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QUANTIFYING THE IRREVERSIBILITY OF CHANNELS

Shunlong Luo∗† and Yuan Sun‡

In contrast to unitary evolutions, which are reversible, generic quantum processes (operations and quantum

channels) are often irreversible. However, the degree of irreversibility is different for different channels,

and it is desirable to have a quantitative characterization of irreversibility. In this paper, by exploiting the

channel–state duality implemented by the Jamio�lkowski–Choi isomorphism, we quantify the irreversibility

of channels via entropy of the Jamio�lkowski–Choi states of the corresponding channels and compare it with

the notions of entanglement fidelity and entropy exchange. General properties of a reasonable measure

of irreversibility are discussed from an intuitive perspective, and entropic measures of irreversibility are

introduced. Several relations between irreversibility, entanglement fidelity, the degree of nonunitality, and

decorrelating power are established. Some measures of irreversibility for a variety of prototypical channels

are evaluated explicitly, revealing some information-theoretic aspects of the structure of channels from the

perspective of irreversibility.
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1. Introduction

Irreversibility is ubiquitous in nature and emerges frequently in many physical processes. The second

law of thermodynamics, stating that the total entropy of a system either increases or remains constant in any

spontaneous process, characterizes some fundamentally irreversible aspects of natural phenomena [1]–[4].

In the quantum world, irreversibility arises naturally from the system–environment interaction and

quantum measurements, which lead to information leakage into the environment that cannot be recovered

due to the uncontrollability of the environment. This causes decoherence and dissipation of open system

dynamics [5]–[10].

In this paper, we are concerned with the irreversibility of quantum channels in the context of super-

operators, i.e., maps sending quantum states (described by density operators) to quantum states [11]–[13].

In a rather broad and widely used setup, general quantum processes are often described by quantum chan-

nels (i.e., linear trace-preserving completely positive maps of quantum states, henceforth abbreviated as

channels). These physical processes are usually divided into two categories: unitary evolutions (which are

reversible) and open system dynamics (which are irreversible). While irreversible aspects of channels have

been widely studied with the main focus on qualitative perspectives such as quantum error correction and
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quantum control, they are relatively less studied from a quantitative perspective. This calls for quantitative

investigations of the irreversibility of channels.

To proceed in a rigorous way, we recall that a quantum process described by a channel E is (physically)

reversible if there exists a channel D such that the composition D ◦ E = I is the identity channel in

the system. Otherwise, it is termed irreversible. Evidently, any unitary channel EU (ρ) = UρU † (with

U a unitary operator) is reversible, and the corresponding reverse is D(ρ) = EU†(ρ) = U †ρU . Indeed,

(EU† ◦ EU )(ρ) = U †(UρU †)U = ρ for any state ρ. On the other extreme, for a d-dimensional system, it

is intuitively clear that the completely depolarizing channel Ecde(ρ) = 1/d (for any state ρ) is among the

most irreversible channels. Here, 1 denotes the identity operator on the system Hilbert space. Intermediate

between these two extremes are many irreversible channels, the random unitary channels being prominent

and important examples.

Many features of irreversibility have been studied in the literature from various aspects. For example,

decoherence and dissipation have been extensively investigated in quantum measurements and the quantum-

to-classical transition [5]–[10]. Entanglement fidelity has been introduced to characterize the quality of

channels and quantum gates in preserving states [14]–[20]. Information and entropy change has been dis-

cussed for the coupling of systems to environments [21], [22]. Markovian/non-Markovian properties of open

system dynamics have attracted great interest with the emergence of quantum information theory [23]–[27].

Entropy production has been extensively investigated in quantum dynamical semigroups and irreversible

processes [28]–[41].

In view of the channel–state duality, for any channel, there is a corresponding Jamio�lkowski–Choi

state [42]–[44]. Because irreversibility is intimately related to a change in entropy, it is desirable to

study the entropy of Jamio�lkowski–Choi states and to see to what extent this entropy can be used to

quantify the irreversibility of the corresponding channel. Inspired by this general idea, in this paper,

by using the channel–state duality [42]–[45], we quantify the irreversibility of channels in terms of

entropy of the associated Jamio�lkowski–Choi states, which is connected to the entropy produced by

the channels. We remark that the general idea of relating a change in entropy to irreversibility is well

known. To pursue further quantitative and specific links between them, it is crucial to find appropri-

ate entropic quantities of channels. Our key point here is to use the entropy of the Jamio�lkowski–Choi

states determined by the channels. We relate the measure of irreversibility to the notions of entan-

glement fidelity, entropy exchange, nonunitality, and decorrelating power [14]–[20], and illustrate the

results by several important channels.

The remainder of this paper is organized as follows. In Sec. 2, we discuss irreversibility from an

axiomatic standpoint and postulate some basic requirements for a reasonable measure of irreversibility.

Somewhat complementary to irreversibility, we also discuss entanglement fidelity, which quantifies the

capability of a channel to preserve states and is thus intimately related to the degree of reversibility.

In Sec. 3, we propose to use the entropy of the Jamio�lkowski–Choi states of channels as a measure of

irreversibility and clarify its basic properties. In Sec. 4, we make a comparative study of irreversibility

and entanglement fidelity. In Sec. 5, we relate irreversibility to the degree of nonunitality (deviation

from the unital map). In Sec. 6, we establish an intuitive and succinct relation connecting irreversibil-

ity and decorrelating power. In Sec. 7, we evaluate the irreversibility of some widely used channels,

and shed light on these channels from the perspective of irreversibility. In particular, as a simple illus-

trative application, we apply the results to the scenario of teleportation. We conclude with a summary

and discussion in Sec. 8. In the appendix, we present a detailed proof of the main results, discuss an

alternative measure of irreversibility in terms of the Tsallis entropy, which is easier to compute, and

summarize the results in a table for comparison. For simplicity, we only work with finite-dimensional

systems.
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2. Basic features of irreversibility

We consider a channel

E(ρ) =
∑

k

EkρE
†
k (1)

on a quantum system described by a d-dimensional complex Hilbert space H , where Ek are the Kraus opera-

tors of E satisfying
∑

k E
†
kEk = 1 to ensure the trace-preserving property of E . If, moreover,

∑
k EkE

†
k = 1,

then the channel is unital (i.e., leaving the maximally mixed state invariant, E(1/d) = 1/d). Clearly, the

map E defined by Eq. (1) actually makes sense for any operator X on H : E(X) =
∑

k EkXE
†
k.

We want to quantify the degree of irreversibility of the channel E . For this, we proceed from an

axiomatic consideration motivated by physical intuition. We postulate the following simple and mandatory

conditions for a reasonable measure S(E) of irreversibility of the channel E .

1. S(E) � 0, which becomes an equality if and only if E is a unitary channel in the sense that E(ρ) =

UρU † for some unitary operator U on the system Hilbert space H . This is motivated by the fact

that unitary channels are reversible and generate no irreversibility because there is no information

leakage to the environment: the system is closed under unitary evolution. On the other extreme, for

a fixed d-dimensional system, S(E) attains its maximum value for the completely depolarizing channel

Ecde(ρ) = 1/d (for any state ρ). This channel completely loses the original information of the state ρ

and should be considered among the maximally irreversible.

2. S( · ) is concave in the sense that

S(p1E1 + p2E2) � p1S(E1) + p2S(E2)

for any p1, p2 � 0, p1 + p2 = 1, and any channels E1 and E2 on the system Hilbert space H . This

is motivated by the intuition that the mixing of channels loses information and generates more irre-

versibility on average.

