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ON A CLASS OF QUADRATIC CONSERVATION LAWS
FOR NEWTON EQUATIONS IN EUCLIDEAN SPACE

A. V. Tsiganov* and E. O. Porubov*

We discuss quadratic conservation laws for the Newton equations and the corresponding second-order
Killing tensors in Euclidean space. In this case, the complete set of integrals of motion consists of poly-
nomials of the second, fourth, sixth, and so on degrees in momenta, which can be constructed using the

Lax matrix related to the hierarchy of the multicomponent nonlinear Schrédinger equation.
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1. Introduction

Studying the problem of the existence of integrals of motion is closely related to the choice of the
functional class where the first integrals are to be found. Polynomial, rational, algebraic, and nonalgebraic
integrals of motion are typically selected [1]-[10].

In this paper, we discuss the known integrable systems that describe the motion in Euclidean space
and have at least two conservation laws quadratic in velocities, with the other integrals of motion being
higher-degree polynomials in velocities (momenta).

Most often, quadratic integrals of motion appear in studying Hamiltonian systems that are integrable
by separation of variables. Let A and B be a pair of nondegenerate symmetric second-order tensors in
Euclidean space R™ that generate the pair of quadratic polynomials in momenta,

Ta=» A¥pp;,  Tp=Y Bipp;.
4,J 4,J

These polynomials are in involution, {T4,Tg} = 0, with respect to the standard Poisson bracket on the

cotangent bundle T*R™ if the Schouten bracket of the tensors A and B vanishes,

[, B] = 0.

The Schouten bracket allows passing to the geometric description of the dynamical system, i.e, replacing
the equation {T4,Tp} = 0 in phase space with the equation [A, B] = 0 in configuration space and then
using the geometric properties of the configuration space to study the properties of the dynamical system.
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For instance, if the spectral problem
(A= AB)yY =0 (1.1)

has n different real eigenvalues and the corresponding eigenvectors are normal, i.e., the orthogonal com-
plements to any eigenvector form an integrable distribution [11], [12], then the tensors A and B generate
an n-dimensional linear space of the second-order tensor fields that are in involution and have common
eigenvectors [13]-[15].

This allows constructing n independent second-degree polynomials in momenta in the cotangent
bundle T*R",

Ty =Y AVpip;, To=Y» Bpip;, Ts=>Y Kipp;, ..., T.=> Kippj,
0,J .J 2] 2%
which are in involution
{1271}} =0
with respect to the canonical Poisson brackets
Adding the appropriate potentials
Hy=T1+Vi(q,...,qn), Hao=To+Valq,...,qn), ..., Hy=Ty+Valq,... qn),

we obtain an n-dimensional space of first integrals [13] (also see [16], [17]). Historical details and a more
complete list of appropriate references can be found in [18], [19].

In other words, two tensors A and B define equivalent metrics with common geodesics if and only if they
can be reduced to some special normal forms [13], [15], [20]. It turns out that the corresponding geodesic
flow is integrable and has a complete set of the integrals of motion that are quadratic in momenta. We then
consider the problem of adding nontrivial potentials to the Hamiltonian and preserving the integrability
properties in a given functional class of integrals of motion quadratic in momenta [6], [7], [16], [17], [21].

To obtain something new, we propose to abandon the common scheme of first considering the integrable
geodesic flows and consequently adding appropriate potentials to the obtained integrals of motion. In fact,
if we begin with motion in the potential field, we can find a number of new examples of second-order
tensors A and B that also define integrable and superintegrable systems in Euclidean space [22]-[25]. The
corresponding spectral problem (1.1) does not necessarily have a set of different real eigenvalues and normal
eigenvectors, i.e., the Hamilton—Jacobi equation does not admit the separation of variables in any of the
known curvilinear orthogonal coordinate systems in Euclidean space.

We study the properties of the second-order tensors A and B in Euclidean space R™, which correspond
to the quadratic conservation laws appearing in the study of integrable Hamiltonian systems associated with
the hierarchy of the multicomponent nonlinear Schrodinger equations [26]-[29]. The appropriate spectral
problem (1.1) does not then have the required set of different real eigenvalues and normal eigenvectors,
which does not prevent the Liouville integrability, however.

Although a number of explicit expressions for the Hamiltonians

1 n
H= 24 Vg, qn),
2;1)1_'— (QL aq)

corresponding to Hermitian symmetric spaces of types A.IIl, BD.I, C.I, and D.III in Cartan’s classification
are reproduced in various textbooks (see, e.g., [30]—[33]), the corresponding integrals of motion that are
polynomial in momenta have not been studied. In this paper, we partially correct this defect.
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1.1. Integrable systems and symmetric spaces. A simply connected symmetric space is a homo-
geneous space G/K, where G is a Lie group and K is its subgroup, which is the isotropy group of the
symmetric space.

For any Hermitian symmetric space G/K, there is an element in the Cartan subalgebra A4 of the Lie
algebra g of the group G such that

e the Cartan automorphism o = ad A defines the Cartan decomposition
g=tdm, where t={Xecg,0(X)=X}, m={Xeg, oX)=-X},

ie.,

t={X eg, [X,A =0};
e the root system of g decomposes into the subsets
A=AgUAL UA_]

where

Ao ={a €A, a(A) =0}, Ar ={a €A, a(A) = +a},
a > 0 is a constant whose value is determined by the type of the chosen Hermitian symmetric space;

e consequently,
[A, eq] = Faeq, o€ Ag, m = span{ei,, o € Ay };

e consequently,
[60“6,3]:0, aaBEAJra O‘aﬁEA*'

Using the Killing formula, which in our case has the standard form
(X, )y=btr(X-Y), beR,

we define the metric
g = (ea, €5),

for which b plays the role of a constant Gaussian curvature, and the Riemann curvature tensor with the
components
Ra”é’,qgts = <[ea7 66]7 [6V7 65]>.

The exact definitions and all necessary details and references can be found in textbook [34]. More precisely,
the tensors g and R have the properties of the Riemann metric and the Riemann tensor [26], which allows
identifying g with the metric in Euclidean space and using R for constructing the potential in Euclidean
space.

Using the Cartan involution o, we can construct the decomposition of the twisted affine algebra
L(g,0) = L4 + L_ into two subalgebras, construct the classical r-matrix corresponding to this decom-
position, and describe the orbits of £_ passing through the point A\? in the dual space £* [26], [28], [29].

The shift of the orbit by an arbitrary element of the Cartan subalgebra A, which plays a key role in
our calculations, generates the Lax matrix

1 . 1
L) = A+ /\Zq"‘(ea —e_q) — " Zgo" Palea +e—a) + u Z doqslea,e—g] + A. (1.3)
a « o,
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We use the notation from [28], with ¢, being Cartesian coordinates in Euclidean space and p, the corre-
sponding momenta denoted by ¢; and p; hereafter, for which the Poisson bracket has form (1.2). The sum
in (1.3) ranges all coordinates o and S from the subset A .

The corresponding Hamiltonian

_ 1 2 _ 1 a,—a, 2 1 a Y 0 1 a2
H= trL (A)L:O— 02 8 TP D Reapnst® 00+ ) D Swale®) (1.4)
o a,B,7,6 o
depends on the arbitrary “frequencies” w,, which are functions of the matrix elements of A. The Newton
equations of motion in Euclidean space corresponding to this Hamiltonian are

§* = Z RZ’,"%_(;quWq(; — Walo, a,B,v,0=1,...,N. (1.5)
Byv,6
According to [28], Lax matrix (1.3) also generates several quadratic integrals of motion commuting with
the Hamiltonian H in (1.4),
H® =3 Kkpipy + U,
gk
In this case, A = g is the standard metric in Euclidean space, and B = K is the Killing tensor satisfying
the Killing equation
ViK* + VK" 4 VK9 =0, (1.6)

where V is the Levi-Civita connection for the metric g.

Proposition 1. In the general case, there is a fourth-order integral of motion in momenta independent

of the quadratic integrals of motion H i(2),

G=trL*N|,_y= Y. Reapr-op0’pp" +>_ S (q)paps + W(q), (1.7)
a,B,7,0 a,p

whose principal part is determined by the tensor R.

In the particular case of an anharmonic oscillator or the Garnier system, this fourth-degree polynomial
can be expressed in terms of quadratic integrals of motion [28]. We do not write the corresponding second-
order tensor S*# and potential W explicitly because they are not related to the main goal of this paper.

If all the parameters w, = 0, i.e., A = 0, the Hamiltonian H in (1.4) commutes with the family of
noncommutative linear integrals of motion associated with various combinations of rotations. In this case,
spectral invariants of the Lax matrix generate a family of commuting integrals of motion, whose number
is insufficient for the Liouville integrability in the general case, as well as in the case of the complete Toda
chain [35]. This means that other tensor invariants associated with the Lax matrix must also be used to
prove the integrability.

