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ON A CLASS OF QUADRATIC CONSERVATION LAWS

FOR NEWTON EQUATIONS IN EUCLIDEAN SPACE

A. V. Tsiganov∗ and E. O. Porubov∗

We discuss quadratic conservation laws for the Newton equations and the corresponding second-order

Killing tensors in Euclidean space. In this case, the complete set of integrals of motion consists of poly-

nomials of the second, fourth, sixth, and so on degrees in momenta, which can be constructed using the

Lax matrix related to the hierarchy of the multicomponent nonlinear Schrödinger equation.
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1. Introduction

Studying the problem of the existence of integrals of motion is closely related to the choice of the

functional class where the first integrals are to be found. Polynomial, rational, algebraic, and nonalgebraic

integrals of motion are typically selected [1]–[10].

In this paper, we discuss the known integrable systems that describe the motion in Euclidean space

and have at least two conservation laws quadratic in velocities, with the other integrals of motion being

higher-degree polynomials in velocities (momenta).

Most often, quadratic integrals of motion appear in studying Hamiltonian systems that are integrable

by separation of variables. Let A and B be a pair of nondegenerate symmetric second-order tensors in

Euclidean space R
n that generate the pair of quadratic polynomials in momenta,

TA =
∑

i,j

Aijpipj, TB =
∑

i,j

Bijpipj .

These polynomials are in involution, {TA, TB} = 0, with respect to the standard Poisson bracket on the

cotangent bundle T ∗
R

n if the Schouten bracket of the tensors A and B vanishes,

[[A,B]] = 0.

The Schouten bracket allows passing to the geometric description of the dynamical system, i.e, replacing

the equation {TA, TB} = 0 in phase space with the equation [[A,B]] = 0 in configuration space and then

using the geometric properties of the configuration space to study the properties of the dynamical system.
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For instance, if the spectral problem

(A− λB)ψ = 0 (1.1)

has n different real eigenvalues and the corresponding eigenvectors are normal, i.e., the orthogonal com-

plements to any eigenvector form an integrable distribution [11], [12], then the tensors A and B generate

an n-dimensional linear space of the second-order tensor fields that are in involution and have common

eigenvectors [13]–[15].

This allows constructing n independent second-degree polynomials in momenta in the cotangent

bundle T ∗
R

n,

T1 =
∑

i,j

Aijpipj , T2 =
∑

i,j

Bijpipj , T3 =
∑

i,j

Kij
3 pipj , . . . , Tn =

∑

i,j

Kij
n pipj ,

which are in involution

{Ti, Tj} = 0

with respect to the canonical Poisson brackets

{qi, qj} = 0, {pi, pj} = 0, {qi, pj} = δij , i, j = 1, . . . , n. (1.2)

Adding the appropriate potentials

H1 = T1 + V1(q1, . . . , qn), H2 = T2 + V2(q1, . . . , qn), . . . , Hn = Tn + Vn(q1, . . . , qn),

we obtain an n-dimensional space of first integrals [13] (also see [16], [17]). Historical details and a more

complete list of appropriate references can be found in [18], [19].

In other words, two tensors A and B define equivalent metrics with common geodesics if and only if they

can be reduced to some special normal forms [13], [15], [20]. It turns out that the corresponding geodesic

flow is integrable and has a complete set of the integrals of motion that are quadratic in momenta. We then

consider the problem of adding nontrivial potentials to the Hamiltonian and preserving the integrability

properties in a given functional class of integrals of motion quadratic in momenta [6], [7], [16], [17], [21].

To obtain something new, we propose to abandon the common scheme of first considering the integrable

geodesic flows and consequently adding appropriate potentials to the obtained integrals of motion. In fact,

if we begin with motion in the potential field, we can find a number of new examples of second-order

tensors A and B that also define integrable and superintegrable systems in Euclidean space [22]–[25]. The

corresponding spectral problem (1.1) does not necessarily have a set of different real eigenvalues and normal

eigenvectors, i.e., the Hamilton–Jacobi equation does not admit the separation of variables in any of the

known curvilinear orthogonal coordinate systems in Euclidean space.

We study the properties of the second-order tensors A and B in Euclidean space Rn, which correspond

to the quadratic conservation laws appearing in the study of integrable Hamiltonian systems associated with

the hierarchy of the multicomponent nonlinear Schrödinger equations [26]–[29]. The appropriate spectral

problem (1.1) does not then have the required set of different real eigenvalues and normal eigenvectors,

which does not prevent the Liouville integrability, however.

Although a number of explicit expressions for the Hamiltonians

H =
1

2

n∑

i=1

p2i + V (q1, . . . , qn),

corresponding to Hermitian symmetric spaces of types A.III, BD.I, C.I, and D.III in Cartan’s classification

are reproduced in various textbooks (see, e.g., [30]–[33]), the corresponding integrals of motion that are

polynomial in momenta have not been studied. In this paper, we partially correct this defect.
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1.1. Integrable systems and symmetric spaces. A simply connected symmetric space is a homo-

geneous space G/K, where G is a Lie group and K is its subgroup, which is the isotropy group of the

symmetric space.

For any Hermitian symmetric space G/K, there is an element in the Cartan subalgebra A of the Lie

algebra g of the group G such that

• the Cartan automorphism σ = adA defines the Cartan decomposition

g = k⊕m, where k = {X ∈ g, σ(X) = X}, m = {X ∈ g, σ(X) = −X},

i.e.,

k = {X ∈ g, [X,A] = 0};

• the root system of g decomposes into the subsets

Δ = Δ0 ∪Δ+ ∪Δ−,

where

Δ0 = {α ∈ Δ, α(A) = 0}, Δ± = {α ∈ Δ, α(A) = ±a},
a > 0 is a constant whose value is determined by the type of the chosen Hermitian symmetric space;

• consequently,

[A, eα] = ±aeα, α ∈ Δ±, m = span{e±α, α ∈ Δ+};

• consequently,

[eα, eβ ] = 0, α, β ∈ Δ+, α, β ∈ Δ−.

Using the Killing formula, which in our case has the standard form

〈X,Y 〉 = b tr(X · Y ), b ∈ R,

we define the metric

gα,β = 〈eα, eβ〉,
for which b plays the role of a constant Gaussian curvature, and the Riemann curvature tensor with the

components

Rα,β,γ,δ = 〈[eα, eβ], [eγ , eδ]〉.
The exact definitions and all necessary details and references can be found in textbook [34]. More precisely,

the tensors g and R have the properties of the Riemann metric and the Riemann tensor [26], which allows

identifying g with the metric in Euclidean space and using R for constructing the potential in Euclidean

space.

Using the Cartan involution σ, we can construct the decomposition of the twisted affine algebra

L(g, σ) = L+ + L− into two subalgebras, construct the classical r-matrix corresponding to this decom-

position, and describe the orbits of L− passing through the point Aλ2 in the dual space L∗
− [26], [28], [29].

The shift of the orbit by an arbitrary element of the Cartan subalgebra Λ, which plays a key role in

our calculations, generates the Lax matrix

L(λ) = λ2A+ λ
∑

α

qα(eα − e−α)− 1

a

∑

α

gα,−αpα(eα + e−α) +
1

a

∑

α,β

qαqβ [eα, e−β ] + Λ. (1.3)
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We use the notation from [28], with qα being Cartesian coordinates in Euclidean space and pα the corre-

sponding momenta denoted by qi and pi hereafter, for which the Poisson bracket has form (1.2). The sum

in (1.3) ranges all coordinates α and β from the subset Δ+.

The corresponding Hamiltonian

H =
1

4
trL2(λ)

∣∣∣
λ=0

=
1

2

∑

α

gα,−αp2α − 1

4

∑

α,β,γ,δ

R−α,β,γ,−δq
αqβqγqδ +

1

2

∑

α

ωα(q
α)2 (1.4)

depends on the arbitrary “frequencies” ωα, which are functions of the matrix elements of Λ. The Newton

equations of motion in Euclidean space corresponding to this Hamiltonian are

q̈α =
∑

β,γ,δ

Rα
β,γ,−δq

βqγqδ − ωαqα, α, β, γ, δ = 1, . . . , N. (1.5)

According to [28], Lax matrix (1.3) also generates several quadratic integrals of motion commuting with

the Hamiltonian H in (1.4),

H
(2)
i =

∑

j,k

Kik
i pjpk + Ui.

In this case, A = g is the standard metric in Euclidean space, and B = K is the Killing tensor satisfying

the Killing equation

∇iK
jk +∇jK

ki +∇kK
ij = 0, (1.6)

where ∇ is the Levi-Civita connection for the metric g.

Proposition 1. In the general case, there is a fourth-order integral of motion in momenta independent

of the quadratic integrals of motion H
(2)
i ,

G = trL4(λ)
∣∣
λ=0

=
∑

α,β,γ,δ

R−α,β,γ,−δp
αpβpγpδ +

∑

α,β

Sα,β(q)pαpβ +W (q), (1.7)

whose principal part is determined by the tensor R.

In the particular case of an anharmonic oscillator or the Garnier system, this fourth-degree polynomial

can be expressed in terms of quadratic integrals of motion [28]. We do not write the corresponding second-

order tensor Sα,β and potential W explicitly because they are not related to the main goal of this paper.

If all the parameters ωα = 0, i.e., Λ = 0, the Hamiltonian H in (1.4) commutes with the family of

noncommutative linear integrals of motion associated with various combinations of rotations. In this case,

spectral invariants of the Lax matrix generate a family of commuting integrals of motion, whose number

is insufficient for the Liouville integrability in the general case, as well as in the case of the complete Toda

chain [35]. This means that other tensor invariants associated with the Lax matrix must also be used to

prove the integrability.