3. S( · ) is invariant under composition with unitary channels in the sense that

S(EU ◦ E) = S(E ◦ EU ) = S(E)

for any channel EU (ρ) = UρU † with U any unitary operator on the system Hilbert space H .

4. S( · ) is ancilla-independent in the sense that

S(Ia ⊗ E) = S(E),

where Ia is the identity channel on any ancilla system a.

5. S( · ) is monotonic in the sense that

S(F ◦ E) � S(E)

for any unital channel F .

It is conceivable that there may exist many quantities satisfying the above requirements, and it is

desirable to seek those that are easy to compute and at the same time have intuitive physical significance.

Taking these points into account, we provide some entropic quantifiers of the irreversibility of channels.

Complementary to the irreversibility in some sense, it is also desirable to investigate the capability

of a channel to preserve states. This leads to the celebrated notion of entanglement fidelity [14], and is

somewhat related to the reversibility of channels. Among all channels on a system, it is straightforward

and intuitive to regard the identity channel I as the channel with the maximal fidelity. Thus, the deviation

of a channel E from I can be used to quantify the fidelity of E . We elaborate on the relations between

irreversibility and entanglement fidelity in Sec. 4.
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3. Irreversibility via entropy of Jamio�lkowski–Choi states

In this section, we quantify the irreversibility of a channel via the entropy of the Jamio�lkowski–Choi

state determined by the channel, for which the Jamio�lkowski–Choi isomorphism plays a key role [42]–[45].

Any channel E on a system Hilbert space H is isomorphic to the bipartite state

JE = (I ⊗ E)(|Φ+〉〈Φ+|), (2)

where I is the identity channel on an ancilla system Ha = H and

|Φ+〉 =
1√
d

∑

i

|i〉 ⊗ |i〉 (3)

is a maximally entangled state onHa⊗H = H⊗H associated with an orthonormal basis {|i〉 : i = 1, 2, . . . , d}
of H . Thus, studying the channel E is formally equivalent to studying the Jamio�lkowski–Choi state JE .

In particular, we can connect the entropy of the latter to the irreversibility of the former, as is discussed in

what follows.

For any state ρ, its von Neumann entropy

S(ρ) = − tr ρ ln ρ

is a key quantity in quantum information theory [11]. Despite its alternative name of quantum entropy,

it actually quantifies the mixedness (statistical uncertainty) of a state ρ. If we take ρ to be the Jamio�lkowski–

Choi state JE (defined in Eq. (2)) of the channel E , we obtain the entropy

S(JE) = − trJE ln JE .

It is obvious that S(JE) can be regarded as the entropy exchange of the channel E in the maximally mixed

state 1/d [14]. We emphasize that this quantity is quite different from the entropy production, which is

widely studied in both classical and quantum thermodynamics [40].

As a basic feature of a channel E , it is desirable to show that S(JE) is independent of the choice of the

orthonormal basis {|i〉 : i = 1, 2, . . . , d} of H . To prove this, we let E be a channel with Kraus operators

{Ek : k = 1, 2, . . . , n}; then JE can be written as

JE =
n∑

k=1

|ξk〉〈ξk| = (|ξ1〉, |ξ2〉, . . . , |ξn〉)

⎛

⎜⎜⎜⎜⎝

〈ξ1|
〈ξ2|

...

〈ξn|

⎞

⎟⎟⎟⎟⎠
, (4)

where |ξk〉 = (1 ⊗ Ek)|Φ+〉 ∈ H ⊗ H . Let W = (wkl) be the Gram matrix with entries defined as

wkl = 〈ξk|ξl〉 = 1
d tr(E†

kEl); then W is apparently independent of the choice of the orthonormal basis

{|i〉 : i = 1, 2, . . . , d}, and can be further written as

W =

⎛

⎜⎜⎜⎜⎝

〈ξ1|
〈ξ2|

...

〈ξn|

⎞

⎟⎟⎟⎟⎠
(|ξ1〉, |ξ2〉, . . . , |ξn〉). (5)

By Eqs. (4) and (5), we have S(JE) = S(W ), which implies that S(JE) is independent of the choice of the

orthonormal basis.
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After the above preparations, we introduce the quantity

S(E) =
1

2
S(JE) (6)

as a quantifier of the irreversibility of a channel E . The factor 1/2 is for later convenience and for ensuring

the upper bound ln d for a d-dimensional system (see Eq. (7)), and originates from the fact that JE is

a composite “system + ancilla” state, which doubles the dimension of the system. The same symbol S used

for both the von Neumann entropy and the irreversibility of channels should not cause confusion because

their arguments respectively refer to states and channels.

The measure of irreversibility S(E) has the following properties consistent with requirements 1–5

in Sec. 2.

Proposition 1. Let E be a channel on a d-dimensional quantum system with a Hilbert space H .

1. We have

0 � S(E) � ln d. (7)

Moreover, S(E) = 0 if and only if E is a unitary channel, and S(E) attains the maximal value ln d if

and only if E is the completely depolarizing channel Ecde(ρ) = 1/d for any state ρ.

2. S( · ) is concave in the sense that

S(p1E1 + p2E2) � p1S(E1) + p2S(E2)

for p1, p2 � 0, p1 + p2 = 1, and any channels E1 and E2.

3. S( · ) is invariant under composition with unitary channels in the sense that

S(EU ◦ E) = S(E ◦ EU ) = S(E),

where EU (ρ) = UρU † with U any unitary operator on H .

4. S( · ) is ancilla-independent in the sense that

S(Ia ⊗ E) = S(E),

where Ia is the identity channel on any ancilla system Hilbert space Ha.

5. S( · ) is monotonic in the sense that

S(F ◦ E) � S(E)

for any unital channel F .

6. S( · ) is additive under tensor product in the sense that

S(Ea ⊗ Eb) = S(Ea) + S(Eb),

where Ea and Eb are channels on respective systems a and b.

Proof is given in Appendix A.
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Being simple and significant extensions of unitary channels, random unitary channels constitute an

important class of channels and have many nice properties. Their degree of irreversibility has the following

quantification.

Proposition 2. For any random unitary channel

Eru(ρ) =
∑

k

pkUkρU
†
k

with Uk being any unitary operators and pk > 0,
∑

k pk = 1, we have

0 � S(Eru) � min

{
1

2
H({pk}), ln d

}
,

where H({pk}) = −∑k pk ln pk is the Shannon entropy of the probability distribution {pk}. Moreover,

1. S(Eru) = 0 if and only if Eru is a unitary channel;

2. S(Eru) = 1
2H({pk}) if and only if the unitary operators Uk are pairwise orthogonal in the sense that

tr(U †
kUl) = 0 for any k �= l;

3. S(Eru) = ln d if and only if Eru is the completely depolarizing channel, i.e., Eru(ρ) = Ecde(ρ) = 1/d for

any state ρ.

Proof is given in Appendix B.

To illustrate Proposition 2, we consider the generalized depolarizing channel

E(ρ) =

3∑

k=0

pkσkρσk

on a qubit system, where pk � 0,
∑

k pk = 1, σ0 = 1, and σj , j = 1, 2, 3, are the Pauli matrices. Direct

calculation shows that

JE =
1

2

⎛

⎜⎜⎜⎝

p0 + p3 0 0 p0 − p3

0 p1 + p2 p1 − p2 0

0 p1 − p2 p1 + p2 0

p0 − p3 0 0 p0 + p3

⎞

⎟⎟⎟⎠

with eigenvalues pk, k = 0, 1, 2, 3. Thus,

S(E) = −1

2

∑

k

pk ln pk.