If the parameters w, # 0, the Lax matrix L(\) in (1.3) generates the required number of integrals of
motion, which are polynomials of the second, fourth, sixth, and so on degrees in momenta. The principal
parts of these polynomials

2¢
Hi(QE) = Z Kij)k)m,mpjpk...pm‘F"' ) 0=1,2,..., (18)
Iy kyee,m

define the Killing tensors of valence 2¢ in the Fuclidean space R™,

In this paper, using the Haantjes torsion [11], we consider several second-order Killing tensors and
prove that spectral problem (1.1) does not have the required number of real simple eigenvalues and normal
eigenvectors.
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1.2. Second-order Killing tensors in Euclidean space. Killing vector fields are generators of local
symmetries of the metric in configuration space. For instance, the standard basis of shifts and rotations in
Euclidean space

X, = 0;, Xij=aX; —q; X, (1.9)

where 0; = 8(?11’ allows describing various symmetries of a physical system. By the Noether theorem, these
symmetries correspond to conservation laws that are linear in velocities and associated with space—time
coordinate transformations. For instance, the integrals of motion for the physical systems invariant under
rotations are linear combinations of the components of the angular momentum tensor J,

Xij = Jij = @ipj — @;pi-

If the integral of motion is the square of either the angular momentum or spin, then Killing vectors do not
suffice for the description, and we have to use Killing tensors.

Killing tensors of rank m are associated with the existence of polynomial integrals of motion that
have the mth degree in velocities. Because the coordinate transformation in space—time is not associated
with Killing tensors of rank m > 1, they are usually identified with the so-called hidden symmetries [21].
To construct higher-order tensors, the Weyl theory of tensor products is typically used. For instance,
a second-order Killing tensor in Euclidean space has the general form

K=Y ai;XioX;+ Y bijXioXjn+ > CijemXijo Xpm, (1.10)

2 .5,k ,5,k,m

where a;;,bijr, and c;jp, are arbitrary parameters, and o denotes the symmetric product of Killing vector
fields.

The dimension of the vector space of the m-valence Killing tensors in the n-dimensional Euclidean
space is given by the Delong—Takeuchi—Thompson formula

i 1 <n+m> (n—l—m— 1) 1 <n—|—2) (n—|—1> _ n(n+2)(n+1)>2
n\m+1 m n 3 2 12
In our case of second-order tensors, to find the total number of independent parameters a;;, bijr, and cijm
involved in definition (1.10) of the general solution of Killing equation (1.6), we set m = 2.

Because we do not consider the geodesic flows and pass to the motion in a potential field, all second-
order Killing tensors associated with the Hamiltonian H =T 4+ V in (1.4) can be found by directly solving
the equation

d(KdV) =0, (1.11)

which states that the 1-form KdV is exact. We recall that Eq. (1.11) on configuration space can be obtained
from the equation
{ > gpip;+V(g), Y Kpip; + U(q)} =0
i i,
on phase space, which is responsible for the involution of integrals of motion with respect to Poisson
bracket (1.2). Here, V is a function on R”, and KdV denotes the Killing 1-form with the components
gi; K7k0,V, with g;; being the inverse tensor to g¥.
Substituting the general solution of the Killing equation, K in (1.10), and the potential

1 1

_ E a B o § a\2

V= 4 : (SRfa”B,%ftsq q q’Yq 2 Wa(q ) (112)
@, 8,7, a
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in Eq. (1.11), we obtain a linear system of equations for the coefficients a;j, bijk, and cijgm. Solving this
system of equations with modern computer software, we obtain the sought Killing tensors [36]. For brevity
in what follows, by a Killing tensor, we mean tensor fields of types (2,0), (1,1), and (0,2), because the metric
tensor g can be used to change the tensor field type.

To study the properties of the obtained solutions of Eq. (1.11), we can use the following criteria.
A tensor field K of type (1,1) has simple eigenvalues if

So  S1 o Saa
S, Sy .- S,
D = det . . . #0, S = tr(K™). (1.13)
Sn—l Sn e SZTL—?

This is a consequence of the Sylvester theorem on the discriminant D of an algebraic equation, applied to
the characteristic equation det(A — AB) = 0 for the symmetric tensor K.

The Killing tensor K with simple eigenvalues has normal eigenvectors if and only if the Nijenhuis
conditions are satisfied [12]:

Negiam =0,  NJjiKigm =0, MKy K}, =0. (1.14)

The square brackets appearing in this equation denote antisymmetrization over the three indexes i, j, k,
and N is the Nijenhuis tensor or the Nijenhuis torsion tensor K,

Nk(X,Y) = K?[X,Y] - K|[KX,Y] - K[X,KY] + [KX,KY].

In terms of the local coordinates ¢ = (q1, . .-, ¢n), the elements of the antisymmetric tensor field Nk of type
(1,2) are given by
0K} & 0K} ( OK™ QK™ X
_ Km _ J Km J k Krln
2 Z O Oqm " Oqp g

As a criterion of normality of the eigenvectors of the Killing tensor K with respect to the metric g, instead
of Nijenhuis conditions (1.14), we can use the condition that the Haantjes tensor, or Haantjes torsion, is

zero [11]:
Hi(X,Y) = K2N(X,Y) - KN(KX,Y) - KN(X,KY) + N(KX,KY).
In terms of the local coordinates ¢ = (g1, - -, qn), the condition Hx (X,Y) = 0 is a system of equations of
the form .
= KLEKPNG +NL KKy — Kb (NiR K+ NJPE]) =0 (1.15)
Jk mirL Jk mettj k m Lk -+ g gLk . .
m, =1

These are the fourth-order equations with respect to elements of the Killing tensor K, while the Nijenhuis
equations are of the second, third, and fourth order with respect to elements of K, which can be considered
successively (see discussions in [18], [19]).

The Nijenhuis and Haantjes tensors determine the deformation of the structures of nonassociative and
alternated algebras in the tangent bundle T'Q of a manifold @ [37]. The Nijenhuis and Haantjes tensors
are therefore used in many problems of mathematical physics, but the basic applications of these tensors
are related just to their triviality conditions Nx(X,Y) =0 and Hx(X,Y) =0 (see [38]). Hence, virtually
nothing is known on tensors that do not satisfy the Nijenhuis conditions.

Below. we prove that the 2-valence Killing tensors K in (1.8) associated with the Hamiltonian H
in (1.4) have a nonzero Haantjes torsion H(K) # 0. Thus, constructing a sufficient number of independent
commuting integrals of motion, which is necessary for Liouville integrability, is an open question if we are
restricted by classical Euclidean geometry, without using the Lax matrices.
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2. Symmetric spaces of type A.III

We consider equation of motion (1.5) in the Euclidean space R™" and the corresponding Hamiltonian
H in (1.4) associated with the Riemann pair

SU(m+n)/S(U(m) x U(n)), l<m<n, n+m>4.

We use the representation of su(m + n) by (m + n) x (m + n) matrices with the block-matrix struc-
ture [39], [26]—[28] associated with the Cartesian decomposition

g=tdm, t = s(u(m) @ u(n)),

where the subalgebra € consists of block-diagonal matrices of the form

_fu(m) 0O
b= < 0 u(n)) '

In this case, the elements of the complement subspace m are

Xem — X= Z (X%q + X" %e_y),
acAy
where the Weyl generators corresponding to the subset A, of the root system are realized as the the
lower-triangular matrices
ea:Eij, 1<j,1>m,j <n,
with the only nonzero element at the intersection of the ith row and jth column.

We use a normalization slightly different from the one in [26]—[28], [39], and therefore represent the
appropriate Lax matrix (1.3) in explicit matrix form as

=221, + QQT + 0 0 P —2i)
L(\) = QO ta - . Q) (2.1)
0 N1, — QTQ + b PT +2i\Q 0
where I, and I,, are the identity (m x m) and (n x n) matrices, a and b are diagonal matrices depending
on m real numbers a; and n real numbers b;,

a = diag,,(a1,...,am), b = diag,,(b1,...,bn), a;,b; € R,

the superscript T denotes transposition, and i = v/—1 is the imaginary unit.
The matrices Q and P are m X n-matrices depending linearly on the Cartesian coordinates ¢; and
momenta p;,

Q'L] = d4(i—-1)n+j- P’L] =P@—-1)n+j>s 1= 17"'ama .] = 17"')”7
ie.,
q q2 o On
n+1 dn+2 o G2
@= : : - : ’
dn(m—1)+1 In(m—-1)+2 °°° dmn (22)
b1 b2 "t Pn
Pn+1 Pn+2 ot DPo2n
P = : : R
Pn(m-1)+1 Pn(m-1)+2 *°° Pmn
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For the considered A.IIT type symmetric space, Hamiltonian (1.4) has the form

n

1 1 m 1 1 n 11’!171 n 2
SR W SCESPILESS SEERD MO ST I
Jj=1 i=1 =1 7=0 =1
m—1 n 2 m n n m—1
= i=1 i=1 7=0

-1
E,j=0;k>j \ i=1 j=0
When a; # 0 and b; # 0, there are two bases in the space of the integrals of motion obtained from the
characteristic polynomial for the Lax matrix
T(z,\) = det(z I — L()\)),

which are associated with representations of the respective algebras so(m) and so(n). Because

{7‘($, )‘)v T(ya U)} =0,

all these integrals of motion are in involution with respect to Poisson brackets (1.2).

