
Theoretical and Mathematical Physics, 217(1): 1459–1486 (2023)

A GENERALIZED CREWTHER RELATION AND THE V SCHEME:

ANALYTIC RESULTS IN FOURTH-ORDER PERTURBATIVE QCD

AND QED

A. L. Kataev∗ and V. S. Molokoedov∗†‡

Using the analytic MS scheme, three-loop contribution to the perturbative Coulomb-like part of the static

color potential of a heavy quark–antiquark system, we obtain an analytic expression for the fourth-order

β-function in the gauge-invariant effective V scheme in the case of the generic simple gauge group. We

also present the Adler function of electron–positron annihilation into hadrons and the coefficient function

of the Bjorken polarized sum rule in the V scheme up to a4
s terms. We demonstrate that at this level of the

perturbation theory in this effective scheme, the generalized Crewther relation, which connects the flavor

nonsinglet contributions to the Adler and Bjorken polarized sum rule functions, is satisfied. Starting from

the a2
s order, it contains a conformal symmetry breaking term that factors into the conformal anomaly

β(as)/as and the polynomial in powers of as. We prove that this relation also holds in other gauge-invariant

renormalization schemes. The obtained results allows revealing the difference between the V-scheme β-

function in QED and the Gell-Mann–Low Ψ-function. This distinction arises due to the presence of the

light-by-light type scattering corrections first appearing in the static potential at the three-loop level.

Keywords: Renormalization group, renormalization schemes, QCD and QED, conformal symmetry and

its violation
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1. Introduction

It is well known that the binding energy of the quark–antiquark system in a color singlet state in

QCD can be described by two terms, the perturbative Coulomb-like contribution at short distances and the

essentially nonperturbative long-distance one, modeling the confinement description. Investigation of this

phenomenon is actively underway by means of lattice calculations, where the linear dependence on distance

r is predicted for the nonperturbative part of the static potential (see, e.g., [1]–[3] and the references therein).

In its turn, a non-abelian analogue of the Coulomb potential of QED is determined in the framework of the

perturbation theory (PT) and, for instance, it is the main component in studying spectroscopy of bound

states such as heavy quarkonia in nonrelativistic QCD [4], [5].
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The static potential of the interaction of a heavy quark–antiquark pair is defined in general via the

vacuum expectation value of the gauge-invariant Wilson loop, more precisely, in terms of the logarithm

of the path-ordered Wilson loop over a closed rectangular contour divided by the interaction time T in

the limit T → ∞. The perturbative part of this potential is now available in analytic form in the MS

renormalization scheme at the three-loop level. In the momentum representation, its is

V (�q 2) = −4πCFαs(�q
2)

�q 2

[
1 + a1as(�q

2) + a2a
2
s(�q

2) +

(
a3 +

π2C3
AL

8

)
a3s(�q

2) +O(a4s)

]
, (1)

where αs is the renormalized strong coupling constant in the MS scheme, as = αs/π, L = log(μ2/�q 2), μ2

is the scale MS-scheme parameter of the dimensional regularization, and �q 2 is the square of the Euclidean

three-dimensional momentum. The limit T → ∞ formally leads to q0 → 0 and the squared Euclidean

four-dimensional transferred momentum Q2 → �q 2. Thus, technically, we carry out the transition from

the Euclidean four-dimensional space to its three-dimensional subspace. The renormalization group (RG)

uncontrollable logarithmic term [4] arises in Eq. (1) due to the infrared (IR) divergences, which begin to

manifest themselves in the static potential at the three-loop level. However, in the concrete applications of

the effective nonrelativistic QCD, these IR-divergent terms cancel with certain ultraviolet (UV) divergent

terms originating in the interaction of ultrasoft gluons with the heavy quark–antiquark bound states (see,

e.g., [5], [6]). Because we consider regions of the intermediate and high energies only, these IR corrections

do not affect the behavior of various physical quantities, and we therefore do not take them into account

in our RG-oriented studies.

The analytic expression for the one-loop coefficient a1 in Eq. (1) was calculated in [7], [8], while the

two-loop a2 is known from the calculations in [9], [10]. They are given by

a1 =
31

36
CA − 5

9
TFnf , (2)

a2 =

(
4343

2592
+

π2

4
− π4

64
+

11

24
ζ3

)
C2

A −
(
899

648
+

7

6
ζ3

)
CATFnf −

−
(
55

48
− ζ3

)
CFTFnf +

(
5

9
TFnf

)2

, (3)

where nf is the flavor number of active quarks and ζn =
∑∞

k=1 k
−n is the Riemann zeta-function.

The eigenvalues CF and CA of the quadratic Casimir operator in the fundamental and adjoint repre-

sentations of the generic simple gauge group are respectively defined as (T aT a)ij = CF δij and facdf bcd =

CAδ
ab, where T a are generators of the Lie algebra of the gauge group in the fundamental representation with

the corresponding commutation relation [T a, T b] = ifabcT c. They are normalized as Tr(T aT b) = TF δ
ab

with the Dynkin index TF . We note that in our study, we are primarily interested in the case of the SU(Nc)

color group with CA = Nc and CF = (N2
c − 1)/(2Nc), TF = 1/2, and its particular case Nc = 3 of the

SU(3)-group, relevant to physical QCD.

The three-loop contribution a3 is a cubic polynomial in nf :

a3 = a
(3)
3 n3

f + a
(2)
3 n2

f + a
(1)
3 nf + a

(0)
3 . (4)

The leading terms in powers of nf can be extracted from the renormalon-chain contributions to the

Coulomb QED static potential (or from the representation of the QED invariant charge directly related

to the photon vacuum polarization function [11]). The analytic expression for the quadratic n2
f coefficient

was obtained in [12]. Because of technical difficulties, the contributions a
(1)
3 and a

(0)
3 were calculated

analytically later in [13]. They turned out to be much more complicated than the coefficient a
(2)
3 . Indeed,
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in addition to the expected appearance of the π2, π4, ζ3, π
2ζ3, and ζ5 terms (see, e.g., [14]), we also have

contributions proportional to π2 log 2, π4 log 2 and, more significantly, the basic constants with the new

greatest weight of transcendence six w = 6, namely, π6, ζ23 , π
2ζ3 log 2, π

4 log2 2, and the ones that include

more complicated functions, e.g., π2α4 and s6, where α4 = Li4(1/2) + log4 2/4! with the polylogarithm

function Lin(x) =
∑∞

k=1 x
kk−n and s6 = ζ6 + ζ−5,−1 with ζ6 = π6/945 and multiple zeta value ζ−5,−1 =∑∞

k=1

∑k−1
i=1 (−1)i+k/ik5 (see Appendix A).

For the convenience of reader and for the purposes of the further discussion, it is useful to present all

four coefficients in flavor expansion (4):

a
(3)
3 = −

(
5

9

)3

T 3
F , (5a)

a
(2)
3 =

(
12541

15552
+

23

12
ζ3 +

π4

135

)
CAT

2
F +

(
7001

2592
− 13

6
ζ3

)
CFT

2
F , (5b)

a
(1)
3 =

[
−58747

31104
− 89

16
ζ3 +

761

161280
π6 − 3

4
s6 + π4

(
− 157

3456
− 5

576
log 2 +

log2 2

64

)
+

+ π2

(
17

1728
− 19

192
ζ3 − log 2

48
− 7

32
ζ3 log 2− α4

2

)
+

+
1091

384
ζ5 +

57

128
ζ23

]
C2

ATF +

(
−71281

10368
+

33

8
ζ3 +

5

4
ζ5

)
CACFTF +

+

(
143

288
+

37

24
ζ3 − 5

2
ζ5

)
C2

FTF +

[
5

96
π6 + π4

(
−23

24
+

log 2

6
− log2 2

2

)
+

+ π2

(
79

36
− 61

12
ζ3 + log 2 +

21

2
ζ3 log 2

)]
dabcdF dabcdF

NA
, (5c)

a
(0)
3 =

[
385645

186624
+

73

24
ζ3 − 4621

193536
π6 +

9

4
s6 + π4

(
1349

17280
− 5

144
log 2− 5

72
log2 2

)
+

+ π2

(
− 953

3456
+

175

128
ζ3 − 461

288
log 2 +

217

192
ζ3 log 2 +

73

24
α4

)
−

− 1927

384
ζ5 − 143

128
ζ23

]
C3

A +

[
1511

2880
π6 + π4

(
−39

16
+

35

12
log 2 +

31

12
log2 2

)
+

+ π2

(
929

72
− 827

24
ζ3 − 74α4 +

461

6
log 2− 217

4
ζ3 log 2

)]
dabcdF dabcdA

NA
, (5d)

Here, dabcdF and dabcdA are the rank-four totally symmetric higher-order group invariants, defined in the

fundamental and adjoint representations, and NA is the number of generators of the group. In the particular

case of the SU(Nc) gauge group, the aforementioned color structures are expressed through the number of

colors Nc as

dabcdF dabcdA

NA
=

Nc(N
2
c + 6)

48
,

dabcdF dabcdF

NA
=

N4
c − 6N2

c + 18

96N2
c

,

where NA = N2
c − 1.

Our further analysis is in part a continuation of [15], where we have investigated the requirements

imposed on renormalization schemes leading to the factorization of the conformal symmetry breaking term

Δcsb(as) into the conformal anomaly β(as)/as and the coupling-dependent polynomialK(as) =
∑

n≥1 Kna
n
s

in the generalized Crewther relation

DNS(as)C
NS
Bjp(as) = 1 +Δcsb(as) = 1 +

(
β(as)

as

)
K(as). (6)
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which involves two RG-invariant Euclidean quantities, namely, the flavor nonsinglet (NS) contributions

to the Adler function D(Q2) and to the coefficient function CBjp(Q
2) of the Bjorken polarized sum rule.