In particular, the conventional depolarizing channel

Ede(ρ) = (1 − 3p)ρ+ p

3∑

k=1

σkρσk, 0 � p � 1

3
,

corresponds to the generalized depolarizing channel with p0 = 1 − 3p, p1 = p2 = p3 = p. In this case,

we have

S(Ede) = −1

2

(
(1 − 3p) ln(1 − 3p) + 3p ln p

)
.
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4. Comparison between irreversibility and entanglement fidelity

We consider a channel E , defined by Eq. (1), on a d-dimensional system with a Hilbert space H .

We take an ancilla system Hilbert space Ha = H and let |Φ+〉 be any maximally entangled state defined

by Eq. (3). Then the entanglement fidelity

F (E) = F (|Φ+〉〈Φ+|, (I ⊗ E)(|Φ+〉〈Φ+|)) = 〈Φ+|I ⊗ E(|Φ+〉〈Φ+|)|Φ+〉,

which was first introduced in [14], quantifies how well the entanglement (correlations) between the sys-

tem of interest and the ancilla system is preserved by the (local) channel E [14]–[20]. Here, F (ρ, σ) =

(tr(ρ1/2σρ1/2)1/2)2 is the fidelity between the states ρ and σ.

By the use of the channel–state duality, the entanglement fidelity can be represented as the fidelity

between the Jamio�lkowski–Choi states JE and JI , i.e.,

F (E) = F (JE , JI).

Direct calculation shows that [46]

F (E) =
1

d2

∑

k

| trEk|2,

which is intrinsically related to the average fidelity [47]

F(E) =

∫
F (|φ〉〈φ|, E(|φ〉〈φ|)) dφ =

1

d+ 1
+

1

d(d+ 1)

∑

k

| trEk|2

as

F (E) =

(
1 +

1

d

)
F(E) − 1

d
.

Here, dφ is the normalized Haar measure on all pure states in the system Hilbert space H .

Several nice properties of the entanglement fidelity are summarized as follows. Let E be a channel on

a d-dimensional quantum system with a Hilbert space H .

1. 0 � F (E) � 1. Moreover, F (E) = 0 if and only if all Kraus operators Ek of the channel E have

a vanishing trace, and F (E) = 1 if and only if E is the identity channel.

2. F (E) is affine in the sense that

F (p1E1 + p2E2) = p1F (E1) + p2F (E2)

for p1, p2 � 0, p1 + p2 = 1, and any channels E1 and E2.

3. F (E) is unitarily covariant in the sense that

F (U ◦ E ◦ U†) = F (E)

for any unitary channel U(ρ) = UρU †, where U†(ρ) = U †ρU is its dual map and ◦ is the composition

of maps. However, F (E) is in general not invariant under composition with unitary channels in the

sense that

F (EU ◦ E) = F (E ◦ EU ) �= F (E),

where EU (ρ) = UρU † for any unitary operator U on the system Hilbert space.
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4. F (E) is multiplicative under tensor product in the sense that

F (Ea ⊗ Eb) = F (Ea)F (Eb),

for the channels Ea, Eb, and Ea ⊗ Eb on systems a and b and the composite system ab. In particular,

when Ea = Ia, we have

F (Ia ⊗ Eb) = F (Eb),

which can be interpreted as the ancilla-independence of the entanglement fidelity.

The irreversibility S(E) and the entanglement fidelity F (E) have the following trade-off relation.

Proposition 3. For any channel E on a d-dimensional system, we have

√
ln d− S(E) +

√
1 − F (E) � 1 − 1

d2
. (8)

A more transparent interpretation is to regard R(E) = ln d − S(E) as a measure of reversibility, and

G(E) = 1 − F (E) as a measure of infidelity ; then (8) is equivalent to

√
R(E) +

√
G(E) � 1 − 1

d2
.

This proposition establishes a constraint between these two quantities. The reversibility and infidelity

cannot be simultaneously small, which is consistent with our physical intuition.

Proof is given in Appendix C.

5. Degree of nonunitality of channels

We recall that a channel E is unital if E(1/d) = 1/d. Nonunitality refers to the deviation of the state

E(1/d) from the maximally mixed state 1/d. In terms of the relative entropy S(ρ|σ) = tr ρ(ln ρ − lnσ),

a natural figure of merit for the nonunitality of E can be defined as

N(E) = S(E(1/d)|1/d) = ln d− S(E(1/d)). (9)

This quantity has the following properties.

1. 0 � N(E) � ln d. Moreover, N(E) = 0 if and only if E is a unital channel, and N(E) = ln d if and

only if E is a channel satisfying E(ρ) = |φ〉〈φ| for some pure state |φ〉.

2. N(E) is convex in the sense that

N(p1E1 + p2E2) � p1N(E1) + p2N(E2)

for p1, p2 � 0, p1 + p2 = 1, and any channels E1 and E2.

3. N(E) is unitary invariant in the sense that

N(EU ◦ E) = N(E ◦ EU ) = N(E),

where EU (ρ) = UρU † with U any unitary operator on H .
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4. N(E) is nonincreasing in the sense that

N(F ◦ E) � N(E)

for any unital channel F .

5. For any channels Ea and Eb on systems a and b, we have

N(Ea ⊗ Eb) = N(Ea) +N(Eb).

In particular, if Ea = Ia is an identity channel, we have

N(Ia ⊗ Eb) = N(Eb).

The above properties readily follow from the properties of von Neumann entropy.

We recall the Araki–Lieb inequality

|S(ρa) − S(ρb)| � S(ρab)

for any bipartite state ρab on a composite system ab with reduced states ρa and ρb on respective parties a

and b. By taking ρab = JE , we derive a relation between irreversibility and nonunitality,

N(E) � 2S(E). (10)

Thus, the degree of nonunitality is dominated by the degree of irreversibility, or, in other words, nonunitality

accounts for part of the irreversibility.

6. Decorrelating power of channels

For a bipartite state ρab on a composite system ab, the total correlations in ρab can be quantified by

the quantum mutual information

I(ρab) = S(ρab|ρa ⊗ ρb) = S(ρa) + S(ρb) − S(ρab). (11)

Among all channels, the identity channel I is the channel that neither generates nor disturbs correlations.

Thus, by the Jamio�lkowski–Choi isomorphism, the difference of correlations between the Jamio�lkowski–Choi

states JI and JE associated with the channels I and E can be used to quantify the decorrelating power of

the channel E . Thus, we introduce

D(E) = I(JI) − I(JE) (12)

as a quantity characterizing the decorrelating power of E .

In [48], the total loss of correlations was decomposed into classical and quantum parts. Here, we obtain

a new decomposition for the loss of correlations: nonunitality and irreversibility. We state the result as

follows.

Proposition 4. We have

D(E) = N(E) + 2S(E), (13)

which implies that the total correlations disturbed by E can be divided into two parts: one part quantifies

the nonunitality of E and the other quantifies the irreversibility of E .

Proof is given in Appendix D.
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The decorrelating power D(E) has the following properties.