If the parameters ωα �= 0, the Lax matrix L(λ) in (1.3) generates the required number of integrals of

motion, which are polynomials of the second, fourth, sixth, and so on degrees in momenta. The principal

parts of these polynomials

H
(2�)
i =

2�∑

j,k,...,m

Kj,k,...,m
i pjpk . . . pm + · · · , 
 = 1, 2, . . . , (1.8)

define the Killing tensors of valence 2
 in the Euclidean space R
n,

[[g,Ki]] = 0.

In this paper, using the Haantjes torsion [11], we consider several second-order Killing tensors and

prove that spectral problem (1.1) does not have the required number of real simple eigenvalues and normal

eigenvectors.
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1.2. Second-order Killing tensors in Euclidean space. Killing vector fields are generators of local

symmetries of the metric in configuration space. For instance, the standard basis of shifts and rotations in

Euclidean space

Xi = ∂i, Xi,j = qiXj − qjXi, (1.9)

where ∂i =
∂
∂qi

, allows describing various symmetries of a physical system. By the Noether theorem, these

symmetries correspond to conservation laws that are linear in velocities and associated with space–time

coordinate transformations. For instance, the integrals of motion for the physical systems invariant under

rotations are linear combinations of the components of the angular momentum tensor J ,

Xij 	→ Jij = qipj − qjpi.

If the integral of motion is the square of either the angular momentum or spin, then Killing vectors do not

suffice for the description, and we have to use Killing tensors.

Killing tensors of rank m are associated with the existence of polynomial integrals of motion that

have the mth degree in velocities. Because the coordinate transformation in space–time is not associated

with Killing tensors of rank m > 1, they are usually identified with the so-called hidden symmetries [21].

To construct higher-order tensors, the Weyl theory of tensor products is typically used. For instance,

a second-order Killing tensor in Euclidean space has the general form

K =
∑

i,j

aijXi ◦Xj +
∑

i,j,k

bijkXi ◦Xj,k +
∑

i,j,k,m

cijkmXi,j ◦Xk,m, (1.10)

where aij , bijk, and cijm are arbitrary parameters, and ◦ denotes the symmetric product of Killing vector

fields.

The dimension of the vector space of the m-valence Killing tensors in the n-dimensional Euclidean

space is given by the Delong–Takeuchi–Thompson formula

d =
1

n

(
n+m

m+ 1

)(
n+m− 1

m

)
=

1

n

(
n+ 2

3

)(
n+ 1

2

)
=
n(n+ 2)(n+ 1)2

12
.

In our case of second-order tensors, to find the total number of independent parameters aij , bijk, and cijm

involved in definition (1.10) of the general solution of Killing equation (1.6), we set m = 2.

Because we do not consider the geodesic flows and pass to the motion in a potential field, all second-

order Killing tensors associated with the Hamiltonian H = T + V in (1.4) can be found by directly solving

the equation

d(KdV ) = 0, (1.11)

which states that the 1-formKdV is exact. We recall that Eq. (1.11) on configuration space can be obtained

from the equation { n∑

i,j

gijpipj + V (q),

n∑

i,j

Kijpipj + U(q)

}
= 0

on phase space, which is responsible for the involution of integrals of motion with respect to Poisson

bracket (1.2). Here, V is a function on R
n, and KdV denotes the Killing 1-form with the components

gijK
jk∂kV , with gij being the inverse tensor to gij .

Substituting the general solution of the Killing equation, K in (1.10), and the potential

V =
1

4

∑

α,β,γ,δ

R−α,β,γ,−δq
αqβqγqδ − 1

2

∑

α

ωα(q
α)2 (1.12)

1213



in Eq. (1.11), we obtain a linear system of equations for the coefficients aij , bijk, and cijkm. Solving this

system of equations with modern computer software, we obtain the sought Killing tensors [36]. For brevity

in what follows, by a Killing tensor, we mean tensor fields of types (2,0), (1,1), and (0,2), because the metric

tensor g can be used to change the tensor field type.

To study the properties of the obtained solutions of Eq. (1.11), we can use the following criteria.

A tensor field K of type (1,1) has simple eigenvalues if

D = det

⎛

⎜⎜⎜⎜⎝

S0 S1 · · · Sn−1

S1 S2 · · · Sn

...
...

. . .
...

Sn−1 Sn · · · S2n−2

⎞

⎟⎟⎟⎟⎠
�= 0, Sm = tr(Km). (1.13)

This is a consequence of the Sylvester theorem on the discriminant D of an algebraic equation, applied to

the characteristic equation det(A− λB) = 0 for the symmetric tensor K.

The Killing tensor K with simple eigenvalues has normal eigenvectors if and only if the Nijenhuis

conditions are satisfied [12]:

Nm
[jkgi]m = 0, Nm

[jkKi]m = 0, Nm
[jkKi]�K

�
m = 0. (1.14)

The square brackets appearing in this equation denote antisymmetrization over the three indexes i, j, k,

and N is the Nijenhuis tensor or the Nijenhuis torsion tensor K,

NK(X,Y ) = K2[X,Y ]−K[KX,Y ]−K[X,KY ] + [KX,KY ].

In terms of the local coordinates q = (q1, . . . , qn), the elements of the antisymmetric tensor field NK of type

(1,2) are given by

N i
jk =

n∑

m=1

∂Ki
k

∂qm
Km

j − ∂Ki
j

∂qm
Km

k +

(
∂Km

j

∂qk
− ∂Km

k

∂qj

)
Ki

m.

As a criterion of normality of the eigenvectors of the Killing tensor K with respect to the metric g, instead

of Nijenhuis conditions (1.14), we can use the condition that the Haantjes tensor, or Haantjes torsion, is

zero [11]:

HK(X,Y ) = K2N (X,Y )−KN (KX,Y )−KN (X,KY ) +N (KX,KY ).

In terms of the local coordinates q = (q1, . . . , qn), the condition HK(X,Y ) = 0 is a system of equations of

the form

Hi
jk =

n∑

m,�=1

Ki
mK

m
� N �

jk +N i
m�K

m
j K

�
k −Ki

m(Nm
�kK

�
j +Nm

j�K
�
k) = 0. (1.15)

These are the fourth-order equations with respect to elements of the Killing tensor K, while the Nijenhuis

equations are of the second, third, and fourth order with respect to elements of K, which can be considered

successively (see discussions in [18], [19]).

The Nijenhuis and Haantjes tensors determine the deformation of the structures of nonassociative and

alternated algebras in the tangent bundle TQ of a manifold Q [37]. The Nijenhuis and Haantjes tensors

are therefore used in many problems of mathematical physics, but the basic applications of these tensors

are related just to their triviality conditions NK(X,Y ) = 0 and HK(X,Y ) = 0 (see [38]). Hence, virtually

nothing is known on tensors that do not satisfy the Nijenhuis conditions.

Below. we prove that the 2-valence Killing tensors K in (1.8) associated with the Hamiltonian H

in (1.4) have a nonzero Haantjes torsion H(K) �= 0. Thus, constructing a sufficient number of independent

commuting integrals of motion, which is necessary for Liouville integrability, is an open question if we are

restricted by classical Euclidean geometry, without using the Lax matrices.
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2. Symmetric spaces of type A.III

We consider equation of motion (1.5) in the Euclidean space R
mn and the corresponding Hamiltonian

H in (1.4) associated with the Riemann pair

SU(m+ n)/S(U(m)× U(n)), 1 < m ≤ n, n+m ≥ 4.

We use the representation of su(m + n) by (m + n) × (m + n) matrices with the block-matrix struc-

ture [39], [26]–[28] associated with the Cartesian decomposition

g ≡ k⊕m, k = s(u(m)⊕ u(n)),

where the subalgebra k consists of block-diagonal matrices of the form

k �
(
u(m) 0

0 u(n)

)
.

In this case, the elements of the complement subspace m are

X ∈ m → X =
∑

α∈Δ+

(Xαeα +X−αe−α),

where the Weyl generators corresponding to the subset Δ+ of the root system are realized as the the

lower-triangular matrices

eα = Eij , i < j, i > m, j < n,

with the only nonzero element at the intersection of the ith row and jth column.

We use a normalization slightly different from the one in [26]–[28], [39], and therefore represent the

appropriate Lax matrix (1.3) in explicit matrix form as

L(λ) =

(
−2λ2Im +QQT + a 0

0 2λ2In −QTQ+ b

)
+

(
0 P − 2iλQ

PT + 2iλQT 0

)
, (2.1)

where Im and In are the identity (m×m) and (n× n) matrices, a and b are diagonal matrices depending

on m real numbers ak and n real numbers bi,

a = diagm(a1, . . . , am), b = diagn(b1, . . . , bn), ai, bi ∈ R,

the superscript T denotes transposition, and i =
√−1 is the imaginary unit.

The matrices Q and P are m × n-matrices depending linearly on the Cartesian coordinates qi and

momenta pi,

Qij = q(i−1)n+j , Pij = p(i−1)n+j , i = 1, . . . ,m, j = 1, . . . , n,

i.e.,

Q =

⎛

⎜⎜⎜⎜⎝

q1 q2 · · · qn

qn+1 qn+2 · · · q2n
...

...
. . .

...

qn(m−1)+1 qn(m−1)+2 · · · qmn

⎞

⎟⎟⎟⎟⎠
,

P =

⎛

⎜⎜⎜⎜⎝

p1 p2 · · · pn

pn+1 pn+2 · · · p2n
...

...
. . .

...

pn(m−1)+1 pn(m−1)+2 · · · pmn

⎞

⎟⎟⎟⎟⎠
.

