

p =
n1∂xn2 − n2∂xn1

1 + n3
, z1 = − i∂xn3

1 + n3
− p+

i

2

∫ ∞

x

[(∂x′n)2 + 1− n2
3] dx

′. (6.2)

Using Eqs. (3.16), (6.1), and (6.2), we calculate the first term of the asymptotic expansion:

ln

(
a(λ)

[4w2
3(λ) + α2]1/2

)
= −2i

λ
H +O

(
1

λ2

)
. (6.3)

The expression

H =
1

2

∫ ∞

0

[(∂x′n)2 + 1− n2
3] dx

′ − hn3|x=0 (6.4)

coincides with dimensionless energy (1.1) of a semi-infinite easy-axis ferromagnet. On the other hand, the

expansion in terms of the inverse powers of λ in the left-hand side of (6.3) can be immediately found using

dispersion relation (3.24). The comparison of two expansions allows expressing the integrals of motion of

the system in terms of spectral data. For the system energy, we obtain

H = −α+

M∑
s=1

(bs + b−1
s ) + 2

N∑
k=1

Imλk(1 + |λk|−2) +

∫ ∞

−∞
[1 + 4w2

3(μ)]ρ(μ) dμ, (6.5)

where α = (−1)Mh. The quantity

ρ(μ) = − 1

16πw2
1(μ)

ln

(
1− |b(μ)|2

4w2
3(μ) + h2

)
> 0

has the meaning of the density of spin-wave modes with the wave number κ = 2w3(μ) and the dispersion

law Ω = 1 + κ2.

In terms of the spectral data, the total system energy (6.4) is the sum of independent discrete con-

tributions of solitons and quasiparticles of the continuous spectrum of spin waves. Therefore, the set of

nonlinear excitations of a semi-infinite ferromagnet can be treated as an ideal gas of solitons and magnons.

The applied procedure for the integration of Landau–Lifshitz model (1.2)–(1.5) is a nonlinear analogue

of the Fourier method. As in [15], [16], it can be shown that in the small-amplitude limit, the spin-wave
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field n+(x, t) (|n+| � 1) of the linearized Landau–Lifshitz equation is related to the spectral density b(λ, t)

of the inverse scattering problem by the usual Fourier transformation. It is well known that distant Fourier

components of functions with no singularities on the real axis are exponentially small. In this paper, because

of the continuation to the entire real axis of the field n+(x, t) defined on the semiaxis 0 < x < ∞, the deriva-

tives of the continuation S+(x, t) acquire a jump at x = 0. In such cases, the distant Fourier components of

the functions S+(x, t) have a power-law dependence as λ → ∞ rather than the exponential one [23]. The

spectral function b(λ, t) of the inverse scattering transform inherits this feature of the Fourier transforma-

tion. We recall that for purely soliton states, b(λ, t) ≡ 0. This means that all coefficients of the expansion

of b(λ, t) in inverse powers of λ must vanish. Thus, in a semi-infinite sample, the element b(λ, t) of the

transition matrix is a generating functional of additional integrals of motion for mutisolitons (4.12), (4.14),

and (4.15) that we have obtained.

Using (3.17), (6.1), and (6.2), we find the asymptotic series for b(λ, t):

b(λ, t) =

[
−2ihw0 − w1 +

∞∑
s=1

1

λ2s
(w2s−1 − 2ihw2s − w2s+1)

]
exp

(
2

∞∑
k=0

z2k
λ2k

)∣∣∣∣∣
x=0

. (6.6)

In the case of purely soliton states, all preexponential factors vanish in this formula:

(2ihw0 + w1)|x=0 = 0, (w2s−1 − 2ihw2s − w2s+1)|x=0 = 0, s = 1, 2, . . . . (6.7)

These constraints provide ensure the correct edge conditions for solitons and the localization of solitons

near the sample boundary or their reflection from it.

The first additional integral of motion takes the form

∂x ln

(
n+(x, t)

1 + n3(x, t)

)∣∣∣∣∣
x=0

= h. (6.8)

For elementary soliton (5.1), it is easy to verify that identity (6.8) holds.

7. Conclusions

In this paper, using the inverse scattering transform method, we obtained and analyzed new soliton

solutions of the Landau–Lifshitz equation for a semi-infinite ferromagnet with an anisotropy of the easy

axis type. Under the influence of “image” forces, such solitons fundamentally change their structure and

dynamical properties near the sample surface. Therefore, they cannot be studied using previously known

methods for an unbounded medium.

We found the conditions for soliton localization near the sample boundary. We discovered the possi-

bility of controlling the number of edge solitons by changing the degree of surface spin pinning. We showed

that the edge solitons have a discrete set of eigenfrequencies, and the magnetization on the sample bound-

ary undergoes regular modulations. We predicted and analytically described elastic reflections of moving

precession solitons from the sample boundary. The obtained results indicate that the uniaxial anisotropy

field leads to the narrowing and boundedness of the spatial localization regions for all types of solitons.

Measurements of the phase shift acquired by solitons after their reflections from the boundary can be used

to diagnose the degree of surface spin pinning.

We constructed the spectral expansions of a series of integrals of motion, which allow interpreting

arbitrary localized perturbations in a semi-infinite ferromagnetic sample in terms of an ideal gas of solitons

and magnons. We obtained additional conservation laws, which ensure the soliton localization near the

sample surface or their reflection from it.

The results in this paper can be useful in verifying numerical calculations and in simulating the non-

linear dynamics of solitons in real finite-size samples. They stimulate the design of new experiments on the

study of solitons in bounded samples.
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