Proposition 5. 1. For any channel E on a d-dimensional quantum system, we have

0 � D(E) � 2 lnd. (14)

Moreover, D(E) = 0 if and only if E is a unitary channel, and D(E) attains the maximal value 2 lnd

if and only if E is a replacement channel, i.e., E(ρ) = E(1/d) for any state ρ.

2. D( · ) is concave in the sense that

D(p1E1 + p2E2) � p1D(E1) + p2D(E2)

for p1, p2 � 0, p1 + p2 = 1, and any channels E1 and E2.
3. D( · ) is invariant under composition with unitary channels in the sense that

D(EU ◦ E) = D(E ◦ EU ) = D(E),

where EU (ρ) = UρU † with U any unitary operator on H .

4. D( · ) is ancilla-independent in the sense that

D(Ia ⊗ E) = D(E),

where Ia is the identity channel on any ancilla system a.

5. D( · ) is monotonic in the sense that

D(F ◦ E) � D(E)

for any channel F .

6. D( · ) is additive under tensor product in the sense that

D(Ea ⊗ Eb) = D(Ea) +D(Eb),

where Ea, Eb are channels on the respective systems a and b.

Proof is given in Appendix E.

7. Evaluating the irreversibility of various channels

In this section, we evaluate the irreversibility of several basic and important channels and make some

comparative studies. These quantitative results shed light on the structure of various channels from the

perspective of irreversibility.

7.1. Unitary channel. For any unitary channel

EU (ρ) = UρU †,

where U is any unitary operator on a d-dimensional quantum system, we have

JEU = |Φ+
U 〉〈Φ+

U |

where |Φ+
U 〉 = 1√

d

∑
i |i〉⊗|iU〉 and |iU 〉 = U |i〉 for {|i〉 : i = 1, 2, . . . , d} is an orthonormal basis of the system

Hilbert space. Consequently, S(EU ) = 0, as it should be.
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7.2. Lüders channel. For the Lüders channel [49]

Π(ρ) =

m∑

k=1

ΠkρΠk

on a d-dimensional system determined by a Lüders (projective) measurement

Π =

{
Πk =

nk∑

j=nk−1+1

|j〉〈j| : k = 1, 2, . . . ,m

}
,

∑

k

Πk = 1,

where

Π†
k = Πk, ΠkΠl = δklΠk, nk =

k∑

j=1

tr Πj for k � 1, n0 = 0,

we have

JΠ =
1

d

m∑

k=1

∑

nk−1+1�j,l�nk

|jj〉〈ll|.

It is obvious that tr Πk/d, k = 1, 2, . . . ,m, are the nonzero eigenvalues of JΠ and

S(Π) =
1

2
ln d− 1

2d

m∑

k=1

(tr Πk) ln(tr Πk).

It is easy to verify that the Lüders channels with the maximal irreversibility are

EvN(ρ) =
∑

k

ΠkρΠk

which are induced by any von Neumann measurement {Πk : k = 1, 2, . . . , d} (i.e., tr Πk = 1 for all k). In this

case,

S(EvN) =
1

2
ln d.

This reveals an interesting feature of von Neumann measurements: the irreversibility of any von Neumann

measurement stands exactly half the way between the two extreme values of irreversibility (the minimum 0

and the maximum ln d).

7.3. Channel induced by SIC-POVM. We recall that a SIC-POVM (symmetric informationally

complete positive operator-valued measure) on a d-dimensional system is a set of d2 rank-one operators

Ek = 1
d |φk〉〈φk|, k = 1, 2, . . . , d2, satisfying the relations [50]

|〈φk|φl〉|2 =

⎧
⎨

⎩
1, k = l,
1

d+ 1
, k �= l.

Any SIC-POVM naturally induces a channel

Esic(ρ) =
∑

k

√
Ekρ

√
Ek.

By straightforward calculation, we obtain

JEsic =
1

d2

∑

k

|φ̄k〉〈φ̄k| ⊗ |φk〉〈φk|.
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Here, |φ̄〉 denotes the complex conjugate of the vector |φ〉 with respect to the basis {|i〉 : i = 1, 2, . . . , d}
of H . Let

|ψ1〉 =
1

d

∑

k

|φ̄k〉 ⊗ |φk〉, |ψl〉 =
1√

d2 + 1
(d|φ̄l〉 ⊗ |φl〉 − |ψ1〉), l = 2, 3, . . . , d2.

It is then easy to verify that |ψ1〉, |ψ2〉, . . . , |ψd2〉 are linearly independent and

JEsic |ψ1〉 =
1

d
|ψ1〉, JEsic |ψl〉 =

1

d(d+ 1)
|ψl〉, l = 2, 3, . . . , d2.

Thus, JEsic has two different eigenvalues 1/d and 1/d(d+ 1) with the multiplicities respective 1 and d2 − 1,

and the irreversibility of Esic can be evaluated as

S(Esic) =
1

2
ln d+

d− 1

2d
ln(d+ 1).

For large d, this approximates the maximum ln d, which implies that the irreversibility of the channel

induced by a SIC-POVM in higher dimensions is asymptotically maximal.

7.4. The Werner–Holevo channel. The Werner–Holevo channel [51]

EWH(ρ) =
1

d− 1
(1− ρT)

provides a counterexample to the additivity conjecture for the output purity of channels [51]. Here, ρT is the

transpose of ρ in an orthonormal basis {|i〉 : i = 1, 2, . . . , d} of H . It is known that a Kraus representation

of EWH is

EWH(ρ) =
1

2(d− 1)

∑

i,j

(|i〉〈j| − |j〉〈i|)ρ(|i〉〈j| − |j〉〈i|)†.

Direct calculation shows that

JEWH =
1

d(d− 1)

(
1⊗ 1−

∑

i,j

|ij〉〈ji|
)
,

which is a Werner state and has two different eigenvalues 0 and 2/(d2−d) with the respective multiplicities

(d2 + d)/2 and (d2 − d)/2. Thus, the irreversibility of EWH can be directly evaluated as

S(EWH) =
1

2
ln
d2 − d

2
.

In particular, if d = 2, the Werner–Holevo channel reduces to the unitary channel

EWH(ρ) = tr(ρ)1− ρT = σ2ρσ2

where σ2 is the second Pauli matrix. In this case, S(EWH) = 0.

7.5. Completely depolarizing channel. For the completely depolarizing channel

Ecde(ρ) =
1

d

∑

k

XkρXk =
1

d
1,

where {Xk : k = 1, 2, . . . , d2} is an orthonormal basis of L(H) consisting of all Hermitian operators on the

system H , we have

JEcde
=

1

d2
1⊗ 1,

whence S(Ecde) = ln d. Therefore, in view of Eq. (7), we see that the completely depolarizing channel

attains the maximal value of irreversibility. This is reasonable, as is already suggested by the name of this

channel.
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7.6. Completely decoherent channel. We recall that a completely decoherent channel on a qubit

system is defined as [52], [53], [48]

Ecd(ρ) = M ∗ ρ,

where M is a nonnegative-definite matrix with all diagonal elements being 1 (i.e., a correlation matrix),

and ∗ denotes the Hadamard (entry-wise) product of matrices. For simplicity, we consider the 2× 2 matrix

M =

(
1 α

α 1

)
, −1 � α � 1.