2.1. The first basis in the space of integrals of motion. We consider the residues of the function

7(z,\)

Al(z, A) = H:’;l(z — + ZAQ)

(2.4)

with respect to the variable z at the m points z = a; — 2A%:

n—1
Res A1(2,N)]_, o= 3 AFRECT =1,
k=0

2(n—k))

Because m < n, the coefficients h( are polynomials of degree not greater than 2m in momenta.

Proposition 2. For the integrable systems associated with symmetric Hermitian A.IIl-type spaces,
there is a basis of mn independent integrals of motion, which include

e m second-degree polynomials in momenta h:(LQ), ey h,(i),
e m fourth-degree polynomials in momenta h§4), ceey h,(ﬁ),
e m sixth-degree polynomials in momenta th), ey h£,§>,

e m 2mth-degree polynomials in momenta hgzm)’ ceey hﬁ?{”)

and m(n — m) other 2mth-degree polynomials in momenta.
The quadratic integrals of motion have the form

Y= o ) + i) (2:5)
ki "

where the functions N
M =Y Jir, Jje = q;pe — qepy,
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provide a realization of the elements of the Lie algebra so*(m) as linear combinations of n rotations X
in (1.9) in the configuration space R™". The functions t;(p) correspond to the sequence of n shifts X,
in (1.9),

n
ti(p) =Y _pi,
and the potentials v;(q) in (2.5) are fourth-degree polynomials in the coordinates g;.

The corresponding Killing tensors do not satisty Nijenhuis conditions (1.4), and their Haantjes torsion
is nonvanishing.

2.2. The second basis in the space of integrals of motion . We consider the residues of the

function
7(z,\)

SRR VI CE RIS

(2.6)

with respect to z at the n points z = b; + 2\

m—1
Z/\QkHi@(mfk)), i=1,...,n.
k=0

Res Ag(z, A)‘Z:bi-i-ZAz:

The coefficients Hi(Q(m_k)) at the different powers of A are polynomial integrals of motion of degree not
greater than 2m.

Proposition 3. For the integrable systems associated with symmetric Hermitian spaces of type A.III,
there is a basis of mn independent integrals of motion, which include

e n second-degree polynomials in momenta H§2), ceey H7(L2),
e n fourth-degree polynomials in momenta H 1(4), cee H,(14),
e n sixth-degree polynomials in momenta H 1(6), cee H,(f),

e n 2mth-degree polynomials in momenta Hl(2m), L HE™.

The quadratic integrals of motion have the form
B =Y ,  +Tilp) + Uila), (2.7)
k#i

where the functions -
Nie = _Tie, Ty = qpe — aepj»

provide a realization of the elements of the Lie algebra so*(n) as linear combination of m rotations X ¢
in (1.9) in the configuration space R™". The functions T;(p) correspond to the sequence of m shifts X,
along the coordinate axes (1.9),

T;(p) = > pi,
4

and the potentials U;(q) in (2.7) are fourth-degree polynomials in the coordinates.
The corresponding Killing tensors do not satisfy Nijenhuis conditions (1.14), and their Haantjes torsion
is nonvanishing.
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Thus, there are m + n — 1 independent quadratic integrals of motion
2 2
M4 4 h@ —om=HP 4. .4 H®),

associated with linear combinations of rotations in configuration space that correspond to representations
of the so*(m) and so*(n) algebras.

Proposition 4. Equations of motion (1.5) defined by the Hamiltonian H in (2.3) have only the above
n + m — 1 independent quadratic conservation laws in involution.

To prove this proposition, we have to estimate the dimension of the solution space of Eq. (1.11) for the
potentials occurring in Hamiltonian (2.3).

2.3. Example: so(m + n) with m = n = 2. We consider motion in the 4-dimensional Euclidean
space R* when the quadratic conservation laws involve left and right isoclinic double rotations (Clifford
shifts), which are the basic objects in classical four-dimensional Euclidean space geometry and in the theory
of Clifford algebras [40]-[42].

The 4 x 4 Lax matrix can be written explicitly in this example:

GHas+tar—22°  qugs+qaqs p1—2iAq1 p2—2iAq2
L()\) _ Q1Q3+'Q2Q4 q§+qi+7272>\2 p3272i;\q3 ) Pa—2iAqa ] (28)
p1—2iAq1 p3—2iAgs  b1—q7—g3+2X° —qig2—q3qa
p2—2iAg2 pa—2iAqs —q1a2—q3qs  ba—gq3—q3+2)\3

The corresponding Hamiltonian H in Eq. (2.3) is then given by

2 2 2 2
Iz S 2 R T 242
gty Tig iy Tola+a)+
al—bl al—bg a
o, it g5 +

1
5 (63 +a3)? + (q1g3 + q2q4)® +

2—b1 a
, Bt

H:

2—0ba o

5 (2.9)

2

The spectral curve of the Lax matrix L(A) in (2.8) is not a hyperelliptic curve of genus g = 5: it is defined
by the characteristic equation
C: det(zl — L(\)) =0.

The first basis in the space of integrals of motion. Both residues of function (2.4),

det(2I — L(\))

Alz,A) = (z— a1 +2X2)(z —az + 2)2)

with respect to the variable z at the points z = aj 2 — 2A? are second-degree polynomials in \,

Res‘zz Az, \) = 4\ fi + gs, 1=1,2,

a; —2)2

where the coefficients fi 2 and g; 2 are the respective second- and fourth-degree polynomials in momenta.
Calculating the residue at infinity,

Res|__ A(z,0) = —4X*(f1 + f2) = (91 + 02),
allows finding relations between the coefficients f; 2 and g »,
i+ f2=2H, 91492 = fs,
where f3 is a second-degree polynomial in momenta that is independent of f; ».
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We write the quadratic integrals of motion as

2

A4fé 2 2 A4&2 2 2
fi=— + p1 + 3y + v, fo= + p3 +py + v, (2.10)
a; — az ap — as

where

vi= (g} +q5+q +a1—bi1)gi + (¢ + @5 +qi + a1 — b2)g5 + 2q142q344,
v2 = (g7 +q3 +qi +as—b1)g3 + (@3 + G5 + @i + az — b2)q; + 2q192g3a,

and M5 is the function associated with the double rotation in R4,

My = Ji3+ Jou = (1p3 — q3p1) + (q2p4 — @ap2)-

This function commutes with those terms in the definition of the coefficients f1 2 in (2.10) that are associated
with shifts,

{Mia,p? + p3} = {Ma,p3 +pi} =0,

and with the function describing the second independent double rotation in R*,

Nio = Ji2+ J34 = (q1p2 — q2p1) + (q3p4 — D3qa).
Therefore,

{Mi2, N12} = 0.

This function enters the following combination of the integrals of motion:

fs=(1+b)H — g1 — g2 —a1f1 —azfo =
1
= Niy = (01 = bo)((¢ + a5 + 63 +ai)(af — 5 + 63 — ai) +

+(? —@)ar + (62 — ¢D)as — (G2 + @)b1 + (a3 + ¢3)ba).

For by = bo, the linear integral of motion Ny is a function of the integrals of motion fi 2 and g; 2 forming
the first basis in the space of the integrals of motion.

The second basis in the space of integrals of motion. Both residues of function (2.6)

det(zI — L(\))

AN = b —2A2) (2 — by — 202)

with respect to the variable z at the points z = by o + 2A? are second-degree polynomials in A,

Res‘ Az, \) = —4X?F; + G4, 1=1,2,

2=b; +2\2

where the coefficients F; 2 and G2 are the respective second- and fourth-degree polynomials in momenta.
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Calculating the residue at infinity
Res|,__ A(z,A) =8N H — (G1 + Gs)
allows finding relations between the coefficients Fi 2 and G 2,
Fi+F,=2H, G +G;=F,

where ﬁ3 is a second-degree polynomial in momenta that is independent of F .

We write the quadratic integrals of motion as

. N122 2 2 . N122 2 2
= +p1 +p5+ Vi, I =— +p5+py+ Vo,
bl—bg bl_b2

where

Vi=(@+a3+6+a—b)a + (6 + a5+ q; +az — b1)a@3 + 2¢1920344,
Vo=(qi + @ +ai + a1 —b2)g5 + (43 + 45 + 4§ + a2 — b2)q; + 2q142q34-

Here, Nis is the function associated with the double rotation in R*:

Nig = Ji2+ J34 = (q1p2 — ¢2p1) + (¢3ps — P3Ga)-
It commutes with those terms in the definition of Fj o that are responsible for shifts,
{Ni2,p} +p3} = {N12,p5 + p3} =0,
and with the function responsible for the second double rotation

My = Ji 3+ J2a = (q1p3 — q3p1) + (q2pa — p2qa),

which appears in the definition of the quadratic integrals of motion f; 5 in (2.10) from the first basis.