(2.2)
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For the considered A.III type symmetric space, Hamiltonian (1.4) has the form

H =
1

4
trL2

∣∣∣
λ=0

−1

4

m∑

j=1

a2j −
1

4

n∑

i=1

b2i =
1

2

n∑

i=1

p2i +
1

2

m−1∑

j=0

( n∑

i=1

q2jn+i

)2

+

+

m−1∑

k,j=0;k>j

( n∑

i=1

qjn+iqkn+i

)2

+
1

2

m−1∑

j=0

aj+1

( n∑

i=1

q2jn+i

)
− 1

2

n∑

i=1

bi

(m−1∑

j=0

q2jn+i

)
. (2.3)

When ai �= 0 and bi �= 0, there are two bases in the space of the integrals of motion obtained from the

characteristic polynomial for the Lax matrix

τ(z, λ) = det(z I − L(λ)),

which are associated with representations of the respective algebras so(m) and so(n). Because

{τ(x, λ), τ(y, μ)} = 0,

all these integrals of motion are in involution with respect to Poisson brackets (1.2).

2.1. The first basis in the space of integrals of motion. We consider the residues of the function

Δ1(z, λ) =
τ(z, λ)∏m

i=1(z − ai + 2λ2)
(2.4)

with respect to the variable z at the m points z = ai − 2λ2:

ResΔ1(z, λ)
∣∣
z=ai−2λ2=

n−1∑

k=0

λ2kh
(2(n−k))
i , i = 1, . . . ,m.

Because m ≤ n, the coefficients h(2(n−k)) are polynomials of degree not greater than 2m in momenta.

Proposition 2. For the integrable systems associated with symmetric Hermitian A.III-type spaces,

there is a basis of mn independent integrals of motion, which include

• m second-degree polynomials in momenta h
(2)
1 , . . . , h

(2)
m ,

• m fourth-degree polynomials in momenta h
(4)
1 , . . . , h

(4)
m ,

• m sixth-degree polynomials in momenta h
(6)
1 , . . . , h

(6)
m ,

• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• m 2mth-degree polynomials in momenta h
(2m)
1 , . . . , h

(2m)
m

and m(n−m) other 2mth-degree polynomials in momenta.

The quadratic integrals of motion have the form

h
(2)
i =

m∑

k �=i

M2
ik

ai − ak
+ ti(p) + vi(q), (2.5)

where the functions

Mik =

n∑
Jj�, Jj� = qjp� − q�pj ,
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provide a realization of the elements of the Lie algebra so∗(m) as linear combinations of n rotations Xj,�

in (1.9) in the configuration space R
mn. The functions ti(p) correspond to the sequence of n shifts X�

in (1.9),

ti(p) =

n∑
p2� ,

and the potentials vi(q) in (2.5) are fourth-degree polynomials in the coordinates qj .

The corresponding Killing tensors do not satisfy Nijenhuis conditions (1.4), and their Haantjes torsion

is nonvanishing.

2.2. The second basis in the space of integrals of motion . We consider the residues of the

function

Δ2(z, λ) =
τ(z, λ)∏n

i=1(z − bi − 2λ2)
(2.6)

with respect to z at the n points z = bi + 2λ2:

ResΔ2(z, λ)
∣∣
z=bi+2λ2=

m−1∑

k=0

λ2kH
(2(m−k))
i , i = 1, . . . , n.

The coefficients H
(2(m−k))
i at the different powers of λ are polynomial integrals of motion of degree not

greater than 2m.

Proposition 3. For the integrable systems associated with symmetric Hermitian spaces of type A.III,

there is a basis of mn independent integrals of motion, which include

• n second-degree polynomials in momenta H
(2)
1 , . . . , H

(2)
n ,

• n fourth-degree polynomials in momenta H
(4)
1 , . . . , H

(4)
n ,

• n sixth-degree polynomials in momenta H
(6)
1 , . . . , H

(6)
n ,

• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• n 2mth-degree polynomials in momenta H
(2m)
1 , . . . , H

(2m)
n .

The quadratic integrals of motion have the form

H
(2)
i =

n∑

k �=i

N2
ik

bi − bk
+ Ti(p) + Ui(q), (2.7)

where the functions

Nik =

m∑
Jj�, Jj� = qjp� − q�pj ,

provide a realization of the elements of the Lie algebra so∗(n) as linear combination of m rotations Xi,�

in (1.9) in the configuration space R
mn. The functions Ti(p) correspond to the sequence of m shifts X�

along the coordinate axes (1.9),

Ti(p) =

m∑

�

p2� ,

and the potentials Ui(q) in (2.7) are fourth-degree polynomials in the coordinates.

The corresponding Killing tensors do not satisfy Nijenhuis conditions (1.14), and their Haantjes torsion

is nonvanishing.
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Thus, there are m+ n− 1 independent quadratic integrals of motion

h
(2)
1 + · · ·+ h(2)m = 2H = H

(2)
1 + · · ·+H(2)

n ,

associated with linear combinations of rotations in configuration space that correspond to representations

of the so∗(m) and so∗(n) algebras.

Proposition 4. Equations of motion (1.5) defined by the Hamiltonian H in (2.3) have only the above

n+m− 1 independent quadratic conservation laws in involution.

To prove this proposition, we have to estimate the dimension of the solution space of Eq. (1.11) for the

potentials occurring in Hamiltonian (2.3).

2.3. Example: so(m + n) with m = n = 2. We consider motion in the 4-dimensional Euclidean

space R
4 when the quadratic conservation laws involve left and right isoclinic double rotations (Clifford

shifts), which are the basic objects in classical four-dimensional Euclidean space geometry and in the theory

of Clifford algebras [40]–[42].

The 4× 4 Lax matrix can be written explicitly in this example:

L(λ) =

⎛

⎝
q21+q22+a1−2λ2 q1q3+q2q4 p1−2iλq1 p2−2iλq2

q1q3+q2q4 q23+q24+a2−2λ2 p3−2iλq3 p4−2iλq4

p1−2iλq1 p3−2iλq3 b1−q21−q23+2λ2 −q1q2−q3q4

p2−2iλq2 p4−2iλq4 −q1q2−q3q4 b2−q22−q24+2λ2

⎞

⎠ . (2.8)

The corresponding Hamiltonian H in Eq. (2.3) is then given by

H =
p21
2

+
p22
2

+
p23
2

+
p24
2

+
1

2
(q21 + q22)

2 +
1

2
(q23 + q24)

2 + (q1q3 + q2q4)
2 +

+
a1 − b1

2
q21 +

a1 − b2
2

q22 +
a2 − b1

2
q23 +

a2 − b2
2

q24 . (2.9)

The spectral curve of the Lax matrix L(λ) in (2.8) is not a hyperelliptic curve of genus g = 5: it is defined

by the characteristic equation

C : det(zI − L(λ)) = 0.

The first basis in the space of integrals of motion. Both residues of function (2.4),

Δ(z, λ) =
det(zI − L(λ))

(z − a1 + 2λ2)(z − a2 + 2λ2)

with respect to the variable z at the points z = a1,2 − 2λ2 are second-degree polynomials in λ,

Res
∣∣
z=ai−2λ2Δ(z, λ) = 4λ2fi + gi, i = 1, 2,

where the coefficients f1,2 and g1,2 are the respective second- and fourth-degree polynomials in momenta.

Calculating the residue at infinity,

Res
∣∣
z=∞Δ(z, λ) = −4λ2(f1 + f2)− (g1 + g2),

allows finding relations between the coefficients f1,2 and g1,2,

f1 + f2 = 2H, g1 + g2 = f̃3,

where f̃3 is a second-degree polynomial in momenta that is independent of f1,2.
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We write the quadratic integrals of motion as

f1 = − M2
12

a1 − a2
+ p21 + p22 + v1, f2 =

M2
12

a1 − a2
+ p23 + p24 + v2, (2.10)

where

v1 = (q21 + q22 + q23 + a1 − b1)q
2
1 + (q21 + q22 + q24 + a1 − b2)q

2
2 + 2q1q2q3q4,

v2 = (q21 + q23 + q24 + a2 − b1)q
2
3 + (q22 + q23 + q24 + a2 − b2)q

2
4 + 2q1q2q3q4,

and M12 is the function associated with the double rotation in R
4,

M12 = J1,3 + J2,4 = (q1p3 − q3p1) + (q2p4 − q4p2).

This function commutes with those terms in the definition of the coefficients f1,2 in (2.10) that are associated

with shifts,

{M12, p
2
1 + p22} = {M12, p

2
3 + p24} = 0,

and with the function describing the second independent double rotation in R
4,

N12 = J1,2 + J3,4 = (q1p2 − q2p1) + (q3p4 − p3q4).

Therefore,

{M12, N12} = 0.

This function enters the following combination of the integrals of motion:

f3 = (b1 + b2)H − g1 − g2 − a1f1 − a2f2 =

= N2
12 −

1

2
(b1 − b2)((q

2
1 + q22 + q23 + q24)(q

2
1 − q22 + q23 − q24) +

+ (q21 − q22)a1 + (q23 − q24)a2 − (q21 + q23)b1 + (q22 + q24)b2).

For b1 = b2, the linear integral of motion N12 is a function of the integrals of motion f1,2 and g1,2 forming

the first basis in the space of the integrals of motion.