The first of them is characteristic of the e+e− annihilation into hadrons, whereas the second one enters

a theoretical expression for the Bjorken sum rule of deep inelastic scattering (DIS) of the polarized charged

leptons on nucleons. We note that as = as(μ
2 = Q2) in Eq. (6).

In the normalization that we use, the unity in Eq. (6) corresponds to the original Crewther relation [16],

derived in the Born approximation of the massless theory of strong interactions by using the operator

product expansion (OPE) approach to the axial–vector–vector (AVV) triangle diagram in the conformal

symmetry limit.

It was discovered in [17] that in the MS scheme, starting with the a2s terms of the PT, the Crewther

relation is modified. In addition to unity, an extra contribution arises in (6) that turns out to be proportional

to the RG β-function:

μ2 ∂as(μ
2)

∂μ2
= β(as(μ

2)) = −
∑
i≥0

βia
i+2
s (μ2). (7)

The renormalization procedure breaks the conformal symmetry of the massless QCD. In particular,

this reflects the violation of the symmetry with respect to conformal transformations of the AVV function.

The effect of this violation in Eq. (6) is described by the conformal symmetry breaking term Δcsb(as),

proportional to the factor β(as)/as and containing the polynomial K(as) =
∑

n≥1 Kna
n
s in as. This fact

was discovered in the MS scheme at the O(a3s) level in [17] and later confirmed at the O(a4s) level in [18].

Now it is customary to call this form of the generalized Crewther relation the Crewther–Broadhurst–Kataev

(CBK) relation in the literature. It was intensively studied from different standpoints, e.g., in [19]–[22].

Recently, an analogue of the CBK relation was considered in the extended QCDmodel with an arbitrary

number of fermion representations at the O(a4s) level in [23]. It was shown there that in this case, the CBK

relation remains valid as well. This fact confirms the nonaccidental nature of the factorization of Δcsb(as)

at least at the O(a4s) order. Moreover, arguments presented in [24]–[26] indicate that the CBK relation

must hold in the MS scheme in QCD in all orders of the PT.

The natural question arises whether there are theoretical requirements on the choice of the ultraviolet

subtraction schemes that ensure the realization of the fundamental property of the factorization of the

conformal symmetry breaking term Δcsb(as) in the CBK relation. The results in [15], [27], [28] demonstrate

that this feature of CBK is implemented for a wide class of gauge-dependent momentum subtraction MOM-

like schemes (e.g., the mMOM scheme [29]–[34]) in a linear covariant Landau gauge ξ = 0 at least at the

O(a4s) level (and apparently in all PT orders). Therefore, the often prevailing opinion in the literature that

the CBK relation is valid only for gauge-invariant MS-like schemes turns out to be incorrect.

Because it is not obvious that the CBK relation is also realized in some gauge-invariant schemes other

than MS-like ones, we here study this issue with the example of the effective gauge-independent V scheme.

In this scheme, the static potential of a heavy quark–antiquark pair has the Coulomb-like form and all

higher-order corrections are absorbed into a redefinition of the effective charge with a corresponding change

in the scale parameter. For this, and for the goals that are discussed later, we obtain analytic expressions

for the β-function in the V scheme in the four-loop approximation and also for both the Adler and the

coefficient function of the Bjorken polarized sum rule in the V scheme in the same order of the PT in

the case of a generic simple gauge group. Further, we generalize the consideration of the factorization of

Δcsb(as) in the CBK relation to a wide class of gauge-invariant subtraction schemes. Similar problems are

also investigated in the case of QED. In the end, we draw a number of conclusions on the relation between

the β-function in the V scheme in QED and the Gell-Mann–Low Ψ-function, including a fixation of definite

four-loop contributions to the static potential directly obtained in [35].
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2. β-function in the V scheme

We turn to the effective gauge-invariant V scheme. It was first introduced in [9], [10] and was used

in modeling the smooth transition of the QCD coupling constant through the thresholds of heavy-quark

productions in the case where the mass corrections to the static potential are taken into account [36]. Other

applications of the V scheme in the perturbative QCD studies can be found, e.g., in [2], [37]–[41].

We now use the analytic results on the static potential presented in the preceding section to refine the

semianalytic form of the fourth-order expression for the RG β-function in the V scheme for a generic simple

gauge group, obtained previously in [14] and applied to the analysis of theoretical QCD ambiguities for the

e+e− annihilation into hadrons R-ratio at the O(a4s)-level in the energy region below the manifestation of

the left shoulder of the Z0-peak.

Summarizing the aforesaid, we can succinctly describe the V scheme by an expression for the static

heavy quark–antiquark potential in the Coulomb-like form,

V (�q 2) = −4πCF
αs,V (�q

2)

�q 2
, (8)

where all higher-order PT corrections to V (�q 2) are absorbed into the effective coupling αs,V (�q
2) and, as

was already stated, we neglect the contribution of the three-loop IR logarithmic term. In accordance with

the technique of the effective charges (ECH) developed in [42]–[44], we define the effective V-scheme scale

by means of the following relation, associated with its MS-scheme counterpart:

μ2
V = μ2ea1/β0 , (9)

where a1 is given by Eq. (2) and β0 is the first scheme-independent coefficient [45], [46] of the RG β-

function (7). Further, fixing �q 2 = μ2
V , we can finally obtain a link between couplings in the V and MS

schemes:

αs,V (μ
2
V ) = αs(μ

2
V )(1 + a1as(μ

2
V ) + a2a

2
s(μ

2
V ) + a3a

3
s(μ

2
V ) +O(a4s)). (10)

We then define the β-function in the V scheme

βV (as,V ) = μ2
V

∂as,V
∂μ2

V

= −
∑
i≥0

βV
i ai+2

s,V . (11)

and its relation to the MS-scheme β(as)-function:

βV (as,V (as)) = β(as)
∂as,V (as)

∂as
. (12)

The combination of Eqs. (10) and (12) yields the following relations between the β-functions coefficients

in the V and MS schemes:

βV
0 = β0, βV

1 = β1, (13a)

βV
2 = β2 − a1β1 + (a2 − a21)β0, (13b)

βV
3 = β3 − 2a1β2 + a21β1 + (2a3 − 6a1a2 + 4a31)β0. (13c)

and even in the higher PT orders with the still unknown correction a4 to the static potential,

βV
4 = β4 − 3a1β3 + (4a21 − a2)β2 + (a3 − 2a1a2)β1 + (3a4 − 12a1a3 − 5a22 + 28a21a2 − 14a41)β0. (13d)

These formulas reflect the transformation laws of the coefficients of the β-functions under the transition

from one gauge-invariant renormalization scheme to another. The consequence of the use of the ECH

approach is a scheme invariance of all coefficients of the effective β-functions within the gauge-independent

MS-like schemes (see [47], [48] for details).
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The first two coefficients of βV coincide identically with their MS-analogs (13a), calculated in [45], [46],

[49]–[51]:

βV
0 =

11

12
CA − 1

3
TFnf , (14a)

βV
1 =

17

24
C2

A − 5

12
CATFnf − 1

4
CFTFnf . (14b)

The third and fourth terms βV
2 and βV

3 , Eqs. (13b) and (13c), are expressed in terms of the respective

three- and four-loop coefficients of the MS-scheme RG β-function, analytically computed in [52], [53] and

[54], [55]. Using Eqs. (2), (3), and (13b), we can obtain the analytic three-loop coefficient βV
2 :

βV
2 =

(
103

96
+

121

288
ζ3 +

11

48
π2 − 11

768
π4

)
C3

A +

+

(
−445

576
− 11

9
ζ3 − π2

12
+

π4

192

)
C2

ATFnf +

(
−343

288
+

11

12
ζ3

)
CACFTFnf +

+
1

32
C2

FTFnf +

(
1

288
+

7

18
ζ3

)
CAT

2
Fn

2
f +

(
23

72
− 1

3
ζ3

)
CFT

2
Fn

2
f . (14c)

This result was originally derived in [10]. Unlike the MS-scheme β2-term, the coefficient βV
2 contains

not only rational numbers but also transcendental ones, namely, the ζ3, π
2, and π4-contributions. They

originate from the two-loop correction a2 to the static potential in (3).

Using Eqs. (5a)–(5d) and (13c)), we find the four-loop coefficient βV
3 in analytic form:

βV
3 =

[
−3871

2592
+

1463

432
ζ3 − 21197

2304
ζ5 − 1573

768
ζ23 +

33

8
s6 − 50831

1161216
π6 +

+ π4

(
45023

207360
− 55

864
log 2− 55

432
log2 2

)
+

+ π2

(
−35035

20736
+

1925

768
ζ3 +

803

144
α4 − 5071

1728
log 2 +

2387

1152
ζ3 log 2

)]
C4

A +

+

[
731

192
− 13

3
ζ3 +

19709

2304
ζ5 +

1199

768
ζ23 − 23

8
s6 +

10189

414720
π6 +

+ π4

(
− 2419

11520
+

25

3456
log 2 +

259

3456
log2 2

)
+

+ π2

(
14477

10368
− 1259

1152
ζ3 − 53

18
α4 +

889

864
log 2− 665

576
ζ3 log 2

)]
C3

ATFnf +

+

[
−7645

1152
+

61

24
ζ3 +

55

24
ζ5

]
C2

ACFTFnf +
23

128
C3

FTFnf +

+

[
143

576
+

143

48
ζ3 − 55

12
ζ5

]
CAC

2
FTFnf +

+

[
−1171

432
+

89

72
ζ3 − 1091

576
ζ5 − 19

64
ζ23 +

1

2
s6 − 761

241920
π6 +

+ π4

(
529

8640
+

5

864
log 2− 1

96
log2 2

)
+

+ π2

(
− 737

2592
+

19

288
ζ3 +

1

3
α4 +

1

72
log 2 +

7

48
ζ3 log 2

)]
C2

AT
2
Fn

2
f +

+

[
583

144
− 7

4
ζ3 − 5

6
ζ5

]
CACFT

2
Fn

2
f +

[
− 29

288
− 4

3
ζ3 +

5

3
ζ5

]
C2

FT
2
Fn

2
f +
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+

[
293

648
+

ζ3
54

− 2

405
π4

]
CAT

3
Fn

3
f +

[
−1

2
+

ζ3
3

]
CFT

3
Fn

3
f +

+

[
− 5

144
+

11

12
ζ3

]
dabcdA dabcdA

NA
+

[
2

9
− 13

6
ζ3

]
dabcdF dabcdA

NA
nf +

+

[
−1511

4320
π6 + π4

(
13

8
− 35

18
log 2− 31

18
log2 2

)
+

+ π2

(
−929

108
+

827

36
ζ3 +

148

3
α4 − 461

9
log 2 +

217

6
ζ3 log 2

)]
dabcdF dabcdA

NA
TFnf +

+

[
16621

17280
π6 + π4

(
−143

32
+

385

72
log 2 +

341

72
log2 2

)
+

+ π2

(
10219

432
− 9097

144
ζ3 − 407

3
α4 +

5071

36
log 2− 2387

24
ζ3 log 2

)]
CA

dabcdF dabcdA

NA
+

+

[
55

576
π6 − π4

(
253

144
− 11

36
log 2 +

11

12
log2 2

)
+

+ π2

(
869

216
− 671

72
ζ3 +

11

6
log 2 +

77

4
ζ3 log 2

)]
CA

dabcdF dabcdF

NA
nf −

−
[
11

36
− 2

3
ζ3

]
dabcdF dabcdF

NA
n2
f +

[
− 5

144
π6 + π4

(
23

36
− 1

9
log 2 +

1

3
log2 2

)
+

+ π2

(
−79

54
+

61

18
ζ3 − 2

3
log 2− 7ζ3 log 2

)]
dabcdF dabcdF

NA
TFn

2
f . (14d)

The analytic result in (14d) improves the presentation of our previous semianalytic expression for βV
3

obtained in [14]. Indeed, the coefficient βV
3 presented there contained numerical uncertainties associated

with the inability to calculate specific three-loop master integrals to the static potential with a high enough

precision [12], [56], [57] to apply the PSLQ algorithm [58], [59] and restore their analytic expressions from

the obtained numerical values. This problem was solved in [13] by means of a dimensional recurrence

relation [60] and the convergence acceleration algorithm [61].

Unlike the β3-coefficient in the MS scheme, which contains rational numbers and ζ3-contributions only,

the coefficient βV
3 is expressed through a much larger number of terms with higher transcendentalities

initially appearing in the three-loop correction a3 to the static potential. We also note that result (14d)

includes four extra color structures originating from 2a3β0-term in Eq. (13c) and not encountered in the

representation of the β3-coefficient, namely, the CAd
abcd
F dabcdA /NA, CAd

abcd
F dabcdF nf/NA, d

abcd
F dabcdA TFnf/NA,

and dabcdF dabcdF TFn
2
f/NA patterns. The term proportional to the dabcdA dabcdA /NA structure in (14d) follows

from the MS-scheme coefficient β3. In the particular case of the SU(Nc) gauge group, it is equal to

dabcdA dabcdA /NA = N2
c (N

2
c + 36)/24.

Taking the values α4 ≈ 0.5270972 and s6 ≈ 0.9874414 into account, we arrive at the following numerical

form of Eqs. (14a)–(14d) in the case of the SU(3) color gauge group:

βV
0 = 2.75− 0.1666667nf, (15a)

βV
1 = 6.375− 0.7916667nf, (15b)

βV
2 = 66.00284− 11.656347nf + 0.3261237n2

f, (15c)

βV
3 = 168.6484− 50.59222nf + 2.761578n2

f − 0.0190318n3
f. (15d)

Expressions (15c) and (15d) are to be compared with their MS-counterparts [52]–[55]

β2 = 22.32031− 4.368924nf + 0.0940394n2
f, (16a)

β3 = 114.2303− 27.13394nf + 1.582379n2
f + 0.0058567n2

f (16b)
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and with the mMOM ones in the Landau gauge [29], [30], [32]

βmMOM, ξ=0
2 = 47.50754− 9.771667nf + 0.3028642n2

f, (17a)

βmMOM, ξ=0
3 = 392.7385− 95.40363nf + 6.349228n2

f − 0.1073931n3
f . (17b)

Naturally, the first two coefficients of the RG β-function coincide in the V, MS, and mMOM schemes

with ξ = 0.

3. The Adler function, R-ratio, and the Bjorken polarized sum
rule in the V scheme

3.1. The Adler function in the V scheme. It is known that the Adler function D(Q2) is a conve-

nient ingredient for calculating the Minkowskian annihilation electron–positron cross section into hadrons

with the help of a Källen–Lehmann-type dispersion relation (see, e.g., [62], [63]). This function is defined

in the Euclidean domain with the Euclidean transferred momentum Q2 = −q2 and, importantly, is

a renormalization-invariant quantity. Its two-, three-, and four-loop expressions in the MS scheme were

directly evaluated in [64]–[66], [67], [68], and [18], [69], [70].

In the massless limit, the function D(Q2) is decomposed into a sum of flavor nonsinglet (NS) and

singlet (SI) components:

D(as) = dR

(∑
f

Q2
f

)
DNS(as) + dR

(∑
f

Qf

)2

DSI(as), (18)

where Qf is the electric charge of the active quark with a flavor f and dR is the dimension of the quark

representation of the Lie algebra of the considered generic simple gauge group. In the case of the SU(Nc)

color gauge group, dR = Nc. The singlet (SI) flavor contribution DSI(as) appears from the third-order a3s
due to the special diagrams of the light-by-light scattering type [67], [70].

To obtain an analytic four-loop expression for the NS Adler function DNS
V (as,V ) in the V scheme, we

use its explicit MS-scheme result at the same level, relation (10) between the corresponding couplings in

two considered gauge-independent schemes, and take the RG-invariance of the flavor NS Adler function

into account. Keeping the aforesaid in mind, we obtain the following results:

DNS
V (as,V ) = 1 +

∑
k≥1

dNS
k,V a

k
s,V , (19a)

dNS
1,V =

3

4
CF , (19b)

dNS
2,V = − 3

32
C2

F +

(
307

96
− 11

4
ζ3

)
CFCA +

(
−23

24
+ ζ3

)
CFTFnf , (19c)

dNS
3,V = − 69

128
C3

F +

(
−175

96
− 143

16
ζ3 +

55

4
ζ5

)
C2

FCA +

+

(
621

32
− 1403

96
ζ3 − 55

24
ζ5 − 3

16
π2 +

3

256
π4

)
CFC

2
A +

+

(
3

2
− ζ3

)
CFT

2
Fn

2
f +

(
−375

32
+

205

24
ζ3 +

5

6
ζ5

)
CFCATFnf +

+

(
29

96
+ 4ζ3 − 5ζ5

)
C2

FTFnf , (19d)
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dNS
4,V =

(
4157

2048
+

3

8
ζ3

)
C4

F +

(
−3335

512
− 139

128
ζ3 +

2255

32
ζ5 − 1155

16
ζ7

)
C3

FCA +

+

(
−498269

18432
− 17513

192
ζ3 + 100ζ5 +

1155

32
ζ7 +

3

64
π2 − 3

1024
π4

)
C2

FC
2
A +

+

[
668335

4608
− 101621

1152
ζ3 − 89119

1536
ζ5 +

34199

1536
ζ23 − 385

64
ζ7 − 27

16
s6 +

4621

258048
π6 +

+ π4

(
1

90
− 11

128
ζ3 +

5

192
log 2 +

5

96
log2 2

)
+

+ π2

(
−4183

4608
+

179

512
ζ3 − 73

32
α4 +

461

384
log 2− 217

256
ζ3 log 2

)]
CFC

3
A +

+

(
287

256
+

17

8
ζ3 − 235

8
ζ5 +

105

4
ζ7

)
C3

FTFnf +

+

(
12277

1152
+

1117

16
ζ3 − 145

2
ζ5 − 11

4
ζ23 − 105

8
ζ7

)
C2

FCATFnf +

+

[
−201725

1536
+

41071

576
ζ3 +

87847

1536
ζ5 − 20225

1536
ζ23 +

35

16
ζ7 +

9

16
s6 − 761

215040
π6 +

+ π4

(
109

4608
+

ζ3
32

+
5

768
log 2− 3

256
log2 2

)
+

+ π2

(
367

2304
− 109

256
ζ3 +

3

8
α4 +

log 2

64
+

21

128
ζ3 log 2

)]
CFC

2
ATFnf +

+

(
−125

384
− 281

24
ζ3 +

25

2
ζ5 + ζ23

)
C2

FT
2
Fn

2
f +

+

(
81103

2304
− 4859

288
ζ3 − 35

2
ζ5 +

11

6
ζ23 − π4

180

)
CFCAT

2
Fn

2
f −

−
(
67

24
− 7

6
ζ3 − 5

3
ζ5

)
CFT

3
Fn

3
f +

(
3

16
− ζ3

4
− 5

4
ζ5

)
dabcdF dabcdA

dR
+

+

(
−13

16
− ζ3 +

5

2
ζ5

)
dabcdF dabcdF

dR
nf +

[
−1511

3840
π6 + π4

(
117

64
− 35

16
log 2− 31

16
log2 2

)
+

+ π2

(
−929

96
+

827

32
ζ3 +

111

2
α4 − 461

8
log 2 +

651

16
ζ3 log 2

)]
CF

dabcdF dabcdA

NA
+

+

[
− 5

128
π6 + π4

(
23

32
− log 2

8
+

3

8
log2 2

)
+

+ π2

(
−79

48
+

61

16
ζ3 − 3

4
log 2− 63

8
ζ3 log 2

)]
CF

dabcdF dabcdF

NA
nf . (19e)

We make a few comments on the derived expressions. First, unlike the MS-scheme three-loop results,

the coefficient dNS
3,V in (19d) contains the complementary terms of the CFC

2
A contribution, which are pro-

portional to π2 and π4. Second, the coefficient dNS
4,V in (19e) includes all transcendental basic constants

contained in βV
3 , plus the extra ζ7-term with the greatest transcendence of weight w = 7, originally appear-

ing from d4 in the MS scheme [69]. It is also worth noting that in contrast to d4, the analytic expression for

dNS
4,V has two additional color structures, namely, CF d

abcd
F dabcdA /NA and CF d

abcd
F dabcdF nf/NA, coming from

the product of a3 on d1.