It is easy to verify that the channel can be expressed as Ecd(ρ) =
∑

k EkρE
†
k with the Kraus operators

E1 =

(√
1 − |α| 0

0 0

)
, E2 =

(
0 0

0
√

1 − |α|

)
, E3 =

√
|α|
(

1 0

0 sgnα

)
.

Direct calculation shows that

JEcd
=

1

2

⎛

⎜⎜⎜⎝

1 0 0 α

0 0 0 0

0 0 0 0

α 0 0 1

⎞

⎟⎟⎟⎠ .

The nonzero eigenvalues of JEcd
are (1 + α)/2, (1 − α)/2 and the irreversibility of Ecd can be evaluated as

S(Ecd) = −1 + α

4
ln

1 + α

2
− 1 − α

4
ln

1 − α

2
.

7.7. Amplitude-damping channel. For the amplitude-damping channel

Ead(ρ) =
∑

k

EkρE
†
k

on a qubit system with the Kraus operators

E1 =

(
1 0

0
√

1 − p

)
, E2 =

(
0

√
p

0 0

)
, 0 � p � 1,

we have

JEad
=

1

2

⎛

⎜⎜⎜⎝

1 0 0
√

1 − p

0 0 0 0

0 0 p 0√
1 − p 0 0 1 − p

⎞

⎟⎟⎟⎠

which has the nonzero eigenvalues p/2 and 1 − p/2. Consequently,

S(Ead) = −p
4

ln
p

2
− 2 − p

4
ln

2 − p

2
.

We see that S(Ead) is increasing with the parameter p.
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7.8. Phase-damping channel. For the phase-damping channel

Epd(ρ) =
∑

k

EkρE
†
k

on a qubit system with the Kraus operators

E1 =

(
1 0

0
√

1 − p

)
, E2 =

(
0 0

0
√
p

)
, 0 � p � 1,

we have

JEpd
=

1

2

⎛

⎜⎜⎜⎝

1 0 0
√

1 − p

0 0 0 0

0 0 0 0√
1 − p 0 0 1

⎞

⎟⎟⎟⎠

which has the nonzero eigenvalues p′ = (1 +
√

1 − p )/2 and 1 − p′. Consequently,

S(Epd) = −1

2

(
p′ ln p′ + (1 − p′) ln(1 − p′)

)
.

We see that S(Epd) is also an increasing function of the parameter p.

In this context, it is interesting to compare the amplitude-damping channel and the phase-damping

channel for the same parameter p: S(Ead) � S(Epd), which is illustrated in Fig. 1. We see that for the same

parameter p, the amplitude-damping channel is more irreversible than the phase-damping channel.

Fig. 1. Comparison between the degree of irreversibility of the amplitude-damping channel Ead and

the phase-damping channel Epd for the parameter p ∈ [0, 1]. We see that except in the two extreme

cases (p = 0 or p = 1), the amplitude-damping channel Ead is more irreversible than the phase-damping

channel Epd.

7.9. Channel induced by weak measurements. We consider the channel

K(ρ) = ExρEx + E1−xρE1−x, x ∈ [0, 1/2),
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associated with the weak measurement {Ex, E1−x} with Ex =
√

1 − xΠ0 +
√
xΠ1. Here, {Π0,Π1} is

a Lüders measurement in a d-dimensional system. In particular, as x→ 0, the weak measurement tends to

the Lüders measurement {Π0,Π1}. The corresponding Jamio�lkowski–Choi state is

JK =
1

d

( ∑

1�i,j�tr Π0

|ii〉〈jj| +
∑

trΠ0+1�i,j�d

|ii〉〈jj| + 2
√
x(1 − x)

∑

1�i�tr Π0,
trΠ0+1�j�d

(|ii〉〈jj| + |jj〉〈ii|)
)

and the irreversibility of K can be evaluated as

S(K) = −1

2
(λ+ lnλ+ + λ− lnλ−),

where

λ± =
1

2

(
1 ±

(
1 − 4(2x− 1)2

d2
tr Π0 tr Π1

)1/2)

are the nonzero eigenvalues of JK. In particular, for a qubit weak measurement Ex = K with

tr Π0 = tr Π1 = 1, d = 2, we further obtain

S(Ex) = −1

2

(
px ln px + (1 − px) ln(1 − px)

)

with px = 1/2 +
√
x(1 − x).

7.10. Measurement-preparation channel. We consider the measurement-preparation channel

Emp(ρ) =
∑

k

tr(ρMk)τk

with τk quantum states and M = {Mk} a quantum measurement (POVM) such that
∑

kMk = 1.

The corresponding Jamio�lkowski–Choi state is

JEmp =
1

d

∑

k

MT
k ⊗ τk,

where T denotes the transposition of a matrix (of an operator relative to a basis). Consequently,

S(Emp) =
1

2
S

(
1

d

∑

k

MT
k ⊗ τk

)
.

In particular, when M = Π = {Πk : k = 1, 2, . . . ,m} is a Lüders measurement, we have

S(Emp) =
1

2
ln d+

1

2d

∑

k

tr(Πk)S(τk).

7.11. Teleportation channel. Let ρab be a two-qubit state shared by Alice and Bob. The quantum

teleportation via the resource state ρab provides a way to transmit an unknown state γ from the sender Alice

to the receiver Bob with fidelity better than the classical limit 2/3 via a classical channel [19], [54]–[58].

It has been shown that the standard teleportation can be described by a generalized depolarizing channel

as [58]

Et(γ) =
3∑

k=0

pkσkγσk,
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where σ0 = 1, σk are the Pauli matrices, and pk = tr(ρabMk) with the Bell measurement operators

Mk = (σk ⊗ 1)|Φ+〉〈Φ+|(σk ⊗ 1), |Φ+〉 =
1√
2

(|00〉 + |11〉).

For the resource state

ρab =
1 − p

4
1⊗ 1 + p|Φ+〉〈Φ+|, 0 � p � 1,

the irreversibility of the teleportation channel Et can be directly evaluated as

S(Et) = −1 + 3p

8
ln

1 + 3p

4
− 3(1 − p)

8
ln

1 − p

4
,

which is decreasing with the fraction parameter p ∈ [0, 1]. This is consistent with intuition because larger p

correspond to greater entanglement and hence to greater fidelity (less irreversibility).

The entanglement fidelity and the average fidelity of the teleportation channel Et can be directly

evaluated as

F (Et) =
1 + 3p

4
, F(Et) =

1 + p

2
.

Thus, the average fidelity of the teleportation protocol is greater than 2/3 (the best possible fidelity when

Alice and Bob communicate only through a classical channel) if and only if p > 1/3. For a two-qubit

state ρab, it has been shown that ρab is entangled if and only if p > 1/3 [56], which implies that the

entanglement of ρab is a prerequisite for teleportation. In this case, p > 1/3 if and only if the irreversibility is

S(Et) < (ln 12)/4. This sheds some light on the teleportation protocol from the perspective of irreversibility.

Fig. 2. Comparison between the irreversibility S(Et) and the average fidelity F (Et) as functions of

p ∈ [0, 1].