The second basis in the space of integrals of motion. Both residues of function (2.6)

Δ(z, λ) =
det(zI − L(λ))

(z − b1 − 2λ2)(z − b2 − 2λ2)

with respect to the variable z at the points z = b1,2 + 2λ2 are second-degree polynomials in λ,

Res
∣∣
z=bi+2λ2Δ(z, λ) = −4λ2Fi +Gi, i = 1, 2,

where the coefficients F1,2 and G1,2 are the respective second- and fourth-degree polynomials in momenta.
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Calculating the residue at infinity

Res
∣∣
z=∞Δ(z, λ) = 8λ2H − (G1 +G2)

allows finding relations between the coefficients F1,2 and G1,2,

F1 + F2 = 2H, G1 +G2 = F̃3,

where F̃3 is a second-degree polynomial in momenta that is independent of F1,2.

We write the quadratic integrals of motion as

F1 =
N2

12

b1 − b2
+ p21 + p23 + V1, F2 = − N2

12

b1 − b2
+ p22 + p24 + V2,

where

V1 = (q21 + q22 + q23 + a1 − b1)q
2
1 + (q21 + q23 + q24 + a2 − b1)q

2
3 + 2q1q2q3q4,

V2 = (q21 + q22 + q24 + a1 − b2)q
2
2 + (q22 + q23 + q24 + a2 − b2)q

2
4 + 2q1q2q3q4.

Here, N12 is the function associated with the double rotation in R
4:

N12 = J1,2 + J3,4 = (q1p2 − q2p1) + (q3p4 − p3q4).

It commutes with those terms in the definition of F1,2 that are responsible for shifts,

{N12, p
2
1 + p23} = {N12, p

2
2 + p24} = 0,

and with the function responsible for the second double rotation

M12 = J1,3 + J2,4 = (q1p3 − q3p1) + (q2p4 − p2q4),

which appears in the definition of the quadratic integrals of motion f1,2 in (2.10) from the first basis.

This function also appears in a combination of the integrals of motion

F3 = G1 +G2 − b1F1 − b2F2 − (a1 + a2)H =

=M2
12 +

1

2
(a1 − a2)(p

2
3 + p24 − p21 − p22 + (q21 − q23)b1 + (q22 − q24)b2 −

− (q21 + q22)a1 + (q23 + q24)a2 − (q21 + q22)
2 + (q23 + q24)

2).

For a1 = a2, the linear integral of motion N13 is a function of the integrals F1,2 and G1,2, which determine

the second basis in the space of integrals of motion.

Thus, we have presented six polynomials f1, f2, f3 and F1, F2, F3 of the second degree in momenta,

among which only m+ n− 1 = 3 polynomials are functionally independent. Direct calculation shows that

the corresponding Killing tensors of valence 2 have a nonzero Haantjes torsion.

We can verify that the polynomial G = trL4(λ = 0) of the fourth degree in momenta, Eq. (1.7), cannot

be expressed in terms of these second-degree polynomials in momenta.
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2.4. Example: so(m + n) with m = 2 and n = 3. In this example, the 5 × 5 Lax matrix is

given by

L(λ) =

⎛

⎜⎜⎝

q21+q22+q23+a1−2λ2 q1q4+q2q5+q3q6 p1−2iλq1 p2−2iλq2 p3−2iλq3

q1q4+q2q5+q3q6 q24+q25+q26+a2−2λ2 p4−2iλq4 p5−2iλq5 p6−2iλq6

p1+2iλq1 p4+2iλq4 b1−q21−q24+2λ2 −q1q2−q4q5 −q1q3−q4q6

p2+2iλq2 p5+2iλq5 −q1q2−q4q5 b2−q22−q25+2λ2 −q2q3−q5q6
p3+2iλq3 p6+2iλq6 −q1q3−q4q6 −q2q3−q5q6 b3−q23−q26+2λ2

⎞

⎟⎟⎠ ,

and the Hamiltonian H in Eqs. (1.4) and (2.3) has the form

H =
1

2

6∑

i=1

p2i +
(q21 + q22 + q23)

2

2
+

(q24 + q25 + q26)
2

2
+ (q1q4 + q2q5 + q3q6)

2 −

− q21 + q24
2

b1 − q22 + q25
2

b2 − q23 + q26
2

b3 +
q21 + q22 + q23

2
a1 +

q24 + q25 + q26
2

a2. (2.11)

At ai = 0 and bk = 0, this Hamiltonian is invariant under four rotations (1.9) of the configuration space R6,

Y1 = (q1∂4 − q1∂4) + (q2∂5 − q5∂2) + (q3∂6 − q6∂3),

Y2 = (q1∂2 − q2∂1) + (q4∂5 − q5∂4),

Y3 = (q1∂3 − q3∂1) + (q4∂6 − q6∂4),

Y4 = (q2∂3 − q3∂2) + (q5∂6 − q6∂5),

(2.12)

and hence the Lie derivative along these vector fields is zero:

LYjH = 0, j = 1, . . . , 4, at ai = 0, bk = 0.

The presence of these four symmetries leads to the existence of four integrals of motion that are linear in

momenta, and some of them do not commute with each other.

The equation of the spectral curve for the 5×5 Lax matrix contains five commuting functions H,F1, F2

and G1, G2,

τ(z, λ) = z5 − 2λ2z4 − 2(4λ4 +H)z3 + (16λ6 + 4Hλ2 + F1)z
2 + (16λ8 +

+ 8Hλ4 − 4F 2
2 λ

2 +G1)z − 32λ10 − 16Hλ6 + (8F 2
2 − 4F1)λ

4 − 2G1λ
2 +G2,

where the integrals of motion quadratic in momenta

F1 =M2
12 −N2

12 −N2
13 −N2

23, F2 =M2
12

are associated with the symmetries Yk in Eq. (2.12) (see the explicit expressions for M12 in (2.14) and for

Nij in (2.15) below). The functions G1,2 are fourth-degree polynomials in momenta, which are functionally

independent of H , F1, and F2.

As a missing sixth independent integral of motion, we can take any linear integral of motion Nij , which

nevertheless is not formally generated by spectral invariants of the 5 × 5 Lax matrix. Thus, to prove the

integrability in the framework of the classical r-matrix method, we have to find the required sixth integral

of motion using other tensor invariants of the Lax matrix, as this was for the complete Toda chain [35].

In the general case, for ai �= 0 and bk �= 0, the terms added to potential (2.11) are not invariant

under rotations Yi in (2.12). Nevertheless, the spectral curve of the Lax matrix L(λ) is not a sixth-order

hyperelliptic curve; this allows immediately obtaining six independent polynomial integrals of motion in

involution that no longer belong to the class of second-degree polynomials in momenta.
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The first basis in the space of integrals of motion. We find the residues of the function Δ(z, λ)

in (2.4),

Δ(z, λ) =
det(zI − L(λ))

(z − a1 + 2λ2)(z − a2 + 2λ2)

with respect to the variable z at two points z = a1,2 − 2λ2:

Res
∣∣
z=ai−2λ2Δ(z, λ) = −16λ4fi + λ2gi + wi, i = 1, 2.

The coefficients f1,2 are second-degree polynomials in momenta, while g1,2 and w1,2 are fourth-degree

polynomials in momenta.

We write the quadratic integrals of motion as

f1 = − M2
12

b1 − b2
+ p21 + p22 + p23 + v1, f2 =

M2
12

b1 − b2
+ p24 + p25 + p26 + v2, (2.13)

where

v1 = (q21 + q22 + q23 + q24 + a1 − b1)q
2
1 + (q21 + q22 + q23 + q25 + a1 − b2)q

2
2 +

+ (q21 + q22 + q23 + q26 + a1 − b3)q
2
3 + 2q1q2q4q5 + 2q1q3q4q6 + 2q2q3q5q6,

v2 = (q21 + q24 + q25 + q26 + a2 − b1)q
2
4 + (q22 + q24 + q25 + q26 + a2 − b2)q

2
5 +

+ (q23 + q24 + q25 + q26 + a2 − b3)q
2
6 + 2q1q2q4q5 + 2q1q3q4q6 + 2q2q3q5q6.

Because the residue at infinity is

Res
∣∣
z=∞Δ(z, λ) = 32λ4H − λ2(g1 + g2)− (w1 + w2), f1 + f2 − 2H = 0,

the sum of these integrals of motion is equal to twice the Hamiltonian.

The function M12 is associated with the triple rotation of the configuration space R
6, because n = 3:

M12 = J14 + J25 + J36 = (q1p4 − p4q1) + (q2p5 − p2q5) + (q3p6 − p3q6). (2.14)

Various combinations of the basis elements f1,2, g1,2, and w1,2 are also associated with various double

rotations in R
6. For instance, the second-degree polynomial in momenta

f3 = 2(b1 + b2 + b3)H +
g1 + g2

4
− 2a1f1 − 2a2f2

is equal to

f3 = N2
12 +N2

13 +N2
23 + (p21 + p24)b1 + (p22 + p25)b2 + (p23 + p26)b3 + v3,

where
N12 = J12 + J45 = (q1p2 − p1q2) + (q4p5 − p4q5),

N13 = J13 + J46 = (q1p3 − p1q3) + (q4p6 − p4q6),

N23 = J23 + J56 = (q2p3 − p2q3) + (q5p6 − p5q6)

(2.15)

and

v3 = (q41 + q21q
2
2 + q21q

2
3 + 2q21q

2
4 + 2q1q2q4q5 + 2q1q3q4q6 + q44 + q24q

2
5 + q24q

2
6 + a1q

2
1 +

+ a2q
2
4)b1 + (q21q

2
2 + 2q1q2q4q5 + q42 + q22q

2
3 + 2q22q

2
5 + 2q2q3q5q6 + q24q

2
5 + q45 +

+ q25q
2
6 + a1q

2
2 + a2q

2
5)b2 + (q21q

2
3 + 2q1q3q4q6 + q22q

2
3 + 2q2q3q5q6 + q43 + 2q23q

2
6 +

+ q24q
2
6 + q25q

2
6 + q46 + a1q

2
3 + a2q

2
6)b3 − (q21 + q24)b

2
1 − (q22 + q25)b

2
2 − (q23 + q26)b

2
3.
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The second basis in the space of integrals of motion. We calculate the residues of the function

Δ(z, λ) in (2.6)

Δ(z, λ) =
det(zI − L(λ))

(z − b1 − 2λ2)(z − b2 − 2λ2)(z − b3 − 2λ2)

with respect to the variable z at three points z = bi + 2λ2:

Res
∣∣
z=bi+2λ2Δ(z, λ) = 4λ2Fi +Gi, i = 1, 2, 3.