For SU(3), these coefficients are numerically given by

dNS
1,V = 1, (20a)

dNS
2,V = −0.597626+ 0.1624824nf, (20b)
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dNS
3,V = −7.21638− 1.240217nf + 0.0993144n2

f, (20c)

dNS
4,V = 19.9437+ 4.38696nf − 1.114839n2

f + 0.0564909n3
f. (20d)

The SI contributions to the respective coefficients d3 and d4 of the Adler function were calculated in

the MS scheme in [67], [70]. Taking the renormalization invariance of the function D(Q2) into account,

we can obtain the SI contributions to the coefficients d3,V and d4,V ,

DSI
V (as,V ) =

∑
k≥3

dSIk,V a
k
s,V , (21a)

dSI3,V = dSI3 =

(
11

192
− ζ3

8

)
dabcdabc

dR
, (21b)

dSI4,V = dSI4 − 3a1d
SI
3 =

[(
−13

64
− ζ3

4
+

5

8
ζ5

)
CF +

+

(
3211

4608
− 383

384
ζ3 +

45

64
ζ5 − 11

32
ζ23

)
CA +

+

(
− 47

288
+

19

96
ζ3 − 5

16
ζ5 +

ζ23
8

)
TFnf

]
dabcdabc

dR
, (21c)

where dabc is the symmetric color constant, which for the SU(Nc) group satisfies the relation dabcdabc =

(N2
c − 4)(N2

c − 1)/Nc.

Expressions (21b) and (21c) in numerical form are given by

dSI3,V = −0.413179, dSI4,V = −2.74010− 0.152688nf. (22)

3.2. The R(s)-ratio in the V scheme. We move on to the case of the R(s)-ratio of the process

of the electron–positron annihilation into hadrons. This quantity is directly measured in the Minkowski

region of energies and is expressed through the cross section of this process,

R(s) =
σ(e+e− → γ∗ → hadrons)

σBorn(e+e− → γ∗ → μ+μ−)
= dR

(∑
f

Q2
f

)
RNS(as) + dR

(∑
f

Qf

)2

RSI(as), (23)

where σBorn(e
+e− → μ+μ−) = 4πα2

EM/3s is the Born massless normalization factor.

The Källen–Lehmann-type dispersion representation (see, e.g., [62], [63]), relating the Adler function

to the R(s)-ratio, dictates the following analytic correspondence:

R(s) = D(s)− π2

3
d1β

2
0a

3
s − π2

(
d2β

2
0 +

5

6
d1β1β0

)
a4s +O(a5s). (24)

The terms proportional to π2 appear here as the effect of the analytic continuation from the Euclidean to

Minkowskian domain.

Using Eq. (24) and the RG invariance of the R-ratio, we can conclude that the following relations hold

between the coefficients of the NS and SI contributions to the R-ratio and the Adler function in the V

scheme:

RNS
V (as,V ) = 1 +

∑
k≥1

rNS
k,V a

k
s,V , RSI

V (as,V ) =
∑
k≥3

rSIk,V a
k
s,V , (25a)

rNS
1,V = dNS

1,V , rNS
2,V = dNS

2,V , (25b)

rNS
3,V = dNS

3,V − π2

3
d1β

2
0 , rSI3,V = dSI3,V , (25c)

rNS
4,V = dNS

4,V − π2

(
dNS
2,V β

2
0 +

5

6
d1β1β0

)
, rSI4,V = dSI4,V . (25d)
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Taking Eqs. (25b)–(25d) into account, we arrive at the complete numerical result for RV (s) in the V

scheme in the physically relevant case of the SU(3) group,

RV (as,V ) = 3
∑
f

Q2
f

(
1 +

∑
k≥1

rk,V a
k
s,V

)
, (26a)

r1,V = 1, (26b)

r2,V = −0.597626+ 0.1624824nf, (26c)

r3,V = −32.09600+ 1.775495nf + 0.0079291n2
f − 0.413179δf, (26d)

r4,V = −79.6389+ 13.49715nf − 0.566196n2
f + 0.0119455n3

f +

+ (−2.74010− 0.152688nf)δf , (26e)

where terms with δf = (
∑

f Qf )
2/(

∑
f Q

2
f) are the SI contributions. We note that the analogous V-scheme

numerical expressions for the RV (s) coefficients were previously presented in [14] but with theoretical mean-

square uncertainties following from the inaccuracies in the calculation of the a3 correction to the static

potential [12], [56], [57]. Naturally, these results are in full agreement with those given in (26b)–(26e).

The discussed uncertainties are negligible and much smaller than the ones related to the determination of

physical parameters such as αs(M
2
Z) [71]. In [14], [28], [31], the interested reader can find the results of the

study of the scheme- and scale-dependence of the R(s)-ratio at the in the cases nf = 4 and nf = 5.

3.3. The Bjorken polarized sum rule in the V scheme. One of the important physical quantities

in the study of the DIS of polarized leptons on nucleons is the coefficient Bjorken function CBjp(Q
2). It is

determined in the Euclidean region of energies and included in the Bjorken polarized sum rule (neglecting

the O(1/Q2k) nonperturbative terms):

∫ 1

0

(
glp1 (x,Q2)− gln1 (x,Q2)

)
dx =

1

6

∣∣∣∣gAgV
∣∣∣∣CBjp(Q

2), (27)

Here, glp1 (x,Q2) and gln1 (x,Q2) are the structure functions of the DIS processes, which characterize the spin

distribution of quarks and gluons inside nucleons, and gA and gV are the axial and vector neutron β-decay

constants with gA/gV = −1.2754± 0.0013 [71].

The coefficient Bjorken function is split in two components, the NS and SI ones:

CBjp(as) = CNS
Bjp(as) + dR

∑
f

QfC
SI
Bjp(as). (28)

The one-, two-, three-, and four-loop results for the NS coefficient Bjorken function CBjp(as) in the

MS scheme were respectively obtained in [72], [73], [74], [18]. Unlike the DSI(as)-function, the SI part of

CBjp(as) appears first at the O(a4s) level [75] and was calculated analytically in [76].

Using the explicit fourth-order approximation for the Bjorken function in the MS scheme [18], [76],

relation (10), and the RG-invariance of CBjp(as), we arrive at the following expressions for the NS and SI

contributions to the coefficient Bjorken function in the V scheme:

CNS
Bjp,V (as,V ) = 1 +

∑
k≥1

cNS
k,V a

k
s,V , CSI

V (as,V ) =
∑
k≥4

cSIk,V a
k
s,V , (29a)

cNS
1,V = −3

4
CF , (29b)

cNS
2,V =

21

32
C2

F − 19

24
CFCA +

1

12
CFTFnf , (29c)
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cNS
3,V = − 3

128
C3

F +

(
295

288
− 11

12
ζ3

)
C2

FCA +

(
73

36
− ζ3

8
− 5

6
ζ5

)
CFCATFnf +

+

(
−4231

1152
+

11

32
ζ3 +

55

24
ζ5 +

3

16
π2 − 3

256
π4

)
CFC

2
A −

− 5

24
CFT

2
Fn

2
f +

(
−13

36
+

ζ3
3

)
C2

FTFnf , (29d)

cNS
4,V =

(
−4823

2048
− 3

8
ζ3

)
C4

F +

(
− 857

1152
− 971

96
ζ3 +

1045

48
ζ5

)
C3

FCA +

+

(
776809

55296
+

4921

384
ζ3 − 1375

144
ζ5 − 385

16
ζ7 − 21

64
π2 +

21

1024
π4

)
C2

FC
2
A +

+

[
−247307

13824
+

4579

1152
ζ3 +

5557

4608
ζ5 − 3223

1536
ζ23 +

385

64
ζ7 +

27

16
s6 − 4621

258048
π6 +

+ π4

(
2953

46080
− 5

192
log 2− 5

96
log2 2

)
+

+ π2

(
−1361

4608
+

525

512
ζ3 +

73

32
α4 − 461

384
log 2 +

217

256
ζ3 log 2

)]
CFC

3
A +

+

(
317

144
+

109

24
ζ3 − 95

12
ζ5

)
C3

FTFnf +

+

(
−14177

1728
− 739

144
ζ3 +

205

72
ζ5 +

35

4
ζ7

)
C2

FCATFnf +

+

[
47693

3456
− 77

18
ζ3 +

851

512
ζ5 +

1921

1536
ζ23 − 35

16
ζ7 − 9

16
s6 +

761

215040
π6 +

+ π4

(
− 235

4608
− 5

768
log 2 +

3

256
log2 2

)
+

+ π2

(
641

2304
− 19

256
ζ3 − 3

8
α4 − log 2

64
− 21

128
ζ3 log 2

)]
CFC

2
ATFnf +

+

(
1891

3456
− ζ3

36

)
C2

FT
2
Fn

2
f +

(
−8309

3456
+

9

8
ζ3 − 35

36
ζ5 − ζ23

6
+

π4

180

)
CFCAT

2
Fn

2
f +

+
5

72
CFT

3
Fn

3
f +

(
− 3

16
+

ζ3
4

+
5

4
ζ5

)
dabcdF dabcdA

dR
+

+

(
13

16
+ ζ3 − 5

2
ζ5

)
dabcdF dabcdF

dR
nf +

+

[
1511

3840
π6 + π4

(
−117

64
+

35

16
log 2 +

31

16
log2 2

)
+

+ π2

(
929

96
− 827

32
ζ3 − 111

2
α4 +

461

8
log 2− 651

16
ζ3 log 2

)]
CF

dabcdF dabcdA

NA
+

+

[
5

128
π6 − π4

(
23

32
− log 2

8
+

3

8
log2 2

)
+

+ π2

(
79

48
− 61

16
ζ3 +

3

4
log 2 +

63

8
ζ3 log 2

)]
CF

dabcdF dabcdF

NA
nf , (29e)

cSI4,V = cSI4 =
1

9
β0d

abcdabc. (29f)