To visualize the difference between the irreversibility S(Et) and the average fidelity F(Et) for the

teleportation channel Et, we depict their behavior depending on the fraction parameter p in Fig. 2. To

reflect the trade-off relation between them intuitively, we also depict the behavior of the sum S(Et)+F(Et),
whence we find that the irreversibility S(Et) and the fidelity F(Et) satisfy the trade-off relation

1 � S(Et) + F(Et) � 1.3.
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8. Summary

Motivated by intuitive and physical considerations, we have postulated some basic features for any rea-

sonable measure of irreversibility, and have presented a concrete realization of the postulated requirements

by quantifying the irreversibility of channels in terms of the entropy of the corresponding Jamio�lkowski–

Choi states. This is achieved by using the channel–state duality via the Jamio�lkowski–Choi isomorphism

between channels and states. We have further evaluated the irreversibility of several important channels,

which highlights some basic features of channels from the perspective of irreversibility. We have also estab-

lished several relations connecting irreversibility with entanglement fidelity, entropy exchange, nonunitality,

and decorrelating power.

The measure of irreversibility has the apparent operational meaning as the entropy of the Jamio�lkowski–

Choi states of the channels, and thus may be used in characterizing information-theoretic aspects of quantum

measurements and channels.

Irreversibility is a fundamental characteristic in information processing, and its quantitative character-

ization sheds light on the nature of channels and physical processes. It is desirable to find more applications

of the measure of irreversibility, in particular, in the paradigm of quantum thermodynamics, where heat is

usually related to irreversible processes.

Appendix: Proofs of Propositions 1–5

Below, we give the detailed proofs of Propositions 1–5. We further discuss an alternative measure of

irreversibility in terms of the Tsallis entropy, which is easier to compute than the irreversibility based on

the von Neumann entropy. We make a comparative study of this quantity and that introduced in the main

text.

Appendix A: Proof of Proposition 1

1. By the properties of von Neumann entropy, we have 0 � S(JE) � ln d2, S(JE) = 0 if and only if

JE is a pure state, and S(JE) = ln d2 if and only if JE = 1
d21 ⊗ 1 is a maximally mixed state on H ⊗H .

Consequently,

0 � S(E) =
1

2
S(JE) � ln d.

It is clear that S(E) = 0 if and only if JE is a pure state, and S(E) = ln d if and only if JE = 1⊗ 1/d2 is

a maximally mixed state on H ⊗ H . Next, we show that JE is a pure state if and only if E is a unitary

channel, and JE = 1
d21 ⊗ 1 is equivalent to E being the completely depolarizing channel. For the first

equivalence, we suppose that E(ρ) = UρU † is a unitary channel; then

JE = |Φ+
U 〉〈Φ+

U |,

where |Φ+
U 〉 = 1√

d

∑
i |i〉 ⊗ U |i〉 is a pure state, with S(E) = 0. Conversely, we suppose that

JE =
1

d

∑

i,j

|i〉〈j| ⊗ E(|i〉〈j|)

is a pure state; then JE is a rank-1 operator, which makes E(|i〉〈j|) an operator with rank not greater than 1

for any i and j. Because E(|i〉〈i|) are quantum states, rank(E(|i〉〈i|)) = 1 for any i = 1, 2, . . . , d. If there is

E(|i〉〈j|) = 0 for some i �= j, we have rank(JE) � rank(E(|i〉〈i|))+rank(E(|j〉〈j|)) = 2, which contradicts the
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rank condition rank(JE) = 1. Thus, E(|i〉〈j|) is a rank-1 operator for any i and j. Combining rank(JE) = 1

and rank(E(|i〉〈i|)) = 1 for any i, we see that E(|i〉〈j|) can be written as

E(|i〉〈j|) = |φi〉〈φj |, i, j = 1, 2, . . . , d,

where {|φi〉 : i = 1, 2, . . . , d} is a set of pure states. In what follows, we show that {|φi〉 : i = 1, 2, . . . , d}
constitutes an orthonormal basis. By

E(|i〉〈i|) =
∑

k

Ek|i〉〈i|E†
k = |φi〉〈φi|,

we have Ek|i〉 = cki|φi〉 for some complex numbers cki. Thus,

E(|i〉〈j|) =

(∑

k

cki c̄kj

)
|φi〉〈φj | = |φi〉〈φj |,

which implies that
∑

k ckic̄kj = 1 for any i, j. The orthogonality of {|φi〉 : i = 1, 2, . . . , d} follows from

〈i|j〉 =
〈
i

∣∣∣∣
∑

k

E†
kEk

∣∣∣∣j
〉

=

(∑

k

c̄kickj

)
〈φi|φj〉 = 〈φi|φj〉, i, j = 1, 2, . . . , d.

Thus, E maps the orthonormal basis {|i〉 : i = 1, 2, . . . , d} to the orthonormal basis {|φi〉 : i = 1, 2, . . . , d}.

Because S(E) is independent of the choice of the orthonormal basis {|i〉 : i = 1, 2, . . . , d}, E maps any

orthonormal basis to an orthonormal basis, which implies that E is a unitary channel.

To prove the second equivalence, we suppose that E is the completely depolarizing channel. Then

JE =
1

d

∑

i,j

|i〉〈j| ⊗ E(|i〉〈j|) =
1

d2
1⊗ 1

is the maximally mixed state on H ⊗H . Conversely, if JE = 1⊗ 1/d2 is the maximally mixed state, then

we conclude from

JE =
1

d

∑

i,j

|i〉〈j| ⊗ E(|i〉〈j|) =
1

d

∑

i

|i〉〈i| ⊗ E(|i〉〈i|) +
1

d

∑

i�=j

|i〉〈j| ⊗ E(|i〉〈j|)

that E(|i〉〈j|) = 0 for any i �= j and E(|i〉〈i|) = 1/d for any i. Therefore,

E(ρ) = E
(∑

i,j

〈i|ρ|j〉|i〉〈j|
)

=
∑

i,j

〈i|ρ|j〉E(|i〉〈j|) =
1

d
1

for any state ρ, i.e., E is the completely depolarizing channel.

2. Direct calculation shows that

Jp1E1+p2E2 = p1JE1 + p2JE2 .

By the concavity of von Neumann entropy, we have

S(p1E1 + p2E2) =
1

2
S(Jp1E1+p2E2) =

1

2
S(p1JE1 + p2JE2) �

� 1

2

(
p1S(JE1) + p2S(JE2)

)
= p1S(E1) + p2S(E2).
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3. Let U and V be any unitary operators. Then

JEU◦E◦EV =
1

d

∑

i,j

|i〉〈j| ⊗ UE(V |i〉〈j|V †)U † =

= (V † ⊗ U)

(
1

d

∑

i,j

V |i〉〈j|V † ⊗ E(V |i〉〈j|V †)
)

(V † ⊗ U)†.

Thus

S(EU ◦ E ◦ EV ) =
1

2
S(JEU◦E◦EV ) =

1

2
S

(
1

d

∑

i,j

V |i〉〈j|V † ⊗ E(V |i〉〈j|V †)
)

=
1

2
S(JE) = S(E)

whence item 3 follows.