The six coefficients Fi and Gi are, respectively, second- and fourth-degree polynomials in momenta.

The residue at infinity is

Res
∣∣
z=∞Δ(z, λ) = 8λ2H − (G1 +G2 +G3), 2H + F1 + F2 + F3 = 0.

The quadratic integrals of motion are determined by double rotations and double shifts (2.7) of the config-

uration space:

F1 = − N2
12

b1 − b2
− N2

13

b1 − b3
− p21 − p24 − (q21 + q22 + q23 + 2q24 + a1 − b1)q

2
1 −

− (q24 + q25 + q26 + a2 − b1)q
2
4 − 2(q2q5 + q3q6)q1q4,

F2 = − N2
21

b2 − b1
− N2

23

b2 − b3
− p22 − p25 − (q21 + q22 + q23 + 2q25 + a1 − b2)q

2
2 −

− (q24 + q25 + q26 + a2 − b2)q
2
5 − 2(q1q4 + q3q6)q2q5,

F3 = − N2
31

b3 − b1
− N2

32

b3 − b2
− p23 − p25 − (q21 + q22 + q23 − 2q26 + a1 − b3)q

2
3 −

− (q24 + q25 + q26 + a2 − b3)q
2
6 − 2(q1q4 + q2q5)q3q6.

The functions Nij = −Nji in (2.15) can be considered a realization of the elements of the Lie algebra so∗(3)
via double rotations of the configuration space R

6, because

{N12, N13} = N23, {N13, N23} = N12, {N23, N12} = N13.

The highest-order term of the second-degree polynomials in momenta, which is independent of F1, F2 and F3,

F4 = G1 +G2 +G3 − b1F1 − b2F2 − b3F3 − (a1 + a2)H =

=M2
12 −

a1 − a2
2

(p21 + p22 + p23 − p24 − p25 − p26 + V4)

contains the function M12 in (2.14), which is associated with a triple rotation in R
6. The corresponding

potential is given by

V4 = (q21 + q22 + q23 + q24 + q25 + q26)(q
2
1 + q22 + q23 − q24 − q25 − q26) +

+ (q21 + q22 + q23)a1 − (q24 + q25 + q26)a2 − (q21 − q24)b1 − (q22 − q25)b2 − (q23 − q26)b3.

For a1 = a2, the linear integral of motion M12 is a function of the basis elements Fk and Gk in the space

of integrals of motion.

Thus, in the case m = 2 and n = 3, we have presented seven integrals of motion that are quadratic in

momenta, f1, f2, f3 and F1, F2, F3, F4. Direct calculation shows that the corresponding Killing tensors of

valence 2 have a nontrivial Haantjes torsion. Among those integrals, only those with m + n − 1 = 4 are

functionally independent.

As before, we can verify that the fourth-degree polynomial in momenta G = trL4(λ = 0), Eq. (1.7),

cannot be expressed in terms of these second-degree polynomials in momenta.
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2.5. Example: so(m + n) with m = n = 3. We write the 6× 6 Lax matrix explicitly,

L(λ) =

(
L11 L12

L21 L22

)
, (2.16)

where the 3× 3 blocks are

L11 =

(
−2λ2+q21+q22+q23+a1 q1q4+q2q5+q3q6 q1q7+q2q8+q3q9

q1q4+q2q5+q3q6 −2λ2+q24+q25+q26+a2 q4q7+q5q8+q6q9

q1q7+q2q8+q3q9 q4q7+q5q8+q6q9 −2λ2+q27+q28+q29+a3

)
,

L22 =

(
2λ2−q21−q24−q27+b1 −q1q2−q4q5−q7q8 −q1q3−q4q6−q7q9
−q1q2−q4q5−q7q8 2λ2−q22−q25−q28+b2 −q2q3−q5q6−q8q9

−q1q3−q4q6−q7q9 −q2q3−q5q6−q8q9 2λ2−q23−q26−q29+b3

)
,

L12 =

( p1−2iλq1 p2−2iλq2 p3−2iλq3

p4−2iλq4 p5−2iλq5 p6−2iλq6
p7−2iλq7 p8−2iλq8 p9−2iλq9

)
, L21 =

(
p1+2iλq1 p4+2iλq4 p7+2iλq7
p2+2iλq2 p5+2iλq5 p8+2iλq8
p3+2iλq3 p6+2iλq6 p9+2iλq9

)
.

The Hamiltonian H in Eq. (2.3) is given by

H =
1

2

9∑

i=1

p2i +
(q21 + q22 + q23)

2

2
+

(q24 + q25 + q26)
2

2
+

(q27 + q28 + q29)
2

2
+

+ (q1q4 + q2q5 + q3q6)
2 + (q1q7 + q2q8 + q3q9)

2 + (q4q7 + q5q8 + q6q9)
2 −

− q21 + q24 + q27
2

b1 − q22 + q25 + q28
2

b2 − q23 + q26 + q29
2

b3 +

+
q21 + q22 + q23

2
a1 +

q24 + q25 + q26
2

a2 +
q27 + q28 + q29

2
a3.

The first basis in the space of integrals of motion. The residues of function (2.4)

Δ(z, λ) =
det(zI − L(λ))

(z − a1 + 2λ2)(z − a2 + 2λ2)(z − a3 + 2λ2)

with respect to the variable z determine a fourth-degree polynomials in the variable λ,

Res
∣∣
z=ai+2λ2Δ(z, λ) = 16λ4fi + λ2gi + si, i = 1, 2, 3.

Res
∣∣
z=∞Δ(z, λ) = 32Hλ4 − (g1 + g2 + g3)λ

2 − (s1 + s2 + s3).

The nine coefficients fi, gi, and si are second-, fourth-, and sixth-degree polynomials in momenta.

We write the quadratic integrals of motion as

f1 =
M2

12

a1 − a2
+

M2
13

a1 − a3
− p21 − p22 − p23 − (2q2

2 + 2q3
2 + q4

2 + q7
2 + a1 − b1)q1

2 −

− (2q3
2 − q5

2 − q8
2 − a1 + b2)q2

2 − (q3
2 + q6

2 + q9
2 + a1 − b3)q3

2 −
− 2q2q3(q5q6 + q8q9)− 2q1q2(q4q5 + q7q8)− 2q1q3(q4q6 + q7q9)− q1

4 − q2
4,

f2 =
M2

21

a2 − a1
+

M2
23

a2 − a3
− p24 − p25 − p26 − (q1

2 + 2q5
2 + 2q6

2 + q7
2 + a2 − b1)q4

2 −

− (q2
2 + 2q6

2 + q8
2 + a2 − b2)q5

2 − (q23 + q26 + q29 + a2 − b3)q
2
6 −

− q5q4(2q1q2 + 2q7q8)− 2q6q4(q1q3 + q7q9)− 2q5q6(q2q3 + q8q9)− q44 − q45 ,
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f3 =
M2

31

a3 − a1
+

M2
32

a3 − a2
− p27 − p28 − p29 − (q21 + q24 + 2q28 + 2q29 + a3 − b1)q

2
7 −

− (q22 + q25 + 2q29 + a3 − b2)q
2
8 − (q23 + q26 + q29 + a3 − b3)q

2
9 −

− 2q7q8(q1q2 + q4q5)− 2q7q9(q1q3 + q4q6)− 2q8q9(q2q3 + q5q6)− q47 − q48 .

The functions Mij occurring in the definition of the quadratic integrals of motion are

M12 = J14 + J25 + J36 = (q1p4 − p1q4) + (q2p5 − p2q5) + (q3p6 − p3q6),

M13 = J17 + J28 + J39 = (q1p7 − p1q7) + (q2p8 − p2q8) + (q3p9 − p3q9),

M23 = J47 + J58 + J69 = (q4p7 − p4q7) + (q5p8 − p5q8) + (q6p9 − p6q9).

(2.17)

The combination of the basis integrals of motion

f4 =
g1 + g2 + g2

4
+ 2a1f1 + 2a2f2 + 2a3f3

is also a quadratic polynomial in momenta, and its definition

f4 = −
( n∑

j=1

bj

)( nm∑

i=1

p2i

)
+

n∑

j=1

bj

(m−1∑

i=0

p2j+im

)
+N2

12 +N2
23 +N2

31 + u4(q)

contains the functions Nij :

N12 = J12 + J45 + J78 = (q1p2 − p1q2) + (q4p5 − p4q5) + (q7p8 − p7q8),

N13 = J13 + J46 + J79 = (q1p3 − p1q3) + (q4p6 − p4q6) + (q7p9 − p7q9),

N23 = J23 + J56 + J89 = (q2p3 − p2q3) + (q5p6 − p5q6) + (q8p9 − p8q9).

(2.18)

The functions Mij in (2.17) and Nij in (2.18) are associated with two independent realizations of elements

of the Lie algebra so∗(3) via triple rotations in R
9. The corresponding Poisson brackets are

{M12,M13} =M23, {M13,M23} =M12, {M23,M12} =M13,

{N12, N13} = N23, {N13, N23} = N12, {N23, N12} = N13,

{Nij,Mkl} = 0.