This function also appears in a combination of the integrals of motion

F3s=G1+ Gy —b1F1 — by Fy — (CLl —|—a2)H =
1
= My + (a1 = a2) (5 +pi — pi = 15 + (4 — a5)br + (63 — ai)ba —

— (¢ +g3)ar + (a3 + qi)az — (41 + a3)° + (43 + @3)?).-

For a; = as, the linear integral of motion N3 is a function of the integrals F; 5 and G 2, which determine
the second basis in the space of integrals of motion.

Thus, we have presented six polynomials fi, fa, f3 and Fi, Fy, F3 of the second degree in momenta,
among which only m +n — 1 = 3 polynomials are functionally independent. Direct calculation shows that
the corresponding Killing tensors of valence 2 have a nonzero Haantjes torsion.

We can verify that the polynomial G = tr L*(\ = 0) of the fourth degree in momenta, Eq. (1.7), cannot
be expressed in terms of these second-degree polynomials in momenta.
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2.4. Example: so(m + n) with m = 2 and n = 3. In this example, the 5 x 5 Lax matrix is

given by
G+aa+ai+ar—22?  q1qa+q205+4346 p1—2iAq1 p2—2iAq2 p3—2iAgs
q194+9295+9396 qf+q§+q§+a2—2k2 Pa—2iAqa P5—2iAgs5 p6—2iAgs
L(\) = p1+2iAq1 pa+2irqs bi—qi—a3+2)° —qua2—qaqs  —q193—dade ,
p2+2iAg2 P5+2iAgs —q1q2—qaqs  ba—qs—qi+2)*>  —g293—qs96
p3+2iAgs P6-+2ilgs —q193—9496 —q2a3—qs596  ba—a3—qg+2X2?

and the Hamiltonian H in Eqgs. (1.4) and (2.3) has the form

6

oo Z (4t qz a)* , (4 qg %) (11 + 4205 + 086)% —
2 2, 2 2 .24 2 2., 24 2
_Q1‘|2'Q4b1_42‘;Q5b2_43‘;‘16b3+ql+‘122+q3a1_|_q4+q25+q6a2, (2.11)

At a; = 0 and by, = 0, this Hamiltonian is invariant under four rotations (1.9) of the configuration space RS,
4205 — q502) + (4305 — q603),

q104 — 104 )
q102 — q201 4105 — q504)
)
)

)

(2.12)

=( )
=( )
= (q103 — q301) + (qa06 — ¢601),
( )

+ o+ + o+

(
(
(
(

Yy = (¢203 — q302 4506 — q605),

and hence the Lie derivative along these vector fields is zero:
ﬁyjHZO, j:].,...,4, at ai:0, bk:O

The presence of these four symmetries leads to the existence of four integrals of motion that are linear in
momenta, and some of them do not commute with each other.

The equation of the spectral curve for the 5 x 5 Lax matrix contains five commuting functions H, Fy, b
and Gl, GQ,

(2, ) = 2° = 2022 — 2(4\* + H)23 + (160° + 4HN? + Fy)2% 4 (16)\° +
+8HA —4F3N + G1)z — 32010 — 16 H\S + (8F§ — 4F))\* — 2G1\* + Go,

where the integrals of motion quadratic in momenta
2 2 2 2 2
Fy = M5 — Nip — Niz — Nas, Fy = Mi,

are associated with the symmetries Yy in Eq. (2.12) (see the explicit expressions for M3 in (2.14) and for
N;j in (2.15) below). The functions G 2 are fourth-degree polynomials in momenta, which are functionally
independent of H, Fi, and F5.

As a missing sixth independent integral of motion, we can take any linear integral of motion V;;, which
nevertheless is not formally generated by spectral invariants of the 5 x 5 Lax matrix. Thus, to prove the
integrability in the framework of the classical r-matrix method, we have to find the required sixth integral
of motion using other tensor invariants of the Lax matrix, as this was for the complete Toda chain [35].

In the general case, for a; # 0 and br # 0, the terms added to potential (2.11) are not invariant
under rotations Y; in (2.12). Nevertheless, the spectral curve of the Lax matrix L()) is not a sixth-order
hyperelliptic curve; this allows immediately obtaining six independent polynomial integrals of motion in
involution that no longer belong to the class of second-degree polynomials in momenta.
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The first basis in the space of integrals of motion. We find the residues of the function A(z, \)
in (2.4),
det(zI — L()))

AlzA) = (z — a1 +2X2) (2 — ag + 2)2)

with respect to the variable z at two points z = aj o — 2A%:

Res|,_ A(z,N\) = =160\ f; + N2gi +wi, 0= 1,2.

a; 72)\2

The coefficients f; > are second-degree polynomials in momenta, while g; > and w; 2 are fourth-degree
polynomials in momenta.
We write the quadratic integrals of motion as

2

M
fi== _121)2 +pi+pi+piton,  fo

2
M7y

= +pi + P2+ pg + V2, (2.13)
by — by

where

v = (qi + 63+ a5 +gf +ar —b)gt + (af + a3+ a5 + a3+ a1 —ba)gs +

+ (¢ + 6 + G + @ + a1 — b3)a3 + 201429445 + 291439446 + 242434546,
v2 = (qf +¢5 + a5 + g3 +az — b1)gi + (a3 +af + a5 + a5 +az —ba)g3 +

+ (43 + 4f + 45 + g5 + a2 — b3)gg + 291924405 + 241439446 + 2929395 s-

Because the residue at infinity is
Res| _ A(z,)) = 320 H — N (g1 + g2) — (w1 + wy), Ji+ f2—2H =0,

the sum of these integrals of motion is equal to twice the Hamiltonian.
The function M, is associated with the triple rotation of the configuration space RS, because n = 3:

Mo = Jis + Jos + J36 = (q1pa — paqi) + (¢2p5 — p2q5) + (4306 — P3gs)- (2.14)

Various combinations of the basis elements fi 2, g1,2, and w; > are also associated with various double
rotations in RS. For instance, the second-degree polynomial in momenta

+
f3 = 2(b1 + by + bg)H—F g1 4 92 — 2a1f1 — 2a2f2
is equal to
f3 = Niy + Nis + N5 + (p7 + p3)b1 + (93 + p2)ba + (03 + pg)bs + vs,
where
Nio = Jig + Jus = (1p2 — p1G2) + (qaps5 — pags),
Nig = Jiz + Jag = (q1p3 — p143) + (qaPs — Pags), (2.15)
Nag = Joz + Js6 = (q2p3 — p243) + (¢5p6 — P53s)
and

vs = (qf + 4103 + a1a3 + 24343 + 201424445 + 201934446 + @4 + 4395 + diqg + arqi +
+a203)b1 + (765 + 201420405 + G5 + BB + 20563 + 202034596 + G105 + 45 +
+ Eag + a1d3 + azq3)ba + (G163 + 201030406 + B3B3 + 242430506 + G5 + 20505 +
+ GG+ GG+ do + a1 d3 + agg)bs — (¢ + @) — (65 + @3)b5 — (45 + 43)b3-
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The second basis in the space of integrals of motion. We calculate the residues of the function
A(z,A) in (2.6)
det(zI — L(\))

BEN = b -z = by - 2N by — 20

with respect to the variable z at three points z = b; + 2%

Res| A(z,\) = 4\*F; + Gy, i=1,2,3.

z=b; 4222

The six coefficients F; and G; are, respectively, second- and fourth-degree polynomials in momenta.
The residue at infinity is

Res| __A(z,A) =8\ H — (G1 + G2 + Gs), 2H 4+ Fy + F> + F5 = 0.

The quadratic integrals of motion are determined by double rotations and double shifts (2.7) of the config-
uration space:

P Nty _N123 S ? (Pt a2t 202 —b)a? —
1= pi—p1— (@ + 93 +q35+2¢5 + a1 —bi)g
by —by by — b3
— (g3 + 3 + qg + a2 — b1)qi — 2(q205 + ¢396) 9194,
N2 N2
Fy=— % — 7l —pE — (¢} + 65+ @5+ 265 + a1 — ba)gs —
bo — by by — b3
— (g3 + @ + 46 + a2 — b2)gE — 2(q1q4 + ¢396) 925,
N2 N2
Fy=— "% — 78— pE — (¢} + 65+ 45— 2q5 + a1 — bs)g; —
bs —b1 bz —b2
—(gf + @+ +ax—b3)qg — 2(q1q4 + ¢245)q346-
The functions N;; = —Nj; in (2.15) can be considered a realization of the elements of the Lie algebra so*(3)

via double rotations of the configuration space R, because
{N12, N1z} = Nag, {N13, Naz} = Nia, {Na3, Ni2} = Nis.
The highest-order term of the second-degree polynomials in momenta, which is independent of Fy, F5 and F3,

F4 = G1 + GQ + G3 - b1F1 — bQFQ — bgFg — (a1 + CLQ)H =
ay —

a
5 (p? +p5+p3—pi—pi—pg+Va)

=M 122 -
contains the function My in (2.14), which is associated with a triple rotation in R®. The corresponding
potential is given by

Vi=((i+ B+ B+ G+ E+ @) G +B+aE -G -4 — @)+
+ (it + a5 +a3)ar — (3 + a2 +ag)az — (6 — ¢3)b1 — (a5 — a3)b2 — (65 — ¢5)bs.