4. Let Ha and H have the respective dimensions da and d, and orthonormal bases {|μ〉} and {|i〉}.

For the channel Ia ⊗ E on the composite system Hilbert space Ha ⊗H , we have

dadJIa⊗E =
∑

μ,ν,i,j

|μ〉〈ν| ⊗ |i〉〈j| ⊗ |μ〉〈ν| ⊗ E(|i〉〈j|) =

=
∑

μ,ν,i,j

(1a ⊗ F ⊗ 1)(|μ〉〈ν| ⊗ |μ〉〈ν| ⊗ |i〉〈j| ⊗ E(|i〉〈j|))(1a ⊗ F † ⊗ 1) =

= dad(1a ⊗ F ⊗ 1)(|Φ+
a 〉〈Φ+

a | ⊗ JE)(1a ⊗ F † ⊗ 1),

where F =
∑

μi |i〉〈μ| ⊗ |μ〉〈i| is the swap operator on the composite system Hilbert space Ha ⊗ H and

|Φ+
a 〉 = 1√

da

∑
μ |μ〉 ⊗ |μ〉. Consequently,

S(Ia ⊗ E) =
1

2
S(JIa⊗E) =

1

2
S
(
(1a ⊗ F ⊗ 1)(|Φ+

a 〉〈Φ+
a | ⊗ JE)(1a ⊗ F † ⊗ 1)

)
=

=
1

2
S(JE ⊗ |Φ+

a 〉〈Φ+
a |) =

1

2
S(JE) = S(E),

whence item 4 follows.

5. Let F be a unital channel on a d-dimensional system satisfying F(1) = 1. By the definition of

Jamio�lkowski–Choi states, we have JF◦E = I ⊗ F(JE). It is obvious that I ⊗ F is also a unital channel.

In view of the monotonicity of von Neumann entropy for a unital channel, we obtain

S(F ◦ E) =
1

2
S(JF◦E) =

1

2
S(I ⊗ F(JE)) � 1

2
S(JE) = S(E).

6. Let Ea and Eb be channels on systems a and b, with orthonormal bases {|μ〉} and {|i〉}. Because

JEa⊗Eb =
1

dadb

∑

μνij

|μ〉〈ν| ⊗ |i〉〈j| ⊗ Ea(|μ〉〈ν|) ⊗ Eb(|i〉〈j|),

we have

(1a ⊗ F †
ab ⊗ 1b)JEa⊗Eb(1a ⊗ Fab ⊗ 1b) =

=
1

dadb

∑

μ,ν,i,j

|μ〉〈ν| ⊗ Ea(|μ〉〈ν|) ⊗ |i〉〈j| ⊗ Eb(|i〉〈j|) = JEa ⊗ JEb ,

where Fab =
∑

μi |μ〉〈i| ⊗ |i〉〈μ| is the swap operator on the system Hilbert space Ha ⊗Hb. Consequently,

S(Ea ⊗ Eb) =
1

2
S(JEa⊗Eb) =

1

2
S
(
(1a ⊗ F †

ab ⊗ 1b)JEa⊗Eb(1a ⊗ F †
ab ⊗ 1b)

)
=

=
1

2
S(JEa ⊗ JEb) =

1

2
S(JEa) +

1

2
S(JEb) = S(Ea) + S(Eb),

whence item 6 follows.
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Appendix B: Proof of Proposition 2

For any random unitary channel Eru, we have

JEru =
∑

k

pk

(
1

d

∑

i,j

|i〉〈j| ⊗ Uk|i〉〈j|U †
k

)
=
∑

k

pkJEUk
,

whence

0 � S(JEru) = S

(∑

k

pkJEUk

)
� H({pk}) +

∑

k

pkS(JEUk
) = H({pk}),

which implies that

0 � S(Eru) � 1

2
H({pk}).

By the properties of von Neumann entropy, S(JEru) = 0 if and only if Eru is actually a unitary channel and

S(JEru) = H({pk}) if and only if the states JEUk
have support on orthogonal subspaces, i.e., tr(JEUk

JEUl
) = 0

for any k �= l. Direct manipulation of the definition of a Jamio�lkowski–Choi state shows that

tr(JEUk
JEUl

) =
1

d2
| trU †

kUl|2.

Therefore, S(JEru) = H({pk}) if and only if tr(U †
kUl) = 0 for any k �= l.

Appendix C: Proof of Proposition 3

To prove Proposition 3, we first recall Pinsker’s inequality, which states that [59]

S(ρ|σ) � 2T 2(ρ, σ) (15)

for any states ρ and σ, where S(ρ|σ) = tr ρ(ln ρ− lnσ) is the quantum relative entropy, and

T (ρ, σ) =
1

2
tr |ρ− σ|

is the trace distance between states ρ and σ with |A| =
√
A†A for any operator A.

By Pinsker’s inequality (15) and the triangle inequality for the trace distance, we have

S(JE |Jcde) � 2T 2(JE , Jcde) � 2
(
T (JE , JI) − T (JI , Jcde)

)2
= 2

(
1 − 1

d2
− T (JE , JI)

)2
,

where the equality holds by virtue of T (JI , Jcde) = 1− 1/d2. By the well-known inequality relating fidelity

and trace distance [11]

T (ρ, σ) �
√

1 − F (ρ, σ),

we further have

√
S(JE |Jcde) �

√
2

(
1 − 1

d2
− T (JE , JI)

)
�

�
√

2

(
1 − 1

d2
−
√

1 − F (JE , JI)

)
=

√
2

(
1 − 1

d2
−
√

1 − F (E)

)
,

whence the desired inequality follows.
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Appendix D: Proof of Proposition 4

By Eqs. (9) and (12), we have

D(E) = I(JI) − I(JE ) = 2S(1/d) − (S(1/d) + S(E(1/d)) − S(JE)
)

=

= ln d− S(E(1/d)) + S(JE) = N(E) + 2S(E).

Appendix E: Proof of Proposition 5

1. By Eq. (13), we haveD(E) � 0 and the equality holds if and only if S(JE) = 0 and S(E(1/d)|1/d)=0,

which implies that E is a unitary channel. For the upper bound D(E) � 2 lnd, noting that

D(E) = S(JE) + S(E(1/d)|1/d) = S(JE) + S(1/d) − S(E(1/d)) =

= 2S(1/d) − S(JE |1/d⊗ E(1/d)) � 2S(1/d) = 2 lnd,

we have D(E) � 2 ln d and D(E) = 2 ln d if and only if JE = 1/d⊗E(1/d), which implies that E(ρ) = E(1/d)

for any state ρ.

2. Direct calculations show that

Jp1E1+p2E2 = p1JE1 + p2JE2 .

By the joint convexity of relative entropy, we have

I(Jp1E1+p2E2) = S(Jp1E1+p2E2 |1/d⊗ (p1E1 + p2E2)(1/d)) =

= S(p1JE1 + p2JE2 |p11/d⊗ E1(1/d) + p21/d⊗ E2(1/d)) �
� p1S(JE1 |1/d⊗ E1(1/d)) + p2S(JE2 |1/d⊗ E2(1/d)) =

= p1I(JE1) + p2I(JE2),

whence item 2 follows.

3. By the unitary invariance of von Neumann entropy, we have

I(JEU◦E◦EV ) = S(1/d) + S(EU ◦ E ◦ EV (1/d)) − S(I ⊗ EU ◦ E ◦ EV (|Φ+〉〈Φ+|)) =

= S(1/d) + S(E(1/d)) − S(I ⊗ E(|Φ+〉〈Φ+|)) = I(JE)

for any unitary operators U and V , which naturally implies the desired property.