Comparing Eqs. (19e) and (29e), we can see certain similarities between the analytic expressions

for dNS
4,V and cNS

4,V . For instance, the contributions proportional to the dabcdF dabcdA /dR, dabcdF dabcdF nf/dR,

CF d
abcd
F dabcdA /NA, and CF d

abcd
F dabcdF nf/NA color structures in their expressions are identical in absolute

values, but opposite in sign. Moreover, the terms proportional to π6, s6, π
4 log 2, π4 log2 2, π2α4, π

2 log 2,

1470



and π2ζ3 log 2 share the same property. Therefore, all these color structures and transcendental constants

cancel automatically in the sum of dNS
4,V + cNS

4,V . This fact is important in studying conditions of the

factorization of the Δcsb(as)-term into β(as)/as and K(as) functions in the CBK relation in the V scheme

(see a discussion below).

For the SU(3) group, we obtain the following numerical form of the PT coefficients of the CBjp,V -

function:

CBjp,V (as,V ) = 1 +
∑
k≥1

ck,V a
k
s,V , (30a)

c1,V = −1, (30b)

c2,V = −2 + 0.0555556nf, (30c)

c3,V = −2.55978+ 2.062006nf − 0.0694444n2
f, (30d)

c4,V = −122.1910+ 30.87144nf − 1.531353n2
f + 0.0115741n3

f +

+ (12.22222− 0.740741nf)ηf , (30e)

where ηf =
∑

f Qf .

3.4. PT series for the Adler function, R-ratio, and the coefficient Bjorken function in

the MS, V, and Landau mMOM schemes. For comparison of the behavior of the PT series for the

Adler function and the coefficient Bjorken functions, we consider their expressions in the MS [18], [64]–[70],

[72]–[74], [76], V (20b)–(20d), (22), (30c)–(30e) [28], and mMOM schemes in the Landau gauge [15], [29],

[31] for the SU(3) color gauge group. Taking the results of the cited works into account, we can present

them in Table 1.

The content of Table 1 indicates that the contributions to the NS coefficient Bjorken function in all

three schemes have a sign-alternating structure in nf . This property is also valid for the higher-order

corrections to the Adler function in the MS scheme. In other cases, this feature is violated starting from

the a3s term. This fact may be regarded as the argument in favor of the well-known statement that the

renormalon-motivated large-β0 approximation is more pronounced for quantities calculated from the PT

in the MS scheme in the Euclidean domain [77]. We note, however, that the PT expressions for the

Adler function and the coefficient function of the Bjorken polarized sum rule in the MS scheme contain

contributions not only of the ultraviolet (UV) renormalons resulting in sign-alternating series but also of

the infrared (IR) ones, which lead to sign-constant series (see, e.g., [77], [78] and the references therein).

The possible irregularities in low orders may be caused by cancellations between IR and UV renormalons.

We also mention that the analytic expressions for D(Q2), R(s), and CBjp(Q
2) at the O(a4s) level in

the mMOM scheme with an arbitrary linear covariant gauge parameter can be found in [15], [27], [28].

The investigation of the behavior of the R(s)-ratio for the process e+e− → γ∗ → hadrons depending on the

energy in the center of mass system and the study of its scheme dependence with the example of the three

discussed renormalization schemes have been considered previously for nf = 4, 5 in [14], [28].

4. The CBK relation in the V scheme

Having obtained analytic fourth-order approximations for the Adler function, the coefficient function

of the Bjorken polarized sum rule, and the β-function in the V scheme, we can study CBK relation (6) in

this scheme in detail. It is known that the CBK relation is implemented in the class of gauge-invariant

MS-like schemes at least at the O(a4s) PT level [17], [18] (but apparently in all orders [24]–[26]). However,

the following question remains open: does this relation hold in other gauge-independent schemes different

from the MS-like ones? In this section, we investigate this issue with the example of the considered gauge-

invariant V scheme.
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Table 1. The PT series for the Adler function, the R-ratio, and the coefficient function of the Bjorken

polarized sum rule in QCD in the MS-, V, and Landau mMOM schemes. The overall factor 3
∑

f Q2
f

is omitted from the expressions for D(Q2) and R(s). Here, δf = (
∑

f Qf )
2/(

∑
f Q2

f ) and ηf =
∑

f Qf

Scheme Adler function

MS

1 + as + (1.9857 − 0.11529nf )a
2
s +

+ (18.2427 − 4.2158nf + 0.0862n2
f − 0.413δf )a

3
s +

+ (135.792 − 34.440nf + 1.875n2
f − 0.010n3

f + δf (−5.942 + 0.1916nf ))a
4
s

V

1 + as,V + (−0.5976 + 0.1625nf )a
2
s,V +

+ (−7.2164 − 1.240nf + 0.0993n2
f − 0.413δf )a

3
s,V +

+ (19.944 + 4.387nf − 1.115n2
f + 0.056n3

f + δf (−2.740− 0.1527nf ))a
4
s,V

mMOM

ξ = 0

1 + as,M + (−1.535 + 0.1625nf )a
2
s,M +

+ (−0.6647 − 1.685nf + 0.0993n2
f − 0.413δf )a

3
s,M +

+ (−38.363 + 18.44nf − 1.71n2
f + 0.056n3

f + δf (−1.578 − 0.1527nf ))a
4
s,M

R-ratio

MS

1 + as + (1.9857 − 0.11529nf )a
2
s +

+ (−6.6369 − 1.2000nf − 0.00518n2
f − 0.413δf )a

3
s +

+ (−156.608 + 18.7748nf − 0.7974n2
f + 0.0215n3

f + δf (−5.942 + 0.1916nf ))a
4
s

V

1 + as,V + (−0.5976 + 0.1625nf )a
2
s,V +

+ (−32.096 + 1.775nf + 0.0079n2
f − 0.413δf )a

3
s,V +

+ (−79.639 + 13.497nf − 0.566n2
f + 0.0119n3

f + δf (−2.740 − 0.1527nf ))a
4
s,V

mMOM

ξ = 0

1 + as,M + (−1.535 + 0.1625nf )a
2
s,M +

+ (−25.544 + 1.331nf + 0.0079n2
f − 0.413δf )a

3
s,M +

+ (−67.981 + 19.068nf − 0.904n2
f + 0.0114n3

f + δf (−1.578 − 0.1527nf ))a
4
s,M

Coefficient Bjorken function

MS
1− as + (−4.5833 + 0.33333nf )a

2
s + (−41.4399 + 7.6073nf − 0.1775n2

f )a
3
s +

+ (−479.448 + 123.39nf − 7.69n2
f + 0.104n3

f + ηf (12.222 − 0.7407nf ))a
4
s

V
1− as,V + (−2 + 0.05556nf )a

2
s,V + (−2.5598 + 2.062nf − 0.0694n2

f )a
3
s,V +

+ (−122.191 + 30.871nf − 1.531n2
f + 0.011157n3

f + ηf (12.222 − 0.7407nf ))a
4
s,V

mMOM

ξ = 0

1− as,M + (−1.0625 + 0.05556nf )a
2
s,M + (−4.2409 + 2.097nf − 0.0694n2

f )a
3
s,M +

+ (−66.891 + 17.790nf − 1.091n2
f + 0.0120n3

f + ηf (12.222 − 0.7407nf ))a
4
s,M
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In fact, our problem reduces to verifying the factorization of the conformal symmetry breaking term

Δcsb in the CBK relation in the V scheme:

DNS
V (as,V)C

NS
Bjp,V(as,V) = 1 +

βV(as,V)

as,V
KV(as,V). (31)

Using the V-scheme analogues of Eqs. (2.3a)–(2.3d) in [15], which also follow from formula (31) we are

testing, we can obtain that the first coefficient in the expansion

KV(as,V) =
∑
n≥1

KV
n a

n
s,V (32)

coincides with its MS-scheme analog, namely,

KV
1 =

(
−21

8
+ 3ζ3

)
CF . (33)

Similarly, using the V-scheme results for a3s-corrections to the flavor NS Adler function n Eq. (19d),

the coefficient function of the Bjorken polarized sum rule (29d) and the two-loop contribution to βV (14b),

we find the second term in expansion (32):

KV
2 =

(
397

96
+

17

2
ζ3 − 15ζ5

)
C2

F +

(
−1453

96
+

53

4
ζ3

)
CFCA +

(
31

8
− 3ζ3

)
CFTFnf . (34)