For a; = a9, the linear integral of motion M5 is a function of the basis elements Fj and Gy in the space
of integrals of motion.

Thus, in the case m = 2 and n = 3, we have presented seven integrals of motion that are quadratic in
momenta, f1, fo, f3 and F}, Fs, F3, F4. Direct calculation shows that the corresponding Killing tensors of
valence 2 have a nontrivial Haantjes torsion. Among those integrals, only those with m +n — 1 = 4 are
functionally independent.

As before, we can verify that the fourth-degree polynomial in momenta G' = tr L*(\ = 0), Eq. (1.7),
cannot be expressed in terms of these second-degree polynomials in momenta.
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2.5. Example: so(m + n) with m = n = 3. We write the 6 x 6 Lax matrix explicitly,

Ly Lo
L\ = : 2.16
o <L21 ng) (2.16)

where the 3 x 3 blocks are

—2X°+qi+a3+a5+a1  q1qatqads+4age q1q7+q298+q3qo
L = q1qa+q2q5+a3q6  —2X2+q3+ai+qZtaz  qagr+asast+qsge ,
q1q7+q298+q3qo qaqr+asqstasqe  —2X\*+q3+a3+qg+as
2202 —qi—qi—q2+b1 —q1q2—q1d5—q79s —q193—qade—qrqe
Los = —q192—q4q5—qrqs 22> —q3—qZ—q3+b2 —q2q3—q596—3qsqo R
—q193—qag6—qrde —q2d3—qsq6—dsds 2X°—q3—qs—qa+bs
p1—2iAq1 p2—2iAq2 ps—2iAgs p1+2iAg1 pa+2idgs pr+2idgr
Ly = <p42i)\q4 Ps—2iAgs p52i)\q5> R Loy = <102+2§>\q2 P5+2iAgs P8+2§>\¢Z8) .
pr—2iAqr ps—2iAgs po—2iAqe p3+2iAgs pe+2idge po+2iAge

The Hamiltonian H in Eq. (2.3) is given by

9
1 2 4 02 4 g2)2 2 4 g2 4 g2)2 2 4 g2 4 g2)2
2szz+(q1 4 +q3) +(‘14 a5 + q5) +(Q7 a5 +q3) +
=1

2 2 2

+ (q1q4 + 0205 + 9396)* + (0197 + G208 + q399)* + (q1q7 + G508 + q649)* —
2 2 2 2 2 2 2 2 2
+qd+ +g2+ +qd+
91 T4y T4aqy by — 43 T q5 T 9qg by — 43 +dg T 9o by +

2 2 2
2 2 2 2 2 2 2 2 2
+q5 + + g5 + +q5 +
n a1 922 a3 a1 + qy (]25 de ay + q7 q28 dg as.

The first basis in the space of integrals of motion. The residues of function (2.4)

det(zI — L()))

A =
(A = a4 2A2) (2 — as + 202) (2 — a5 + 222)

with respect to the variable z determine a fourth-degree polynomials in the variable A,

Res|z:ab+2A2A(2,)\) =16\ f; + \2g; + s4, 1=1,2,3.
Res|z:mA(z, A) =32HX* — (g1 + g2 + g3)\* — (51 + 52 + 83).

The nine coefficients f;, g;, and s; are second-, fourth-, and sixth-degree polynomials in momenta.
We write the quadratic integrals of motion as
M2 M?
= g Bt —p—pi - (2022 + 205" + @+ @ Har — b)) -
ap — az a]; — ag
— (205" — ¢5° — @s” — a1 + b2)q2” — (q3” + q5” + qo” + a1 — b3)gs” —
— 2423(¢506 + 4s90) — 20142(qa5 + 474s) — 2q143(qags + 47q0) — @1 — @2*,
Mo, M3,
a9 — a1 a2 — asg

—(2* 4+ 2g6 + qs® + a2 — b2)gs> — (45 + q§ + a5 + a2 — b3)qg —
— 45q4(2q102 + 2q7q8) — 24694 (0193 + q79) — 24506 (23 + q340) — i — g2,

—pi— i =g — (1® + 205> +2¢6° + q7° + az — b1)qs® —

o
I
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M2 M2
31 + 32
az — aq az — ag
— (G5 + q2 + 245 + as — b2)g3 — (65 + qg + @5 + as — bs)qg —
—2¢7q8(q1q2 + quq5) — 297q9(q1q3 + q1g6) — 20390 (293 + 4596) — G5 — gs.

fs= —pi—pi—p§—(af +aF +243 +245 +as—b1)gE —

The functions M;; occurring in the definition of the quadratic integrals of motion are

Mo = Jia+ Jos + J36 = (q1pa — p1ga) + (q2ps — P2Gs) + (¢3p6 — P3¢6),
My = Ji7 + Jag + Jz9 = (qup7 — p1qr) + (q2ps — p2gs) + (q3p9 — P3qo), (2.17)
Moz = Jur + Jss + Jeg = (qap7 — paqr) + (g5p8 — p543) + (q6p9 — P6qo)-

The combination of the basis integrals of motion

+ g0+
f4=g1 %42 gz+2a1f1+2a2f2+2a3f3

is also a quadratic polynomial in momenta, and its definition
n nm n m—1
fi= (00 ) (82) + Lot X ein ) + M N N )
j=1 i=1 j=1 i=0
contains the functions IV;;:
Nig = Jig + Jas + Jzs = (@1p2 — p1g2) + (qaps — pags) + (q7ps — P74s),

Niz = Jig + Jus + Jr9 = (ups — p1g3) + (qaps — pags) + (g7p9 — P79o), (2.18)
Nag = Jog + Js6 + Jso = (q2p3 — p243) + (¢sp6 — P5qs) + (gsp9 — Psqo)-

The functions M;; in (2.17) and N;; in (2.18) are associated with two independent realizations of elements
of the Lie algebra so*(3) via triple rotations in R?. The corresponding Poisson brackets are

{Mi2, My3} = Mo, {My3, M23} = Ms, {Maz, M12} = Mis,
{Ni2, N13} = Nas, {N13, Nag} = Nia, {Na3, N12} = Nis,
{Nij, My} = 0.

The second basis in the space of integrals of motion. The residues of function (2.6)

det(zI — L()))

BB b -z - by - 2N by 20)

with respect to the variable z are

Res| _, 5.A(z ) = 16MYF; + 226, + S, i=1,2,3,
Res| ___A(z,A) = 32HA* — (G1 + G2 + G3)A* — (S1 + 52 + S3).

The nine coefficients F;, G; and S; are respectively second-, fourth-, and sixth-degree polynomials in

momenta.
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We write the quadratic integrals of motion as

N2 N2
Fr=— "2 - "B - (i B+ B+ +E+ar— b)) —
by —by by — b3
~(B+ B+ E+G+E +az—b1)gi — (6 + 65+ G + 63+ a5 +as—bi)g —
—2¢194(q295 + g396) — 2q197(q24s + ¢399) — 294q7(g59s + ¢699),
B = _ N3 . N3y 2 2 2 (2 2 2 2 2 b2 —
2 = Py —ps—pg— (@1 +@+a5+q5+q35+ax 2)q5
by — by by — by
(G + G+ G+ G+ a5+ a2 —b2)a3 — (5 + G+ G5+ + a3+ as —ba)gi —
— 2¢2q5(q194 + 9396) — 2929s(q197 + q399) — 2¢598(qaq7 + G699);
B — N3 N3, 2 2 2 92 9 9 92 92 —ba)a? —
3= P3—ps—Po— (@i + 6 +aq3+ a5 +q9 +a1—b3)g3

by —by by — by
~(B+E+E+ a6+ +ax—b3)gg — (65 + a3+ & + g8 + a5+ as — bs)gs —
—2q3q6(q194 + q245) — 2¢399(q197 + 9248) — 24699(qaq7 + q543)-

The functions Ng; occurring in these definitions are given in (2.18).
The combination of the basis integrals of motion

1
Fy= 8(G1 + Gy + G3) — b1 F| — boFy — b3F3

is also a second-degree polynomial in momenta and is independent of F}, Fs, and F3:

m n m—1 n
1 1
Py (L) (2#) -5 Do (Srbn) +
Jj=1 =1 7=0 =1
M2, M2 M2
+ 212 + 213 + 223 + Ua(q).

Thus, in the case m = n = 3, we have presented eight integrals of motion quadratic in momenta, fi,
fa, f3, fa and Fy, Fy, F3, Fy, for which the corresponding Killing tensors of valence 2 have a nontrivial
Haantjes torsion. Among them, only the m +n — 1 = 5 integrals of motion are functionally independent.