4. Let Ha and H have respective dimensions da and d, and orthonormal bases {|μ〉} and {|i〉}. For the

channel Ia ⊗ E on the composite system Hilbert space Ha ⊗H , we have

dadJIa⊗E =
∑

μνij

|μ〉〈ν| ⊗ |i〉〈j| ⊗ |μ〉〈ν| ⊗ E(|i〉〈j|) =

=
∑

μνij

(1a ⊗ Fab ⊗ 1)(|μ〉〈ν| ⊗ |μ〉〈ν| ⊗ |i〉〈j| ⊗ E(|i〉〈j|))(1a ⊗ F †
ab ⊗ 1) =

= dad(1a ⊗ Fab ⊗ 1)(|Φ+
a 〉〈Φ+

a | ⊗ JE)(1a ⊗ F †
ab ⊗ 1)

where Fab =
∑

μi |i〉〈μ| ⊗ |μ〉〈i| is the swap operator on the composite system Ha ⊗ H and |Φ+
a 〉 =

1√
da

∑
μ |μ〉 ⊗ |μ〉. Consequently,

S(JIa⊗E) = S
(
(1a ⊗ Fab ⊗ 1)(|Φ+

a 〉〈Φ+
a | ⊗ JE)(1a ⊗ F †

ab ⊗ 1)
)

=

= S(JE ⊗ |Φ+
a 〉〈Φ+

a |) = S(JE)

446



and

S(1a/da ⊗ E(1/d)|1a/da ⊗ 1/d) = S(1a/da) + S(1/d) − S(1a/da ⊗ E(1/d)) =

= S(1a/da) + S(1/d) − S(1a/da) − S(E(1/d)) =

= S(1/d) − S(E(1/d)) = S(E(1/d)|1/d),

whence item 4 follows.

5. Let F be any channel on a system Hilbert space H . By the definition of Jamio�lkowski–Choi states,

we have JF◦E = I ⊗ F(JE). In view of the monotonicity of relative entropy, item 5 follows from

I(JF◦E) = I(I ⊗ F(JE)) = S(I ⊗ F(JE)|I ⊗ F(1/d⊗ E(1/d))) �
� S(JE |1/d⊗ E(1/d)) = I(JE).

6. Let Ea and Eb be channels on the systems a and b, with respective Hilbert spaces Ha and Hb, and

orthonormal bases {|μ〉} and {|i〉}. Because

JEa⊗Eb =
1

dadb

∑

μνij

|μ〉〈ν| ⊗ |i〉〈j| ⊗ Ea(|μ〉〈ν|) ⊗ Eb(|i〉〈j|),

we have

(1a ⊗ F † ⊗ 1b)JEa⊗Eb(1a ⊗ F ⊗ 1b) =
1

dadb

∑

μνij

|μ〉〈ν| ⊗ Ea(|μ〉〈ν|) ⊗ |i〉〈j| ⊗ Eb(|i〉〈j|) = JEa ⊗ JEb ,

where Fab =
∑

μi |μ〉〈i| ⊗ |i〉〈μ| is the swap operator on the system Hilbert space Ha ⊗Hb. Consequently,

S(JEa⊗Eb) = S
(
(1a ⊗ Fab ⊗ 1b)JEa⊗Eb(1a ⊗ F †

ab ⊗ 1b)
)

= S(JEa ⊗ JEb) = S(JEa) + S(JEb),

and

S(Ea(1a/da) ⊗ Eb(1b/db)|1a/da ⊗ 1b/db) = S(1a/da ⊗ 1b/db) − S(Ea(1a/da) ⊗ Eb(1b/db)) =

= S(1a/da) + S(1b/db) − S(Ea(1a/da)) − S(Eb(1b/db)) =

= S(Ea(1a/da)|1a/da) + S(Eb(1b/db|1b/db),

whence item 6 follows.

Appendix F: An alternative measure of irreversibility

We recall that the Tsallis r-entropy

Sr(ρ) =
1 − tr ρr

r − 1
, r ∈ R,

is a simple and significant quantity characterizing the mixedness of a state ρ [60]. The case r = 1 is

understood as the limit r → 1 and actually corresponds to the von Neumann entropy. If we take ρ to be

JE of a channel E , then we can regard

Sr(E) =
1

2
Sr(JE)
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as a measure of irreversibility of the channel E(ρ) =
∑

k EkρE
†
k. For r ∈ N, Sr(E) has the explicit form

Sr(E) =
1

2(r − 1)

(
1 − 1

dr

∑

k1,...,kr

tr(E†
k1
Ek2

) tr(E†
k2
Ek3

) . . . tr(E†
kr
Ek1

)

)
.

In particular, the Tsallis 2-entropy S2(ρ) = 1 − tr ρ2 is the linear entropy, and if we take ρ to be JE of

a channel E , then we can regard

S2(E) =
1

2
S2(JE)

as a measure of irreversibility of the channel E . It is interesting to note that this quantity can also be

expressed as

S2(E) =
1

2
− 1

2d2

∑

k

‖E(Xk)‖2

where {Xk : k = 1, . . . , d2} is any orthonormal basis of the operator space L(H) of all observables (Hermitian

operators) on H with the Hilbert–Schmidt inner product 〈A|B〉 = trAB. The quantity S2(E) satisfies the

following properties, which parallel those of S(E).

1. We have

0 � S2(E) � 1

2
− 1

2d2
,

and S2(E) = 0 if and only if E is a unitary channel, while S2(E) attains the maximum value (d2−1)/2d2

if and only if E is the completely depolarizing channel Ecde(ρ) = 1/d for any state ρ.

2. S2(E) is concave in E , i.e.,

S2(p1E1 + p2E2) � p1S2(E1) + p2S2(E2)

for p1, p2 � 0, p1 + p2 = 1, and any channels E1 and E2.

3. S2( · ) is invariant under composition with unitary dynamics in the sense that

S2(EU ◦ E) = S2(E ◦ EU ) = S2(E)

for any unitary channel EU (ρ) = UρU † with U being any unitary operator on the system Hilbert

space.

4. S2( · ) is ancilla-independent in the sense that S2(Ia ⊗ E) = S2(E), where Ia is the identity channel

on any ancilla system a.

5. We have

S2(Ea ⊗ Eb) = S2(Ea) + S2(Eb) − S2(Ea)S2(Eb),

where Ea and Eb are channels on systems a and b. This is a kind of nonextensitivity of the Tsallis

entropy.

6. S2( · ) is monotonic in the sense that

S2(F ◦ E) � S2(E)

for any unital channel F .

The measure of irreversibility S2(E) can be explicitly evaluated for various channels studied in Sec. 7.

We list the results, together with those for S(E), in Table 1.
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Table 1. Comparison between the two irreversibility measures S(E) and S2(E) for various channels

defined in Sec. 7

Channel E S(E) = −1

2
tr JE lnJE S2(E) =

1

2
(1 − trJ2

E)

EU 0 0

EvN
1

2
ln d

1

2

(
1 − 1

d

)

Esic
1

2
ln d +

d− 1

2d
ln(d + 1)

1

2
− 1

d(d + 1)

EWH
1

2
ln

d2 − d

2

d2 − d− 2

2d(d− 1)

Ecde ln d
1

2

(
1 − 1

d2

)

Ecd −1 + α

4
ln

1 + α

2
− 1 − α

4
ln

1 − α

2

1

4
(1 − α2)

Ead −p

4
ln

p

2
− 2 − p

4
ln

2 − p

2

1

4
p(2 − p)

Epd −1

2

(
p′ ln p′ + (1 − p′) ln(1 − p′)

) 1

4
p

Ex −1

2

(
px ln px + (1 − px) ln(1 − px)

) 1

4
(2x− 1)2

Ede −1

2

(
(1 − 3p) ln(1 − 3p) + 3p ln p

)
3p(1 − 2p)
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