In expression (34), the analytic term proportional to C2
F -factor is identical to its MS [17] and mMOM

scheme counterparts at ξ = 0 [15], [27], [28]. However, another abelian V-scheme contribution (34), contain-

ing a CFTFnf -color structure, coincides with the Landau mMOM analogue [15], [27], [28], but not with the

MS-scheme term [17]. The reason for this lies in the definition of the mMOM scheme [29], [30]. Indeed, the

relation between the couplings as,M in the mMOM scheme and as in the MS one requires knowledge of the

renormalization constants of the gluon and ghost fields only, but not of any vertex structures [29]. Taking

the renormalization mMOM conditions into account, we can arrive at the relation [15], [29], [30], [32]

as,M (μ2) =
as(μ

2)

(1 + ΠA(as(μ2), ξ(μ2)))(1 + Πc(as(μ2), ξ(μ2)))2
, (35)

where ΠA and Πc are respectively the MS-scheme gluon and ghosts self-energy functions. They were

calculated with an explicit dependence on the gauge parameter ξ at the three-loop level in [79] and at the

four-loop level in [32]. In the abelian limit of the U(1)-group, all gauge-dependent terms proportional to

the eigenvalue CA of the Casimir operator in the adjoint representation vanish and only the Ci
F (TFnf )

j-

contributions with CF = 1 and TF = 1 remain, and therefore a U(1)-analogue of formula (35) has the

form

aM (μ2) =
a(μ2)

1 + ΠQED(a(μ2))
= aMOM(μ2) = ainv(μ

2). (36)

The left-hand side of formula (36) matches the definition of the RG-invariant and scheme-independent

invariant charge in QED, governing the higher-order corrections to the Coulomb static potential in QED

(except for the light-by-light type contributions that appear starting from the O(a3) level and are not

included in the photon vacuum polarization function in Eq. (36)). This fact makes the gauge-dependent

mMOM and gauge-invariant V schemes akin in QCD. That is why the abelian C2
F and CFTFnf terms in

Eq. (34) coincide in these two different schemes.
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Using the a4s approximations for the NS contributions to D(Q2) in (19e), to CBjp(Q
2) in (29e), and

the three-loop expression for βV in (14c), we obtain the third term in (32):

KV
3 =

(
2471

768
+

61

8
ζ3 − 715

8
ζ5 +

315

4
ζ7

)
C3

F +

(
75143

2304
+

2059

32
ζ3 − 545

6
ζ5 − 105

8
ζ7

)
C2

FCA +

+

(
−1273

144
− 599

24
ζ3 +

75

2
ζ5

)
C2

FTFnf +

(
−71389

576
+

15235

192
ζ3 +

2975

48
ζ5 − 187

8
ζ23 +

63

32
π2 −

− 9

4
π2ζ3 − 63

512
π4 +

9

64
π4ζ3

)
CFC

2
A +

(
40931

576
− 1771

48
ζ3 − 125

3
ζ5 +

17

2
ζ23

)
CFCATFnf +

+

(
−49

6
+

7

2
ζ3 + 5ζ5

)
CFT

2
Fn

2
f . (37)

As was expected, all abelian contributions in (37) are the same as in the mMOM scheme in Landau

gauge [15] (unlike the MS-results [18], where only the C3
F term is equal to the V-scheme one). However,

in contrast to both MS and mMOM scheme cases, the V-scheme KV
3 coefficient contains extra π2, π2ζ3,

π4, and π4ζ3 contributions to the CFC
2
A color structure. The other two non-abelian pieces, proportional to

C2
FCA and CFCATFnf , repeat the transcendental pattern of the MS and Landau mMOM scheme results

for the K3 coefficient.

As we have noted, the light-by-light type scattering terms with the dabcdF dabcdA /dR, d
abcd
F dabcdF nf/dR,

CF d
abcd
F dabcdA /NA, and CF d

abcd
F dabcdF nf/NA color factors included in dNS

4,V (19e) and cNS
4,V (29e) cancel exactly

in the expression for dNS
4,V + cNS

4,V , which is equal to

(dNS
4,V + cNS

4,V )

∣∣∣∣
l−b−l

= (dNS
4 + cNS

4 )

∣∣∣∣
l−b−l

− a3(d
NS
1 + cNS

1 )

∣∣∣∣
l−b−l

. (38a)

Formula (38a) follows directly from the RG invariance of the D(Q2) and CBjp(Q
2) functions and from

relation (10). We emphasize that the discussed cancellation is a consequence of conformal symmetry. Indeed,

the equality dNS
1 + cNS

1 = 0 is the attribute of the CBK relation and arises from the nonrenormalizability

of the AVV triangle graph at the O(αs) level. This feature was confirmed by direct calculations in [80].

Therefore, in this order, the application of the renormalization procedure does not lead to the appearance

of conformal symmetry breaking term in the CBK relation. In its turn, in the conformal invariant limit

when all coefficients βk of the RG β-function vanish, the sum dNS
4 + cNS

4 in the MS scheme is expressed

only through terms dk and ck with 1 ≤ k ≤ 3 (see, e.g., Eq. (2.3d) in [15]), which do not contain the light-

by-light contributions. This means that the equality (dNS
4 + cNS

4 )|l−b−l = 0 is a consequence of conformal

symmetry [19]. Based on these arguments, we conclude that the left-hand side of Eq. (38a) is identically

zero:

(dNS
4,V + cNS

4,V )|l−b−l = 0. (38b)

This feature is extremely important for the validity of the CBK relation in the V scheme at the O(α4
s)

level. Totally similarly, we can show that the terms originating from expression (4) for the a3 coefficient

and proportional to the π6, s6, π
4 log 2, π4 log2 2, π2α4, π

2 log 2, and π2ζ3 log 2 numbers cancel in the sum

dNS
4,V + cNS

4,V . This fact is also a consequence of conformal symmetry.1

Thus, we have demonstrated that the factorization of Δcsb in the CBK relation in the V scheme holds

at least in the fourth PT order. The natural question arises: is this factorization property also true in other

gauge-invariant renormalization schemes other than the V- or MS-like ones? We answer this question in

the next section.

1Interesting consequences of conformal symmetry violation are briefly discussed in Appendix B.
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5. The CBK relation in different gauge-invariant schemes

In this section, we continue developing the ideas proposed in [15]. The requirements for gauge-

dependent schemes that ensure the CBK relation were investigated there. It turns out that if the CBK

relation in QCD is valid in the MS scheme in all PT orders (the arguments to trust this assumption are

adduced in [24]–[26]), then it also holds for a wide class of MOM-like schemes with a linear covariant Landau

gauge in all orders. We now extend the ideas in [15] to a class of gauge-invariant renormalization schemes.

We conduct our study in the particular case of the V scheme. Without restricting the generality, by

the V scheme, we can understand any other gauge-invariant scheme whose coupling constant is related to

as in the MS scheme by a relation of type (10) with some coefficients ak.

Taking the RG-invariance of the functions DNS(as) and CNS
Bjp(as) into account and using the explicit

form of the conformal symmetry breaking term in the CBK relation, we obtain the equality

β(as)

as
K(as) =

βV (as,V (as))

as,V (as)
KV (as,V (as)), (39)

relating the respective polynomials K(as) and KV (as,V ) in the MS and V (arbitrary gauge-invariant)

schemes. Using the scheme independence of the first two coefficients of the RG β-function (14a), (14b)

within a class of gauge-invariant schemes and substituting Eq. (10) in (39), we obtain the following relations

between the V and MS-scheme coefficients of the polynomial K(as):

KV
1 = K1, (40)

KV
2 = K2 − 2a1K1. (41)

The MS coefficients K1 and K2 were first calculated in [17]. Using their explicit form, we find that

formulas (40) and (41) are in full agreement with the results of direct calculation in Eqs. (33) and (34).

Expression (41) is analogous to Eq. (4.3) in [15], which presents the relation between K2 coefficients in the

mMOM and MS scheme. However, as can be seen from Eq. (41) it no longer contains terms with the 1/β0

factor. This is a consequence of the scheme independence of the two-loop coefficient β1 in a class of the

gauge-invariant renormalization schemes like the V scheme. We recall that in gauge-dependent schemes

such as mMOM, the two-loop coefficient of the β-function is already gauge dependent. Despite this fact, it

was found in [15] that the CBK relation holds in the mMOM scheme in the O(a3s) approximation for three

values of the gauge parameter only: ξ = 0,−1,−3. The mentioned 1/β0 term disappears at these values

of ξ.

Carrying out similar steps in the next PT order, we obtain

KV
3 = K3 − 3a1K2 +

(
β2 − βV

2 − a1β1

β0
+ 5a21 − 2a2

)
K1. (42)

Taking now Eq. (13b) into account, we derive the simplified form of Eq. (42) without the 1/β0 factor:

KV
3 = K3 − 3a1K2 + (6a21 − 3a2)K1. (43)

The coefficient K3 is known from the results in [18]. The application of formula (43) reproduces expres-

sion (37). We also note that the final structure of Eq. (43) is much simpler than the analogous one in

Eq. (4.7) in [15] for the mMOM scheme in an arbitrary gauge. As was shown there, the CBK relation

remains valid at the O(a4s) level in the mMOM scheme (and other QCD MOM-like schemes) only in the

Landau gauge ξ = 0.
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Further, proceeding similarly and using Eqs. (13b)–(13d), we straightforwardly obtain

KV
4 = K4 − 4a1K3 + (10a21 − 4a2)K2 + (20a1a2 − 20a31 − 4a3)K1, (44)

KV
5 = K5 − 5a1K4 + (15a21 − 5a2)K3 + (30a1a2 − 35a31 − 5a3)K2 +

+ (30a1a3 + 15a22 − 105a21a2 + 70a41 − 5a4)K1, (45)

where K4 and K5 are still unknown MS-scheme coefficients in Eq. (6) and a4 is still an entirely unknown

four-loop correction to the static potential in QCD, Eq. (1).