As before, we can verify that the fourth-degree polynomial in momenta G = tr L*(\ = 0), Eq. (1.7),
cannot be expressed in terms of these second-degree polynomials in momenta.

3. Symmetric spaces of type C.I

The group Sp(n) is associated with the root space Cj,, and its matrix representation can be realized
using symplectic and unitary 2n x 2n matrices. Because

Sp(n) SU(2n)
U(n) — SUn) xU(n))’

we can obtain the required Lax matrices by means of Lax matrices (2.1) that have already been used.
Roughly speaking, by imposing conditions on the Cartesian coordinates in definition (2.1) with m = n,
we can make the n X n matrices Q and P in (2.2) symmetric, and then divide the nondiagonal elements
of P by 2 and impose the appropriate restrictions on the parameters a; and b;. Following [28], we then
obtain a nonstandard constant metric in Euclidean space.
Below, we write these Lax matrices for n = 2 and n = 3 and discuss the appropriate quadratic integrals

of motion.
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3.1. Example: sp(n) with n = 2. In this case, the 4 x 4 Lax matrix is given by

222 +¢i+g3tar qra2ta2qs p1—2iAq1 P2 —2iAg2
LO\) = Qa2taeqs —2X°+ai+qi+ar B2 —2iAge p3—2iAgs (3.1)
p1+2iAq1 P2 +2iAge 2X°—qi —g3+b1  —q1q2—q2q3 ’
T2 +2iAg2 p3+2iAqs —q1q2—q2q3 22\ —q5—q5+b2
where
a; = —bi. (32)

The Hamiltonian has the form

2 2 2 2 2 2\2
P , D5 D qi +2¢5 +¢q
H=T+V = 21+ 42+ 23+(1 22 ) —(q1q3 — 43)> — b1(qF + 43) — ba(a5 + 43). (3.3)

It can be easily verified that this Hamiltonian corresponds to case (13c) in [28].
After the canonical change of variables py — vV 2p2, @2 — q2/ V2, we obtain the standard metric
g = diag(1,1,1) in Euclidean space and an integrable fourth-degree potential

(2q1q3 — ¢3)*

1
V=_(l+6+6)- A ,

) (3.4)

where we set b; = a; = 0 for brevity. This potential is absent in the classification of integrable fourth-
degree potentials in [43] based on the Singlin—Joshid method, because the authors of that paper restricted
themselves to considering a particular ansatz for potentials in the form

V =gt +aqle} +baia3 + cas + g3 +eqi,  a,b.c.de €R,

while potential (3.4) includes the term g;q3¢5 that is linear in ¢; and gs.
Basis in the space of integrals of motion. The residues of the functions

det(Iz — L(X))
(24+2X2 —a1)(2 +2)2 —ay)’

det(1z — L(X))

Az, ) = (2 =202 = b1)(2 — 202 — by)

Az, A) =
coincide with each other up to a sign and the substitution a; — as = —(b; — be), which correspond to
condition (3.2) imposed on the parameters.

Calculating these residues

Res|z:b’_+2/\2A(z, \) = —4X\*F; + Gy, i=1,2,
Res|zzooA(z,)\) =8\H — (G1 + Gs),

we find the conditions for the coefficients
i+ Fy,—2H =0, G1+G2+2(b1+b2)H:0.

Thus, there are two second-degree polynomials in momenta Fj > and one forth-degree polynomial in
momenta G1 2 or G, Eq. (1.7), which are independent of each other and therefore form a basis in the
space of integrals of motion.

In [28], the authors claim that because the three integrals of motion Fy, Fy, and G + G2 are quadratic
polynomials in momenta, there is a point (i.e., coordinate) canonical transformation that allows separat-
ing variables in the Hamilton—Jacobi equation. Obviously, the authors just did not recognize that these
quadratic integrals of motion are functionally dependent, and therefore their statement on the separation
of variables is incorrect.
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We write the quadratic integrals of motion as

2 A42
Fy=pi+ 712 o, _Hbz + (g7 + 265 + a1 = b1)g; + (47 + 65 + 45 + 20193 — b — b2)gs,
2 P% M122 2 2 2 2 2 2 2
F=ps+, + by — by + (202 + 45 + a2 — b2)q3 + (a1 + @2 + 5 + 2q193 — b2 — b1) 3,
where ]
M = 2((11]92 — 2q2p1 — q3p2 + 2G2p3).

For by = by, we have a linear integral of motion M5 associated with a double rotation in R3. After reduction
with respect to the corresponding symmetry, we obtain a quadratic-linear Hamiltonian H commuting with
the fourth-degree integral G in (1.7) and describing integrable motion on the plane R? in presence of
a magnetic field.

Proposition 5. The general solution K, Eq. (1.10), of Killing equation (1.6) depends on 20 param-
eters in the case of the three-dimensional Euclidean space R3. Using modern software, we can directly
prove that there are only two independent solutions of Eq. (1.11) for the potential V in (1.12) entering
Hamiltonian (3.3), and they are associated with the integrals of motion F} o.

Moreover, substituting the Killing tensors corresponding to the integrals of motion Fj» and the
unknown function V (¢, g2, ¢s3) in Eq. (1.11), we obtain an integrable potential that is more general than
the potential in (3.3). In fact, we consider the quadratic integrals of motion Fy, Fy, and 2H = F| + F3,

H =p?+p5+p5+Vig),

and
F = QP% + p% + (@ipz = plqbzl—tqbng ~ Pata)” +Ui(q),
Fo—2pd+ph+ OP2 T plqsth;fg Pl | ).
Proposition 6. The general solution V;; of Eq. (1.11) in this case is given by
Vy=a1 <qil + 20763 + 2014503 + qf +2¢35 + a5 — 2(af + 43)(br — b2)> +
+ c2(2¢7 + 3¢5 (@1 + q3) + 243 — 2(by — b2)q1) + c3(qi + @5 + @3) +
+ea(qr +g3) + ;2, ¢ €R, (3.5)
or

Vo= Y Reapr-s(c1a°d® 00" + 200’ ¢ ¢° + e3¢*CPq7q’ + PO —
a,3,7,6

C
—2¢1(q} + 5) (b1 — by) — 2¢2(by — ba)qu + q;
2

where ¢ = (1,0,1) is a constant vector.

We do not write the corresponding integral of motion (1.7).

Setting ¢; = 0 in all integrals of motion in what follows, we obtain a three-dimensional integrable
analogue of the Hénon—Heiles system with a fourth-degree integral in momenta. According to [39], this
integrable system with a cubic potential is associated with the third stationary flow of the vector Korteweg—
de Vries equation.
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3.2. Example: sp(n) with n = 3. Lax matrix (2.16) is given by

I L
L) = L Lz
Ly Lo

where the 3 x 3 blocks are

R —2X3%+qi+a3+ai+ar q192+4294+434s5 q193+4295+9396
L = Q1q2+q2qa+q3qs  —2X>+q3+q3+q5+b1—ba+ay q293+9495+39596 s
q193+9295+934e q293+9495+39596 —2X2 4¢3 +q2 +qg+b1—bs+ar
~ 2202 —qi—q3—q3+b1 —q192—q2qa—q3q5s —q193—q295—q396
Ly = | —aie—w2aa—a3q5 2\’ —g3—a3—aZ+b2 —qo3—quas—asas |
—q193—q205—q3ds —q2q3—qaq5—qsds 2X°—q3—qa—qg+bs
N p1—2iAq1 p22 —2iAg2 p23 —2iAgs N p1+2iAq1 p22 +2iAg2 p23 +2iAgs
Lo = | "7 —2iAq2 pa—2irgs TP —2iAgs |, Loy = P2 42iNqz pa+2idgs PP +2iNgs | .
( 3 —2iAgs "P —2iAgs pe—2iAge ) ( 3 +2iNgs 7P +2iAgs pe+2irge )

In this case, we have to impose the following restrictions on the parameters in the original Lax
matrix (2.16), which have been arbitrary up to now:

a; = —bi.

As before, we define a basis in the space of integrals of motion using residues of the function

B det(Iz — L(\))
- (Z — 2/\2 — bl)(z — 2/\2 — bg)(z — 2/\2 — bg)

with respect to the variable z at the finite points z = b; + 22

Res| Az, \) = —16M\*F; + \2G; + S;.

z=b;+2\2

We restrict ourself to the consideration of quadratic integrals of motion

M? M? p2 p2
F, = 12 13 T V T, — 2 2 3
1 bl—b2+b1—b3+ 1+ Vi, 1 p1+4+4,

M2 M2 P2 P2
F _ 21 23 T ‘/'7 T — 2 2 5’
2T by Ty 2T 2=y Tty

M2 M2 p: p?
F, = 31 32 T ‘/'7 Ty = 3 5 2’
3 bg—b1+b3—b2+ 3+ V3 3 4+4+p6

whose definition involves functions associated with triple rotations in configuration space, which after
a suitable canonical transformation reduces the metric to the standard unit metric:

1
Mis = =M, = 9 (q1p2 — 2p1G2 + 2G2p4 — P2q4 + G35 — P345),

1
Mz = —M3z, = 9 (13 — 2p1G3 + q2p5 — P2Gs + 2q3P6 — P36),

1

Moz = —M3zz = 9 (q2p3 — P2q3 + qaps — 2paqs + 2¢sP6 — P56)-

For brevity, we omit explicit expressions for the potentials V.
The residue at infinity generates a relation among the quadratic integrals,

Fi+Fo+F;—-2H=0
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and relations among other integrals of motion:
i (G1+ G2+ G3) + b1 Fy + baFy + b3 F5 + 2(by + by + b3)H =0
and
S1+ 524 S — i(blGl + b2Ga + b3G3) — (b7 — babg) Fy — (b3 — bibs)F> — (b3 — biba)Fy = 0.