The second basis in the space of integrals of motion. The residues of function (2.6)

Δ(z, λ) =
det(zI − L(λ))

(z − b1 − 2λ2)(z − b2 − 2λ2)(z − b3 − 2λ2)

with respect to the variable z are

Res
∣∣
z=bi+2λ2Δ(z, λ) = 16λ4Fi + λ2Gi + Si, i = 1, 2, 3,

Res
∣∣
z=∞Δ(z, λ) = 32Hλ4 − (G1 +G2 +G3)λ

2 − (S1 + S2 + S3).

The nine coefficients Fi, Gi and Si are respectively second-, fourth-, and sixth-degree polynomials in

momenta.
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We write the quadratic integrals of motion as

F1 = − N2
12

b1 − b2
− N2

13

b1 − b3
− p21 − p24 − p27 − (q21 + q22 + q23 + q24 + q27 + a1 − b1)q

2
1 −

− (q21 + q24 + q25 + q26 + q27 + a2 − b1)q
2
4 − (q21 + q24 + q27 + q28 + q29 + a3 − b1)q

2
7 −

− 2q1q4(q2q5 + q3q6)− 2q1q7(q2q8 + q3q9)− 2q4q7(q5q8 + q6q9),

F2 = − N2
21

b2 − b1
− N2

23

b2 − b3
− p22 − p25 − p28 − (q21 + q22 + q23 + q25 + q28 + a1 − b2)q

2
2 −

− (q22 + q24 + q25 + q26 + q28 + a2 − b2)q
2
5 − (q22 + q25 + q27 + q28 + q29 + a3 − b2)q

2
8 −

− 2q2q5(q1q4 + q3q6)− 2q2q8(q1q7 + q3q9)− 2q5q8(q4q7 + q6q9),

F3 = − N2
31

b3 − b1
− N2

32

b3 − b2
− p23 − p26 − p29 − (q21 + q22 + q23 + q26 + q29 + a1 − b3)q

2
3 −

− (q23 + q24 + q25 + q26 + q29 + a2 − b3)q
2
6 − (q23 + q26 + q27 + q28 + q29 + a3 − b3)q

2
9 −

− 2q3q6(q1q4 + q2q5)− 2q3q9(q1q7 + q2q8)− 2q6q9(q4q7 + q5q8).

The functions Nkl occurring in these definitions are given in (2.18).

The combination of the basis integrals of motion

F4 =
1

8
(G1 +G2 +G3)− b1F1 − b2F2 − b3F3

is also a second-degree polynomial in momenta and is independent of F1, F2, and F3:

F4 =
1

2

( m∑

j=1

aj

)( n∑

i=1

p2i

)
− 1

2

m−1∑

j=0

aj+1

( n∑

i=1

p2jn+i

)
+

+
M2

12

2
+
M2

13

2
+
M2

23

2
+ U4(q).

Thus, in the case m = n = 3, we have presented eight integrals of motion quadratic in momenta, f1,

f2, f3, f4 and F1, F2, F3, F4, for which the corresponding Killing tensors of valence 2 have a nontrivial

Haantjes torsion. Among them, only the m+ n− 1 = 5 integrals of motion are functionally independent.

As before, we can verify that the fourth-degree polynomial in momenta G = trL4(λ = 0), Eq. (1.7),

cannot be expressed in terms of these second-degree polynomials in momenta.

3. Symmetric spaces of type C.I

The group Sp(n) is associated with the root space Cn, and its matrix representation can be realized

using symplectic and unitary 2n× 2n matrices. Because

Sp(n)

U(n)
⊂ SU(2n)

S(U(n)× U(n))
,

we can obtain the required Lax matrices by means of Lax matrices (2.1) that have already been used.

Roughly speaking, by imposing conditions on the Cartesian coordinates in definition (2.1) with m = n,

we can make the n × n matrices Q and P in (2.2) symmetric, and then divide the nondiagonal elements

of P by 2 and impose the appropriate restrictions on the parameters ai and bi. Following [28], we then

obtain a nonstandard constant metric in Euclidean space.

Below, we write these Lax matrices for n = 2 and n = 3 and discuss the appropriate quadratic integrals

of motion.
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3.1. Example: sp(n) with n = 2. In this case, the 4× 4 Lax matrix is given by

L(λ) =

⎛

⎝
−2λ2+q21+q22+a1 q1q2+q2q3 p1−2iλq1

p2
2 −2iλq2

q1q2+q2q3 −2λ2+q22+q23+a2
p2
2 −2iλq2 p3−2iλq3

p1+2iλq1
p2
2 +2iλq2 2λ2−q21−q22+b1 −q1q2−q2q3

p2
2 +2iλq2 p3+2iλq3 −q1q2−q2q3 2λ2−q22−q23+b2

⎞

⎠ , (3.1)

where

ai = −bi. (3.2)

The Hamiltonian has the form

H = T + V =
p21
2

+
p22
4

+
p23
2

+
(q21 + 2q22 + q23)

2

2
− (q1q3 − q22)

2 − b1(q
2
1 + q22)− b2(q

2
2 + q23). (3.3)

It can be easily verified that this Hamiltonian corresponds to case (13c) in [28].

After the canonical change of variables p2 → √
2p2, q2 → q2/

√
2, we obtain the standard metric

g = diag(1, 1, 1) in Euclidean space and an integrable fourth-degree potential

V =
1

2
(q21 + q22 + q23)

2 − (2q1q3 − q22)
2

4
, (3.4)

where we set bi = ai = 0 for brevity. This potential is absent in the classification of integrable fourth-

degree potentials in [43] based on the Singlin–Joshid method, because the authors of that paper restricted

themselves to considering a particular ansatz for potentials in the form

Ṽ = q41 + aq21q
2
2 + bq21q

2
3 + cq42 + dq22q

2
3 + eq43 , a, b, c, d, e ∈ R,

while potential (3.4) includes the term q1q3q
2
2 that is linear in q1 and q3.

Basis in the space of integrals of motion. The residues of the functions

Δ(z, λ) =
det(Iz − L(λ))

(z + 2λ2 − a1)(z + 2λ2 − a2)
, Δ(z, λ) =

det(Iz − L(λ))

(z − 2λ2 − b1)(z − 2λ2 − b2)

coincide with each other up to a sign and the substitution a1 − a2 = −(b1 − b2), which correspond to

condition (3.2) imposed on the parameters.

Calculating these residues

Res
∣∣
z=bi+2λ2Δ(z, λ) = −4λ2Fi +Gi, i = 1, 2,

Res
∣∣
z=∞Δ(z, λ) = 8λ2H − (G1 +G2),

we find the conditions for the coefficients

F1 + F2 − 2H = 0, G1 +G2 + 2(b1 + b2)H = 0.

Thus, there are two second-degree polynomials in momenta F1,2 and one forth-degree polynomial in

momenta G1,2 or G, Eq. (1.7), which are independent of each other and therefore form a basis in the

space of integrals of motion.

In [28], the authors claim that because the three integrals of motion F1, F2, and G1+G2 are quadratic

polynomials in momenta, there is a point (i.e., coordinate) canonical transformation that allows separat-

ing variables in the Hamilton–Jacobi equation. Obviously, the authors just did not recognize that these

quadratic integrals of motion are functionally dependent, and therefore their statement on the separation

of variables is incorrect.
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We write the quadratic integrals of motion as

F1 = p21 +
p22
4

+
M2

12

b1 − b2
+ (q21 + 2q22 + a1 − b1)q

2
1 + (q21 + q22 + q23 + 2q1q3 − b1 − b2)q

2
2 ,

F2 = p23 +
p22
4

+
M2

12

b2 − b1
+ (2q22 + q23 + a2 − b2)q

2
3 + (q21 + q22 + q23 + 2q1q3 − b2 − b1)q

2
2 ,

where

M12 =
1

2
(q1p2 − 2q2p1 − q3p2 + 2q2p3).

For b1 = b2, we have a linear integral of motionM12 associated with a double rotation in R
3. After reduction

with respect to the corresponding symmetry, we obtain a quadratic–linear Hamiltonian H commuting with

the fourth-degree integral G in (1.7) and describing integrable motion on the plane R
2 in presence of

a magnetic field.

Proposition 5. The general solution K, Eq. (1.10), of Killing equation (1.6) depends on 20 param-

eters in the case of the three-dimensional Euclidean space R
3. Using modern software, we can directly

prove that there are only two independent solutions of Eq. (1.11) for the potential V in (1.12) entering

Hamiltonian (3.3), and they are associated with the integrals of motion F1,2.

Moreover, substituting the Killing tensors corresponding to the integrals of motion F1,2 and the

unknown function V (q1, q2, q3) in Eq. (1.11), we obtain an integrable potential that is more general than

the potential in (3.3). In fact, we consider the quadratic integrals of motion F1, F2, and 2H = F1 + F2,

H = p21 + p22 + p23 + V (q),

and

F1 = 2p21 + p22 +
(q1p2 − p1q2 + q2p3 − p2q3)

2

b1 − b2
+ U1(q),

F2 = 2p23 + p22 +
(q1p2 − p1q2 + q2p3 − p2q3)

2

b2 − b1
+ U2(q).