It is not difficult to obtain similar representations of the KV
n terms in any PT order. We thus verify

that if the CBK relation in QCD is valid in the MS scheme in all orders of the PT, then it is also true

for arbitrary gauge-invariant renormalization scheme with “nonexotic” coefficients ak included in the ratio

of the couplings in this considered scheme and in the MS scheme (see an analogue of Eq. (10)). By the

“nonexotic” coefficients, we understand those that are the polynomials in nf with coefficients that are

algebraic or transcendental numbers. For example, in the gauge-invariant ’t Hooft scheme [81], [82], the

coefficients ak are not polynomials in nf : they contain terms proportional to the 1/β0 factors. The β-

function in this scheme contains two nonzero scheme-independent PT coefficients only and the rest are

assumed to be zero by finite renormalization of charge. As shown in [83], the transition from the MS

scheme to the ’t Hooft scheme violates the property of factorization of the conformal symmetry breaking

term Δcsb in the CBK relation.

6. The QED case

We now consider the QED case with N charged leptons. The transition to the abelian U(1) gauge

group is performed by replacing CA = 0, CF = 1, TF = 1, dabcdA = 0, dabcdF = 1, dabc = 1, NA = 1, dR = 1,

and nf = N .

Using the analytic expression for the four-loop approximation of the β-function in the V scheme in the

case of a generic simple gauge group, Eqs. (14a)–(14d), and taking the transition to U(1) discussed above

into account, we can obtain the QED analogue of the β-function in the V scheme

βV
QED(aV ) =

1

3
Na2V +

1

4
Na3V +

(
− 1

32
N +

(
1

3
ζ3 − 23

72

)
N2

)
a4V +

+

(
− 23

128
N +

(
13

32
+

2

3
ζ3 − 5

3
ζ5 +

2

3
C
)
N2 +

(
1

2
− 1

3
ζ3

)
N3

)
a5V , (46)

where aV = αV /π. The introduced constant C arises naturally in the definition of the static Coulomb

potential in terms of the QED invariant charge:

VQED(�q
2) = −4π

�q 2

α(μ2)

1 + ΠQED(�q 2/μ2, α)

(
1 +N · C

(
α

π

)3

+ · · ·
)
. (47)

Here, C is the correction associated with the appearance of the light-by-light type scattering diagrams to the

static potential [13], which do not occur in the photon vacuum polarization function ΠQED at this level [11]:

C =
5

96
π6 − π4

(
23

24
− log 2

6
+

log2 2

2

)
+ π2

(
79

36
− 61

12
ζ3 + log 2 +

21

2
ζ3 log 2

)
≈ −0.888062. (48)

The numerical effect of the term 2CN2a5V /3 in (46) is not negligible compared to the contribution of

the remaining part, proportional to N2a5V ; on the contrary, it dominates it.
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Expression (46) is to be compared with the QED result for the β-function in the MOM scheme identical

to the Gell-Mann–Low Ψ-function [84]

βMOM
QED (aMOM) = Ψ(aMOM) =

1

3
Na2MOM +

1

4
Na3MOM +

+

(
− 1

32
N +

(
1

3
ζ3 − 23

72

)
N2

)
a4MOM +

+

(
− 23

128
N +

(
13

32
+

2

3
ζ3 − 5

3
ζ5

)
N2 +

(
1

2
− 1

3
ζ3

)
N3

)
a5MOM, (49)

where aMOM = αMOM/π coincides with the QED invariant charge (36). We note that expression (49) can

be also obtained, e.g., as a result of the transition to the U(1) group for the β-function computed initially in

the mMOM scheme with the generic simple gauge group [30], [32]. This fact directly follows from formulas

(35) and (36).

We can see that at the three-loop level, βV
QED in (46) completely coincides in form with the Gell-Mann–

Low Ψ-function in (49). The difference between them starts to manifest itself only at the four-loop level

due to the additional term 2CN2a5V /3, related to the light-by-light type scattering effect in the perturbative

expression for the static Coulomb potential (47):

βV
3,QED = Ψ3 +

2

3
CN2. (50)

The obtained result can be presented in the compact form

aV = aMOM + CNa4MOM +O(a5MOM). (51)

The arguments given in this section and in Sec. 4, allows us to conclude that in QCD, the V scheme

has many properties similar to those of MOM-like schemes in the Landau gauge. Because the difference

between the aV and aMOM couplings in QED (51) starts manifesting itself from the α4-term only, the V

scheme in QCD can arguably be interpreted as a gauge-independent scheme in which one can construct

an analog of the gauge-invariant charge, namely, a gauge-invariant combination of the associated Green’s

functions. We recall that it is impossible to introduce this concept within the gauge-dependent MOM-like

schemes in QCD (see, e.g., [14] for details).

Setting N = 1 in Eqs. (46) and (49), we arrive at their numerical form:

βV
QED(aV ) = 0.3333a2V + 0.25a3V + 0.0499a4V − 1.19301a5V , (52)

Ψ(aMOM) = 0.3333a2MOM + 0.25a3MOM + 0.0499a4MOM − 0.60096a5MOM. (53)

We observe that even at N = 1, the numerical effect of the light-by-light scattering contribution, which is

typical for the V scheme, is rather sizable and is almost equal to twice four-loop correction to the Ψ-function.

We turn to the consideration of relations between higher-order corrections to the βV
QED and Ψ-function.

The dependence of these RG functions on the number N of the charged leptons is described by the following

decompositions:

βV
QED(aV ) = β

V (1)
QED,0Na2V +

∑
i≥1

i∑
k=1

β
V (k)
QED,iN

kai+2
V , (54)

Ψ(aMOM) = Ψ
(1)
0 Na2MOM +

∑
i≥1

i∑
k=1

Ψ
(k)
i Nkai+2

MOM. (55)
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As we have already seen, the coefficients β
V (k)
QED,i and Ψ

(k)
i differ only by corrections Δβ

V (k)
QED,i associated

with the light-by-light scattering-type effects in the static potential:

β
V (k)
QED,i = Ψ

(k)
i +Δβ

V (k)
QED,i. (56)

This fact directly follows from the definition of the coupling constant aV in the V scheme (a QED analog

of Eq. (8) and (47)) and from relation (36). It is clear that the extra term Δβ
V (k)
QED,i appears only for the

indices {i, k} = {i ≥ 3, 2 ≤ k ≤ i− 1}. In the cases where {i, k} = {i ≥ 3, k = 1 or k = i}, the coefficients

of the βV and Ψ-functions coincide. Indeed, we have already observed that at the four-loop level,

β
V (1)
QED,3 = Ψ

(1)
3 = − 23

128
, β

V (3)
QED,3 = Ψ

(3)
3 =

1

2
− 1

3
ζ3. (57)

The RG β-function in the MOM scheme (the Gell-Mann–Low Ψ-function) was calculated in the fifth-

loop approximation in QED in [85] for an arbitrary N (and in the MS scheme as well):

Ψ4 =

(
4157

6144
+

1

8
ζ3

)
N +

(
−251

256
− 23

24
ζ3 − 45

8
ζ5 +

35

4
ζ7

)
N2 +

+

(
−3383

3456
− 205

72
ζ3 +

5

2
ζ5 + ζ23

)
N3 +

(
−67

72
+

7

18
ζ3 +

5

9
ζ5

)
N4. (58)

For instance, this result can be obtained as the U(1) limit of the β-function computed at the five-loop

level in the mMOM scheme with an arbitrary gauge parameter for the generic simple gauge group in [32].

Using formula (13d) and the expression for β4 in the MS scheme [85], we now find the five-loop

coefficient of the βV
QED-function,

βV
QED,4 =

(
4157

6144
+

1

8
ζ3

)
N +

(
−49

48
− 53

96
ζ3 +

65

32
ζ5 +

1

4
C + a

(1)
4

)
N2 +

+

(
−4255

4608
+

1013

144
ζ3 − 13

96
ζ4 − 215

36
ζ5 − 5

3
ζ23 +

20

9
C + a

(2)
4

)
N3 +

+

(
118907

31104
− 71

24
ζ3 + a

(3)
4

)
N4, (59)

where the constant C has been defined above and, similarly to with Eq. (4), we use the decomposition of

the four-loop correction a4 to the static Coulomb potential in QED in powers of N :

a4 =

(
5

9

)4

N3 + a
(3)
4 N3 + a

(2)
4 N2 + a

(1)
4 N. (60)

We note that the term −13ζ4/96 in the N3-coefficient of βV
QED,4 in (59) is not related to the light-by-

light scattering effects but arises from the calculation of β4 in the MS scheme (see [85]–[87]).