Of the nine dependent integrals of motion F;, G; and S; constructed in this way, we have to select six
independent integrals. For instance, we can take three quadratic integrals of motion, two fourth-degree
integrals of motion, and one sixth-degree integral in momenta.

4. Symmetric spaces of type D.III

Because
SO(2n) SU(2n)

Un) © SUm) x Un)’
we can use reduction for constructing integrable systems corresponding to the symmetric spaces associated
with the D,, root space.
In fact, we take Lax matrix (2.1) with m = n and, imposing conditions on the Cartesian coordinates
and the corresponding momenta, we make the n x n matrices @ and P in (2.2) antisymmetric, and then
impose the appropriate restrictions on the parameters a; and b; in (2.1).

4.1. Example: so(2n) with n = 2. After the reduction, the 8 x 8 Lax matrix (2.1) remains a block

L) = Lin L ’
Loy Lo

where the two diagonal blocks are the symmetric matrices

matrix

a1 +as+q3+ar—2)° 92q1+433s —q1q4+4336 —q145—q246
Ly = 92q4+433s5 a3 +q;+az+az—22° , q;qzjqzﬂ]e , q193—q4d6
—q194+439s 19244596 95 +q5+q5+az—2) 4293+4495 ’
—q1¢5— 4236 q193—qad6 92q3+44q5 a3 +q2 +ag+as—22>
22 —qf—g3—q3+b1  —a2q4—qsas 41944396 4195+4236
Ly = —a2qa—q3qs 22’ —qi—qi—qZ+bs |92 dsds —q193+q44o
q194—q396 —q192—q596 20 —q5—q5—q5+bs3 —q293—4q44s ’
q195+39296 —q193+q4qe —q293—4q49qs 222 —q2 —q —q¢+ba

and the off-diagonal blocks are antisymmetric matrices of the form

0 p1—2iAg1  p2—2iAg2 p3—2iAgs
Lo = [ ~Prt2idar 0 pa—2iAga p5—2iAgs
12 —p2+2iXg2 —pa+2idga 0 pe—2irgs | 7
—p3+2iAgs —ps+2irgs —pe+2iAge 0

0 —p1—2iAg1 —p2—2iAg2 —p3—2ilgs

Lo = | PrH2ida 0 —pa—2ilga —p5—2iAgs

21 = | po+2idge pa+2idgs 0 —pe—2iAge
p3+2irgs ps+2iAgs  pe+2iAge 0

In this case, the parameters (arbitrary up to now) have to satisfy the restrictions
az —ay = by — be, az —a; = by — bs, ag —a; = by — by.

Four residues of the function

det(Iz — L(X))

A= (2 — 202 — by)(2 — 202 — by) (2 — 2)2 — bs) (2 — 272 — by)
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with respect to the variable z at the points z = b; + 22 are the sixth-degree polynomials in A:

Rest| Az, \) = —64X°F; + MG + A28 + W,

Z:bi+2)\2

The coefficients F;, G;, S;, and W; are second-, fourth-, sixth-, and eighth-degree polynomials in momenta.

As a result, we have 16 dependent integrals of motion and the residue at infinity yields various relations

among these polynomials, for instance,

P+ B+ Fs+Fy—2H =0.

We present only the highest-order part of the quadratic integrals of motion and omit explicit expressions

for the appropriate potentials Vj:

M2 M2 M?3

o 12 13 Uy

1 by — by bl—b2+b1—b4+ 1+ Va,
M2 M2 M?2

jo 21 23 2 oy

2 b2—b1+b2—b3+b2—b4+ 2+ 25
M2 M?2 M?2

F — 31 32 34 T V

5 by by bg—by by by BT
M? M?2 M?2

=" o4 B T4V

b4—b1 b4—b2 b4_b3

The functions appearing in the definition of the integrals of motion,

Mo = (q2ps — p2qa) + (q3P5 — P3G5), Mis = (q1ps — p1ga) + (g6p3 — Peqs),
My = (q1ps — p1gs5) + (g2p6 — P23s), Mass = (q1p2 — p1g2) + (g5P6 — D54s),
Moy = (q1p3 — p1g3) + (64 — P6qa), Msa = (q2p3 — p2q3) + (qaps — pags)

are associated with double rotations of the configuration space RS, while the functions

Ty=p+pi+pl,  To=pl+ps+ps
Ty =p3+pi+ps,  Ti=pi+p+ps

are determined by the sequences of three shifts along the coordinate axes. Direct calculation shows that

the Haantjes torsion of the corresponding Killing tensors is not zero.

Of the sixteen dependent integrals of motion F;, G;, S;, and W;, we have to select six independent

integrals of motion, four of which can be quadratic polynomials in momenta.
5. Symmetric spaces of type BD.I
The symmetric space

SO(m +n)
SO(m) x SO(n)

is Hermitian only if m = 2, because so(m) + so(n) has no center in the general case. At m = 2, the so(2)

subalgebra is the center, and, depending on whether n is even or odd, this symmetric space is associated

with the B, y1)/2 or D(p42)/2 TOOt system.
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5.1. Example: SO(2) x SO(4) ~ S(U(1) x U(3)). Using the Weyl-Cartan basis from [26],
we construct 6 x 6 Lax matrix (1.3) in the form

Ly, L
Loy = (Ln Lz}
Ly Lo
where

p1+2iAq —2¢7+2q3+a2 —2q1q24+2q3q4

—2X%42¢7 +2¢5+295+2q3 +a1  p1—2iAqa p2—2iAg2 )
b)

p2+2iAqa —2q1q2+2q3q4 —2q3+2q; +a3

—p1+2iAq1 2q1—2q3+b2 2q192—2q3qa
—pa+2iAga 2g142—2q3q4 2q5—2q; +bs

<2A —2q? =22 —2q2 —2q2+b1 —p1—2iAg1  —pa—2iAga )
b

p3—2iAgs Pa—2iAqa
*P3+21)\q3 0 —2q194+2492q93 | ,
—p4+2iAqs 29194—2q24q3 0

—p3—2iAgs  —pa—2ilqa
L21 = P3+21>\Q3 0 2q194—2q2q3 | .

pa+2iAqs —2q194+2q2493

The parameters involved in the Lax matrix satisfy the relations
az = ay + by — ba, as = a1 + by — bs.
In this case, the Hamiltonian H in (2.3) has the form

H=pl+ps+p5+pi+4G + a3+ 6+ @) — 8(quas + e2qa)” +
+ 2(b2 — bl)q% + 2(b3 — bl)qg + 2(&1 — bz)qg + 2(&1 — bg)qi.

This Hamiltonian coincides with Hamiltonian (2.9) up to a scaling transformation and the canonical trans-
formation ¢; — —¢; and p; — —p; of one of the coordinates and momenta (see a discussion of the isomor-
phism of root systems and the corresponding integrable systems in [26]).