Proposition 6. The general solution Vg of Eq. (1.11) in this case is given by

Vg = c1

(
q41 + 2q21q

2
2 + 2q1q

2
2q3 +

q42
2

+ 2q22q
2
3 + q43 − 2(q21 + q22)(b1 − b2)

)
+

+ c2(2q
3
1 + 3q22(q1 + q3) + 2q33 − 2(b1 − b2)q1) + c3(q

2
1 + q22 + q23) +

+ c4(q1 + q3) +
c5
q22
, ci ∈ R, (3.5)

or

Vg =
∑

α,β,γ,δ

R−α,β,γ,−δ(c1q
αqβqγqδ + c2ζ

αqβqγqδ + c3ζ
αζβqγqδ + c4ζ

αζβζγqδ)−

− 2c1(q
2
1 + q22)(b1 − b2)− 2c2(b1 − b2)q1 +

c5
q22
,

where ζ = (1, 0, 1) is a constant vector.

We do not write the corresponding integral of motion (1.7).

Setting c1 = 0 in all integrals of motion in what follows, we obtain a three-dimensional integrable

analogue of the Hénon–Heiles system with a fourth-degree integral in momenta. According to [39], this

integrable system with a cubic potential is associated with the third stationary flow of the vector Korteweg–

de Vries equation.
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3.2. Example: sp(n) with n = 3. Lax matrix (2.16) is given by

L(λ) =

(
L̂11 L̂12

L̂21 L̂22

)
,

where the 3× 3 blocks are

L̂11 =

(
−2λ2+q21+q22+q23+a1 q1q2+q2q4+q3q5 q1q3+q2q5+q3q6

q1q2+q2q4+q3q5 −2λ2+q22+q24+q25+b1−b2+a1 q2q3+q4q5+q5q6

q1q3+q2q5+q3q6 q2q3+q4q5+q5q6 −2λ2+q23+q25+q26+b1−b3+a1

)
,

L̂22 =

(
2λ2−q21−q22−q23+b1 −q1q2−q2q4−q3q5 −q1q3−q2q5−q3q6

−q1q2−q2q4−q3q5 2λ2−q22−q24−q25+b2 −q2q3−q4q5−q5q6

−q1q3−q2q5−q3q6 −q2q3−q4q5−q5q6 2λ2−q23−q25−q26+b3

)
,

L̂12 =

(
p1−2iλq1

p2
2 −2iλq2

p3
2 −2iλq3

p2
2 −2iλq2 p4−2iλq4

p5
2 −2iλq5

p3
2 −2iλq3

p5
2 −2iλq5 p6−2iλq6

)
, L̂21 =

(
p1+2iλq1

p2
2 +2iλq2

p3
2 +2iλq3

p2
2 +2iλq2 p4+2iλq4

p5
2 +2iλq5

p3
2 +2iλq3

p5
2 +2iλq5 p6+2iλq6

)
.

In this case, we have to impose the following restrictions on the parameters in the original Lax

matrix (2.16), which have been arbitrary up to now:

ai = −bi.

As before, we define a basis in the space of integrals of motion using residues of the function

Δ =
det(Iz − L(λ))

(z − 2λ2 − b1)(z − 2λ2 − b2)(z − 2λ2 − b3)

with respect to the variable z at the finite points z = bi + 2λ2

Res
∣∣
z=bi+2λ2Δ(z, λ) = −16λ4Fi + λ2Gi + Si.

We restrict ourself to the consideration of quadratic integrals of motion

F1 =
M2

12

b1 − b2
+

M2
13

b1 − b3
+ T1 + V1, T1 = p21 +

p22
4

+
p23
4
,

F2 =
M2

21

b2 − b1
+

M2
23

b2 − b3
+ T2 + V2, T2 =

p22
4

+ p24 +
p25
4
,

F3 =
M2

31

b3 − b1
+

M2
32

b3 − b2
+ T3 + V3, T3 =

p23
4

+
p25
4

+ p26,

whose definition involves functions associated with triple rotations in configuration space, which after

a suitable canonical transformation reduces the metric to the standard unit metric:

M12 = −M21 =
1

2
(q1p2 − 2p1q2 + 2q2p4 − p2q4 + q3p5 − p3q5),

M13 = −M31 =
1

2
(q1p3 − 2p1q3 + q2p5 − p2q5 + 2q3p6 − p3q6),

M23 = −M32 =
1

2
(q2p3 − p2q3 + q4p5 − 2p4q5 + 2q5p6 − p5q6).

For brevity, we omit explicit expressions for the potentials Vk.

The residue at infinity generates a relation among the quadratic integrals,

F1 + F2 + F3 − 2H = 0
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and relations among other integrals of motion:

1

4
(G1 +G2 +G3) + b1F1 + b2F2 + b3F3 + 2(b1 + b2 + b3)H = 0

and

S1 + S2 + S3 − 1

4
(b1G1 + b2G2 + b3G3)− (b21 − b2b3)F1 − (b22 − b1b3)F2 − (b23 − b1b2)F3 = 0.

Of the nine dependent integrals of motion Fi, Gi and Si constructed in this way, we have to select six

independent integrals. For instance, we can take three quadratic integrals of motion, two fourth-degree

integrals of motion, and one sixth-degree integral in momenta.

4. Symmetric spaces of type D.III

Because
SO(2n)

U(n)
⊂ SU(2n)

S(U(n)× U(n))
,

we can use reduction for constructing integrable systems corresponding to the symmetric spaces associated

with the Dn root space.

In fact, we take Lax matrix (2.1) with m = n and, imposing conditions on the Cartesian coordinates

and the corresponding momenta, we make the n × n matrices Q and P in (2.2) antisymmetric, and then

impose the appropriate restrictions on the parameters ai and bi in (2.1).

4.1. Example: so(2n) with n = 2. After the reduction, the 8×8 Lax matrix (2.1) remains a block

matrix

L(λ) =

(
L̄11 L̄12

L̄21 L̄22

)
,

where the two diagonal blocks are the symmetric matrices

L̄11 =

⎛

⎝
q21+q22+q23+a1−2λ2 q2q4+q3q5 −q1q4+q3q6 −q1q5−q2q6

q2q4+q3q5 q21+q24+q25+a2−2λ2 q1q2+q5q6 q1q3−q4q6

−q1q4+q3q6 q1q2+q5q6 q22+q24+q26+a3−2λ2 q2q3+q4q5

−q1q5−q2q6 q1q3−q4q6 q2q3+q4q5 q23+q25+q26+a4−2λ2

⎞

⎠ ,

L̄22 =

⎛

⎝
2λ2−q21−q22−q23+b1 −q2q4−q3q5 q1q4−q3q6 q1q5+q2q6

−q2q4−q3q5 2λ2−q21−q24−q25+b2 −q1q2−q5q6 −q1q3+q4q6
q1q4−q3q6 −q1q2−q5q6 2λ2−q22−q24−q26+b3 −q2q3−q4q5

q1q5+q2q6 −q1q3+q4q6 −q2q3−q4q5 2λ2−q23−q25−q26+b4

⎞

⎠ ,

and the off-diagonal blocks are antisymmetric matrices of the form

L̄12 =

(
0 p1−2iλq1 p2−2iλq2 p3−2iλq3

−p1+2iλq1 0 p4−2iλq4 p5−2iλq5
−p2+2iλq2 −p4+2iλq4 0 p6−2iλq6
−p3+2iλq3 −p5+2iλq5 −p6+2iλq6 0

)
,

L̄21 =

(
0 −p1−2iλq1 −p2−2iλq2 −p3−2iλq3

p1+2iλq1 0 −p4−2iλq4 −p5−2iλq5
p2+2iλq2 p4+2iλq4 0 −p6−2iλq6
p3+2iλq3 p5+2iλq5 p6+2iλq6 0

)
.

In this case, the parameters (arbitrary up to now) have to satisfy the restrictions

a2 − a1 = b1 − b2, a3 − a1 = b1 − b3, a4 − a1 = b1 − b4.

Four residues of the function

Δ =
det(Iz − L(λ))

(z − 2λ2 − b1)(z − 2λ2 − b2)(z − 2λ2 − b3)(z − 2λ2 − b4)
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with respect to the variable z at the points z = bi + 2λ2 are the sixth-degree polynomials in λ:

Res t
∣∣
z=bi+2λ2Δ(z, λ) = −64λ6Fi + λ4Gi + λ2Si +Wi.

The coefficients Fi, Gi, Si, and Wi are second-, fourth-, sixth-, and eighth-degree polynomials in momenta.

As a result, we have 16 dependent integrals of motion and the residue at infinity yields various relations

among these polynomials, for instance,

F1 + F2 + F3 + F4 − 2H = 0.

We present only the highest-order part of the quadratic integrals of motion and omit explicit expressions

for the appropriate potentials Vk:

F1 =
M2

12

b1 − b2
+

M2
13

b1 − b2
+

M2
14

b1 − b4
+ T1 + V1,

F2 =
M2

21

b2 − b1
+

M2
23

b2 − b3
+

M2
24

b2 − b4
+ T2 + V2,

F3 =
M2

31

b3 − b1
+

M2
32

b3 − b2
+

M2
34

b3 − b4
+ T3 + V3,

F4 =
M2

41

b4 − b1
+

M2
42

b4 − b2
+

M2
43

b4 − b3
+ T4 + V4.

The functions appearing in the definition of the integrals of motion,

M12 = (q2p4 − p2q4) + (q3p5 − p3q5), M13 = (q1p4 − p1q4) + (q6p3 − p6q3),

M14 = (q1p5 − p1q5) + (q2p6 − p2q6), M23 = (q1p2 − p1q2) + (q5p6 − p5q6),

M24 = (q1p3 − p1q3) + (q6p4 − p6q4), M34 = (q2p3 − p2q3) + (q4p5 − p4q5)

are associated with double rotations of the configuration space R
6, while the functions

T1 = p21 + p22 + p23, T2 = p21 + p24 + p25,

T3 = p22 + p24 + p26, T4 = p23 + p25 + p26

are determined by the sequences of three shifts along the coordinate axes. Direct calculation shows that

the Haantjes torsion of the corresponding Killing tensors is not zero.