As we have expected, the terms linear in N are the same in Eqs. (58) and (59):

β
V (1)
QED,4 = Ψ

(1)
4 =

4157

6144
+

1

8
ζ3. (61)

It was explained in [88] that the scheme independence of these linear terms in massless QED is a consequence

of conformal symmetry.
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Because the coefficients β
V (4)
QED,4 and Ψ

(4)
4 must also be the same, we can fix the contribution a

(3)
4 from

matching Eqs. (58) and (59):

a
(3)
4 = −147851

31104
+

241

72
ζ3 +

5

9
ζ5, (62)

β
V (4)
QED,4 = Ψ

(4)
4 = −67

72
+

7

18
ζ3 +

5

9
ζ5. (63)

The four-loop expressions for β
V (2)
QED,4 and β

V (3)
QED,4 contain the contributions related to the light-by-light

scattering-type effects in the static potential. They originate from the constant C, occurring at the three-loop
level, and the fourth-order corrections a

(1)
4 and a

(2)
4 (59). Based on the results in [13], we can conclude that

the contributions of these effects are separated from the other ones by transcendent constants proportional

to even powers of the π-number (see Eq. (48)). Without these still unknown terms, the corrections a
(1)
4

and a
(2)
4 are given by

a
(1)
4 |no l−b−l =

31

768
− 13

32
ζ3 − 245

32
ζ5 +

35

4
ζ7, (64)

a
(2)
4 |no l−b−l = − 767

13824
− 1423

144
ζ3 +

13

96
ζ4 +

305

36
ζ5 +

8

3
ζ23 . (65)

These expressions directly follow from equating Ψ
(2)
4 to β

V (2)
QED,4 and Ψ

(3)
4 to β

V (3)
QED,4 in the approximation

where the light-by-light scattering effects in the static potential are discarded. The following relations then

hold:

β
V (2)
QED,4 = Ψ

(2)
4 +Δβ

V (2)
QED,4, Δβ

V (2)
QED,4 = a

(1)
4 |l−b−l +

1

4
C, (66)

β
V (3)
QED,4 = Ψ

(3)
4 +Δβ

V (3)
QED,4, Δβ

V (3)
QED,4 = a

(2)
4 |l−b−l +

20

9
C. (67)

Formulas (62), (64), and (65) can generalized without significant obstructions to the case of the generic

simple gauge group and then become more transparent:

a
(3)
4 |abelian =

(
−147851

31104
+

241

72
ζ3 +

5

9
ζ5

)
CFT

3
F , (68)

a
(2)
4 |abelian, no l−b−l =

(
13025

13824
− 403

36
ζ3 − 11

96
ζ4 +

175

18
ζ5 + 2ζ23

)
C2

FT
2
F +

+

(
−431

432
+

21

16
ζ3 +

1

4
ζ4 − 5

4
ζ5 +

2

3
ζ23

)
dabcdF dabcdF

NA
, (69)

a
(1)
4 |abelian, no l−b−l =

(
31

768
− 13

32
ζ3 − 245

32
ζ5 +

35

4
ζ7

)
C3

FTF . (70)

The dabcdF dabcdF contribution to a
(2)
4 in (69) originates from the dabcdF dabcdF contributions to the coefficients

β3 and β4. This fact can be directly observed from (13d), where the abelian terms proportional to CF and

dabcdF dabcdF , can be fixed from considering βmMOM
4 [32] (whose the abelian contributions in the Landau

gauge are equal to those in βV
4 without taking the light-by-light scattering-type corrections to the static

potential into account) and from analytic results for β3 [54], [55] and β4 [86], [87]. We emphasize that

expressions (68)–(70) are in full agreement with the analogous results in Eq. (14.4) in [35].
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7. Conclusions

In this work, we obtain an explicit analytic form of the RG β-function in the gauge-invariant V scheme

at the four-loop level in the case of a generic simple gauge group. Using the renormalization invariance

of the Adler function for the of e+e− → γ∗ → hadrons, the Re+e−(s)-ratio and the coefficient function of

the Bjorken polarized sum rule of DIS of polarized charged leptons on nucleons, we also obtain their PT

expressions in the V scheme up to α4
s-corrections. We compare the derived V-scheme results with the MS

and mMOM counterparts in the Landau gauge. In the cases of the Adler function and Re+e−(s)-ratio in

the V and mMOM schemes, the nonregular behavior of the perturbative corrections in their decomposition

in powers of nf is observed in higher orders. Taking the obtained V-scheme results into account, we

demonstrate explicitly that the CBK relation remains valid in this effective scheme at the O(α4
s) level.

Furthermore, we prove our hypothesis that the factorization of the conformal symmetry breaking term

Δcsb(as) of the CBK relation into β(as)/as and a polynomial K(as) holds in any gauge-invariant scheme

at least in the fourth PT order. The chosen gauge-invariant scheme should only lead to the “nonexotic”

coefficients in the relation between couplings defined in the MS scheme and in the considered one, i.e.,

these coefficients should be polynomials in nf . Moreover, it turns out that if the CBK relation in QCD

is valid in the MS scheme in all PT orders, then it also holds for the discussed gauge-invariant class of

the renormalization schemes in all orders. We show that in QED, the coefficients of the β-function in the

V scheme coincide with the analogous ones in the MOM scheme at the three-loop level. Starting from

the fourth PT order, their N2-coefficients begin to differ by a correction associated with the manifestation

of the effects of the light-by-light scattering in the static potential. The other terms proportional to N

and N3 remain the same. In even higher orders, this tendency persists, i.e., two N -dependent terms in the

coefficients of the perturbative expansions of the βV
QED and Ψ-functions always coincide, and the remaining

ones differ by a correction related to the light-by-light scattering in the static potential. Based on these

findings, we predict several contributions to the four-loop correction to the static potential in the case of

the generic simple gauge group, corroborating recent independent results in [35].

Appendix A

We consider the question related to the integral representation of multiple zeta values. In general,

these functions are defined as

ζm1,...,mk
=

∞∑
i1=1

i1−1∑
i2=1

· · ·
ik−1−1∑
ik=1

k∏
j=1

sign(mj)
ij

i
|mj|
j

. (71)

They were studied in detail in a number of works on the subject (see, e.g., [89]–[91], [61]). We use the

Hurwitz–Lerch zeta function Φ(z, s, q)

Φ(z, s, q) =

∞∑
k=0

zk

(k + q)s
(72)

and its integral representation

Φ(z, s, q) =
1

Γ(s)

∫ 1

0

xq−1(− log x)s−1

1− zx
dx, (73)

which is valid for Re(q) > 0, Re(s) > 0 and z ∈ [−1; 1) or Re(s) > 1 and z = 1.
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Then, for the constant ζ−5,−1 with transcendence of weight 6, appearing in calculating the three-loop

correction to the static potential [13], we can write [28]

ζ−5,−1 =

∞∑
k=1

(−1)k

k5

k−1∑
i=1

(−1)i

i
=

15

16
ζ5 log 2−

∞∑
k=1

Φ(−1, 1, k)

k5
=

=
15

16
ζ5 log 2−

∫ 1

0

dx

x(x + 1)

∞∑
k=1

xk

k5
=

15

16
ζ5 log 2− ζ6 +

∫ 1

0

dx
Li5(x)

x+ 1
. (74)

Therefore, the constant s6 = ζ6 + ζ−5,−1 can be represented in the form [90]

s6 =
15

16
ζ5 log 2 +

∫ 1

0

dx
Li5(x)

x+ 1
≈ 0.9874414. (75)

Similarly, we can obtain an integral representations for multiple zeta values with specific arguments

arising in the intermediate calculations in [13]:

ζ5,2 = ζ5ζ2 − ζ7 +

∫ 1

0

dx
Li5(x) log x

1− x
≈ 0.0385751, (76)

ζ−5,2 = −15

16
ζ5ζ2 +

63

64
ζ7 +

∫ 1

0

dx
Li5(−x) log x

1− x
≈ 0.0271089. (77)

For instance, the function ζ5,3 occurs in the computation of the MS-scheme β-function of the O(N)-

symmetric φ4 theory in the six-loop approximation [92] (in the notations in that paper, ζ3,5):

ζ5,3 = ζ3ζ5 − ζ8 − 1

2

∫ 1

0

dx
Li5(x) log

2(x)

1− x
≈ 0.0377077. (78)

Appendix B

It is interesting to note some common features of the CBK relation and the action sum rule [93]–[97]

(in lattice QCD, it is also known as the Michael sum rule). Indeed, both of them contain a conformal

anomaly term, reflecting the effect of conformal symmetry violation. However, the second relation can be

directly used in the nonperturbative region as well.

We recall that the conformal anomaly in the trace of the energy–momentum tensor of a massless

SU(Nc) gauge theory in the Euclidean domain has the form [98]–[100]

Tμμ(x) =
β(as)

2as
F a
μν(x)F

a
μν (x) = 2

β(as)

as
L(x), (79)

where L(x) is the gluon gauge part of the Euclidean Lagrangian density of the SU(Nc) theory, expressed

trough the Euclidean chromoelectric and chromomagnetic fields

L(x) = 1

4
F a
μν(x)F

a
μν (x) =

1

2
( �E(x)2 + �B(x)2). (80)

We note that owing to a change in the metric signature, the square of the Euclidean electric field has an

opposite sing to its Minkowskian counterpart, while signs of the squares of the Euclidean and Minkowskian

magnetic fields coincide. The action sum rule relates a certain combination of the static potential to the

Euclidean chromoelectric and chromomagnetic condensates and the β-function [93]–[97],

Ṽ (r) + r
∂Ṽ (r)

∂r
=

β(as)

as

〈∫
d3x ( �E(x)2 + �B(x)2)

〉
r

, (81)

where Ṽ (r) is the static potential in coordinate space including the confining and nonconfining components

and 〈 · 〉r is the vacuum expectation value in the presence of a static quark–antiquark pair spaced apart

from each other at a distance r excluding the analogous contribution without these field sources.
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It would be interesting to study the possible relation of the action sum rule and the CBK relation

based on the first principles of quantum field theory.
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18. P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, “Adler function, Bjorken sum rule, and the Crewther relation

to order α4
s in a general gauge theory,” Phys. Rev. Lett., 104, 132004, 4 pp. (2010), arXiv: 1001.3606.

19. A. L. Kataev and S. V. Mikhailov, “New perturbation theory representation of the conformal symmetry breaking

effects in gauge quantum field theory models,” Theoret. and Math. Phys., 170, 139–150 (2012), arXiv: 1011.5248.
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