5.2. Example: so(2n 4 1) with n = 2. We consider the realization of elements of the Lie algebra
so(2n+1) by (2n+ 1) x (2n + 1) matrices X satisfying the relation

2n+1
X+ SXxTs—t=o, S = Z (~D* 1 Ep oo,
k=1

where E;; are matrices with the only nonzero element at the intersection of the ith row and jth column [34].
In this case, the Cartan evolution is associated with the element A = F1 1 — E2,41,2n41 of the Cartan
subalgebra, while Lax matrix (1.3) has the block structure

2)2 ZT 0
L=\ 7 0 s-Z | +CH+A,
0 7T.s —2)2

where the central zero block in the first term has the size (2n — 1) x (2n — 1), the elements of the vector
columns = and y are
fi:pi_Qiqia g)l:pl—’—quza 7;:17"'72/”_17
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and s is the (2n — 1) x (2n — 1) matrix
2n—1

s = Z (—1)kEk72n,k.

k=1
The matrix C' corresponds to the term »_ , 5 agslea,e—p] in definition (1.3), and A is a numerical matrix
satisfying the relation
A+ SATS™ =0
and defining the shift of the orbit as follows from [29].
The first nontrivial example appears at n = 2 [26]. For the corresponding symmetric space, we write
an explicit expression for the 5 x 5 Lax matrix (1.3):

2X° p1—2iAg1 p2—2iAg2 p3—2iAgs 0
p1+2iAq1 0 0 0 —p3+2iAg3
L) = [ p2+2irge 0 0 0 p2—2ixg2 | +C + A,
Pp3+2iAgs 0 0 0 —p142iAq
0 —p3—2iAgs p2+2iAg2 —p1—2iAq1  —2A°
where
22 2
Gn-a-a 0 0 0 0 a1 00 0 0
0 a1—aq3 (q1+493)q2 0 0 0azaz 0 O
Cc=2 0 (q1+493)q2 0 (q1+493)q2 0 , A=2 0 a3 0 a3 O
0 0 (1+g3)2 —qi+a3 0 0 0 az—az O
s s s 000 0-a
0 0 0 0 q1+t95+a3

This example is interesting because the matrix A in this representation is not necessarily diagonal.
Hamiltonian (1.4) is given by

1
H = trL?|,_ =207 - 205 —daj = pi +p5 +p5 +4(a1 + 63 + 3)" —

—2(2q103 — 63)° — 4(a1 — a2)q} — 4(a1 + a2)q3 — 4ga(a1g2 — 2as(q1 + gs)).
The quadratic integral of motion is

F = (q1p2 — p1a2 + @2p3 — 43p2)” — (p1 + p3)(az(p1 — ps) + 2asp2) + U,

where

U =4(q1 + g3)(az(q1 — g3) + 2a3q2) (a1 — ¢f — a3 — 43) — 4(a3 + a3)(¢f + 43) —
— 8q2(q1 — q3)azas — 8(q1qs + ¢3)a3,
determines the second-order Killing tensor with a nonzero Haantjes torsion.
The characteristic equation for this Lax matrix is
25 — 22\ 4+ 441 \? + 2a? + 243 + 4a3 + H)2® +
+ [16(a3 + 2a2)\* + 8(F + 4ay (a3 + 2a2))\* + G/2 — H?)z = 0.

The highest-order term in the fourth-degree polynomial in momenta G that appears in this equation is
determined by the curvature tensor R:

1 )
¢=-y > Reapr-a®d’d +-- =
a,B3,7,6

=4(p} +p3 +3) = 2(2pips —p3)° -
At a; =0, we have the Hamiltonian in (3.3), (3.4) up to a canonical transformation,
1

H=  trL?|, =pi+p5+p5+4(a +a+a6)° - 2200 - ¢)”

which follows from the isomorphism of the root systems (see [26], [34]). At a; # 0, the terms missed in [28]
appear in the potential.
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5.3. Example: so(2n + 1) with n = 3. In this case, 7 x 7 Lax matrix (1.3), where we temporarily
set A =0, is given by

2)? p1—2iAq1 p2—2iAq2 p3—2iAg3s pa—2iAgs p5—2iAgs 0
p1+2iAq1 0 0 0 0 0 —p5+2iAgs
p2+2iAg2 0 0 0 0 0 pa—2iAqa
L()\) = p3+2irgs 0 0 0 0 0 —p3+2irgs | +
Pa+2iAqa 0 0 0 0 0 pa—2iAg2
ps+2iAgs 0 0 0 0 0 —p1+2idq1
0 —p5—2iAgs pat+2idgs —p3—2iAgs pa+2idga —p1—2irgr  —2A2
>0 _.a 0 0 0 0 0 0
0 G—a2  qra2taias a3(q1—as) q1q1+q29s 0 0
0 q1a2+q4q5  95—a; q3(g2+q4) 0 q194+9295 0
+2 0 a3(q1—qs) q3(q2+qa) 0 a3(92+491) —g3(q1—gs) O (5.1)
0 q194+4235 0 g3(q2+q1)  —a2+q?  qig2t+qags 0
0 0 q19a+9205 —q3(q1—q5) q1q2+qaqs  —q3+45 0
0 0 0 0 0 0 S _Lar
The corresponding Hamiltonian
1 5 5 2
2 2 2 212
H= A tr L2, = E Pkt 4( E L]k) —2(2q195 — 2924 + q3) (5.2)

k=1 k=1

commutes with the four integrals of motion

Ry = (qip2 — p142) + (@ap5 — Pags), Ry = (q2p3 — p2q3) + (q3p4 — P3qa),
Rs = (q1p3s — p1g3) + (g5p3 — P543), Ry = (q1pa — p1qa) + (q2ps — p2gs)

such that

{R1,Ro} = —Rs3, {R1,R3} = Ry, {R1,R4} =0,

{R4,R2} = Rs, {R4, R3} = —Ry, {R2,R3} = R4 — R1.

As before, the existence of these integrals of motion is associated with the invariance of the Hamiltonian
under rotations of the configuration space R®.
The characteristic equation for the Lax matrix

det(z- T —L(\) =2" =220 + H)2® + (8F1\* + G1)2 — 4G22 =0
includes four independent integrals of motion in involution, H, G, and
Fi =R} +R:+R:+R:,  Go=(Ri+ Ry)*[(R1 — Ry)* + 2(R3 + R2)].

Using the Hamiltonian and the fourth-degree polynomial G, we can obtain the integral of motion G in (1.7),
whose principal part is determined by the curvature tensor R in (1.4), (2.9):

1 (e}
G=2G1+ 20 = T4 Z R-a,8y,-sP"P p'ypé +-=
a,B,7,6

= —4(pT + p3 + P53 + pi +p3)° + 2(2p1ps — 2papa +13)° + - .
This integral of motion is independent of the Hamiltonian H and linear integrals of motion Ry.
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Because {Ri,G1} = 0, we have a completely integrable system with five independent integrals of

motion in involution, for instance,
2 2
Ry, R4, R5 + R3, H, G.

Nevertheless, the spectral invariants of Lax matrix (5.1) generate only four integrals of motion, similarly to
the complete Toda chain [35].
Adding a constant nondiagonal matrix to L(A) in (5.1) ,

aiz 0 0 O 0 0 0

0 a2 0 O 0 0 0

0 0 az Qa4 0 0 0
A= 0 0 ay 0 a4 0 0 5

0 0 0 aq4 —as 0 0

0 0 0 O 0 —ao 0

0 0 0 O 0 0 —a

we add the terms quadratic in coordinates to the original Hamiltonian (5.2):

H= trL? —2a7 — 2a3 — 2a3 — 4a; =

1
4 |>\:0

5 5 2
= i+ 4<Z qi) —2(2q105 — 2¢2q1 + 43)° + (a1 — a2)q} +
k k=1

=1
+ (a1 — a3)q3 + q3(a1qs — 2a4q2 — 2a4q4) + (a1 + as)q; + (a2 + a1)g3.
The characteristic equation for the Lax matrix

21— 4N = 20%a; + a? + a2+ ad + 247 + H/2)2% + (16(a2 + a2 + 2a2)\* +
+ FIA? + G1)2° — [64a3(a3 + 2a7) A\ + FoA? + Galz =0

then contains a sufficient number of commuting and independent integrals of motion to ensure the inte-
grability by the Liouville theorem. There are three polynomials H, F;, and F5 of the second degree in
momenta and two polynomials G; and G2 of the fourth degree.

Thus, we can say that the constant term A in Lax matrix (1.3) allows removing degeneration in a certain
sense and obtaining the complete set of integrals of motion that suffices to prove the integrability of the
system by the Liouville theorem.

6. Conclusions

The problem of the existence of quadratic integrals of motion for Hamiltonians in the natural form

H = Z g”pip; + V(q)
2%

has been under discussion for a long time, starting with the papers by Jacobi, Levi-Civita, and Darboux,
and until now. Most of the classic and contemporary papers study the problem of the existence of integrable
geodesic flows at V(¢) = 0 or the problem of the equivalent metrics first. After that, they describe the class
of potentials V(gq) # 0 that can be added to a given geodesic flow and preserve the integrability property.

It turns out that abandoning this common such that strategy allows constructing quadratic conservation
laws for a sufficiently wide class of Hamiltonians in the natural form, describing motion in Euclidean space.
Some examples were constructed in [22]-[25] by directly solving both the Killing equation (1.6) and the
equation for potential (1.11).
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In this paper, the quadratic conservation laws for Newton equations (1.5) are constructed using the

known Lax representation [26], [28], [29]. The corresponding Killing tensors are associated with special

linear combinations of basis rotations about the coordinate axes (these combinations form a representation

of the rotation subalgebra) and with a sequences of shifts along these axes. For instance, to construct

the integrals of motion in four-dimensional Fuclidean space, we use the right and left isoclinic rotations

(Clifford shifts), which are classical objects in Euclidean geometry and the theory of Clifford algebra.

Open problems include a rigorous mathematical definition of this class of Killing tensors and a construc-

tion of the corresponding integrals of motion of highest degrees in momenta in the framework of standard

FEuclidean, Riemannian, and pseudo-Riemannian geometries, i.e., without using the Lax matrices.

Conflicts of interest. The authors declare no conflicts of interest.
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