Of the sixteen dependent integrals of motion Fi, Gi, Si, and Wi, we have to select six independent

integrals of motion, four of which can be quadratic polynomials in momenta.

5. Symmetric spaces of type BD.I

The symmetric space
SO(m+ n)

SO(m) × SO(n)

is Hermitian only if m = 2, because so(m) + so(n) has no center in the general case. At m = 2, the so(2)

subalgebra is the center, and, depending on whether n is even or odd, this symmetric space is associated

with the B(n+1)/2 or D(n+2)/2 root system.
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5.1. Example: SO(2) × SO(4) � S(U(1) × U(3)). Using the Weyl–Cartan basis from [26],

we construct 6× 6 Lax matrix (1.3) in the form

L(λ) =

(
L̃11 L̃12

L̃21 L̃22

)
,

where

L̃11 =

(
−2λ2+2q21+2q22+2q23+2q24+a1 p1−2iλq1 p2−2iλq2

p1+2iλq1 −2q21+2q23+a2 −2q1q2+2q3q4

p2+2iλq2 −2q1q2+2q3q4 −2q22+2q24+a3

)
,

L̃22 =

(
2λ2−2q21−2q22−2q23−2q24+b1 −p1−2iλq1 −p2−2iλq2

−p1+2iλq1 2q21−2q23+b2 2q1q2−2q3q4

−p2+2iλq2 2q1q2−2q3q4 2q22−2q24+b3

)
,

L̃12 =

(
0 p3−2iλq3 p4−2iλq4

−p3+2iλq3 0 −2q1q4+2q2q3
−p4+2iλq4 2q1q4−2q2q3 0

)
,

L̃21 =

(
0 −p3−2iλq3 −p4−2iλq4

p3+2iλq3 0 2q1q4−2q2q3
p4+2iλq4 −2q1q4+2q2q3 0

)
.

The parameters involved in the Lax matrix satisfy the relations

a2 = a1 + b1 − b2, a3 = a1 + b1 − b3.

In this case, the Hamiltonian H in (2.3) has the form

H = p21 + p22 + p23 + p24 + 4(q21 + q22 + q23 + q24)
2 − 8(q1q3 + q2q4)

2 +

+ 2(b2 − b1)q
2
1 + 2(b3 − b1)q

2
2 + 2(a1 − b2)q

2
3 + 2(a1 − b3)q

2
4 .

This Hamiltonian coincides with Hamiltonian (2.9) up to a scaling transformation and the canonical trans-

formation qi → −qi and pi → −pi of one of the coordinates and momenta (see a discussion of the isomor-

phism of root systems and the corresponding integrable systems in [26]).

5.2. Example: so(2n+ 1) with n = 2. We consider the realization of elements of the Lie algebra

so(2n+ 1) by (2n+ 1)× (2n+ 1) matrices X satisfying the relation

X + SXTS−1 = 0, S =

2n+1∑

k=1

(−1)k+1Ek,2n+2−k,

where Eij are matrices with the only nonzero element at the intersection of the ith row and jth column [34].

In this case, the Cartan evolution is associated with the element A = E1,1 −E2n+1,2n+1 of the Cartan

subalgebra, while Lax matrix (1.3) has the block structure

L(λ) =

⎛

⎜⎝
2λ2 �xT 0

�y 0 s · �x
0 �y T · s −2λ2

⎞

⎟⎠+ C + Λ,

where the central zero block in the first term has the size (2n − 1) × (2n − 1), the elements of the vector

columns x and y are

�xi = pi − 2iqi, �yi = pi + 2iqi, i = 1, . . . , 2n− 1,
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and s is the (2n− 1)× (2n− 1) matrix

s =

2n−1∑

k=1

(−1)kEk,2n−k.

The matrix C corresponds to the term
∑

α,β qαqβ[eα, e−β ] in definition (1.3), and Λ is a numerical matrix

satisfying the relation

Λ + SΛTS−1 = 0

and defining the shift of the orbit as follows from [29].

The first nontrivial example appears at n = 2 [26]. For the corresponding symmetric space, we write

an explicit expression for the 5× 5 Lax matrix (1.3):

L(λ) =

⎛

⎝
2λ2 p1−2iλq1 p2−2iλq2 p3−2iλq3 0

p1+2iλq1 0 0 0 −p3+2iλq3
p2+2iλq2 0 0 0 p2−2iλq2
p3+2iλq3 0 0 0 −p1+2iλq1

0 −p3−2iλq3 p2+2iλq2 −p1−2iλq1 −2λ2

⎞

⎠+ C + Λ,

where

C = 2

⎛

⎜⎝

−q21−q22−q23 0 0 0 0

0 q21−q23 (q1+q3)q2 0 0
0 (q1+q3)q2 0 (q1+q3)q2 0

0 0 (q1+q3)q2 −q21+q23 0

0 0 0 0 q21+q22+q23

⎞

⎟⎠ , Λ = 2

⎛

⎝
a1 0 0 0 0
0 a2 a3 0 0
0 a3 0 a3 0
0 0 a3 −a2 0
0 0 0 0 −a1

⎞

⎠ .

This example is interesting because the matrix Λ in this representation is not necessarily diagonal.

Hamiltonian (1.4) is given by

H =
1

4
trL2

∣∣
λ=0

−2a21 − 2a22 − 4a23 = p21 + p22 + p23 + 4(q21 + q22 + q23)
2 −

− 2(2q1q3 − q22)
2 − 4(a1 − a2)q

2
1 − 4(a1 + a2)q

2
3 − 4q2(a1q2 − 2a3(q1 + q3)).

The quadratic integral of motion is

F = (q1p2 − p1q2 + q2p3 − q3p2)
2 − (p1 + p3)(a2(p1 − p3) + 2a3p2) + U,

where

U = 4(q1 + q3)(a2(q1 − q3) + 2a3q2)(a1 − q21 − q22 − q23)− 4(a22 + a23)(q
2
1 + q23)−

− 8q2(q1 − q3)a2a3 − 8(q1q3 + q22)a
2
3,

determines the second-order Killing tensor with a nonzero Haantjes torsion.

The characteristic equation for this Lax matrix is

z5 − 2(2λ4 + 4a1λ
2 + 2a21 + 2a22 + 4a23 +H)z3 +

+ [16(a22 + 2a23)λ
4 + 8(F + 4a1(a

2
2 + 2a23))λ

2 +G/2−H2]z = 0.

The highest-order term in the fourth-degree polynomial in momenta G that appears in this equation is

determined by the curvature tensor R:

G = −1

4

∑

α,β,γ,δ

R−α,β,γ,−δq
αqβqγqδ + · · · =

= 4(p21 + p22 + p23)
2 − 2(2p1p3 − p22)

2 + · · · .
At ai = 0, we have the Hamiltonian in (3.3), (3.4) up to a canonical transformation,

H =
1

4
trL2

∣∣
λ=0

= p21 + p22 + p23 + 4(q21 + q22 + q23)
2 − 2(2q1q3 − q22)

2,

which follows from the isomorphism of the root systems (see [26], [34]). At ai �= 0, the terms missed in [28]

appear in the potential.
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5.3. Example: so(2n+1) with n = 3. In this case, 7× 7 Lax matrix (1.3), where we temporarily

set Λ = 0, is given by

L(λ) =

⎛

⎜⎜⎜⎝

2λ2 p1−2iλq1 p2−2iλq2 p3−2iλq3 p4−2iλq4 p5−2iλq5 0
p1+2iλq1 0 0 0 0 0 −p5+2iλq5
p2+2iλq2 0 0 0 0 0 p4−2iλq4
p3+2iλq3 0 0 0 0 0 −p3+2iλq3
p4+2iλq4 0 0 0 0 0 p2−2iλq2
p5+2iλq5 0 0 0 0 0 −p1+2iλq1

0 −p5−2iλq5 p4+2iλq4 −p3−2iλq3 p2+2iλq2 −p1−2iλq1 −2λ2

⎞

⎟⎟⎟⎠+

+ 2

⎛

⎜⎜⎜⎜⎜⎝

−∑5
k=1 q2k 0 0 0 0 0 0

0 q21−q25 q1q2+q4q5 q3(q1−q5) q1q4+q2q5 0 0

0 q1q2+q4q5 q22−q24 q3(q2+q4) 0 q1q4+q2q5 0
0 q3(q1−q5) q3(q2+q4) 0 q3(q2+q4) −q3(q1−q5) 0

0 q1q4+q2q5 0 q3(q2+q4) −q22+q24 q1q2+q4q5 0

0 0 q1q4+q2q5 −q3(q1−q5) q1q2+q4q5 −q21+q25 0

0 0 0 0 0 0
∑5

k=1 q2k

⎞

⎟⎟⎟⎟⎟⎠
. (5.1)

The corresponding Hamiltonian

H =
1

4
trL2

∣∣
λ=0

=

5∑

k=1

p2k + 4

( 5∑

k=1

q2k

)2

− 2(2q1q5 − 2q2q4 + q23)
2 (5.2)

commutes with the four integrals of motion

R1 = (q1p2 − p1q2) + (q4p5 − p4q5), R2 = (q2p3 − p2q3) + (q3p4 − p3q4),

R3 = (q1p3 − p1q3) + (q5p3 − p5q3), R4 = (q1p4 − p1q4) + (q2p5 − p2q5)

such that

{R1, R2} = −R3, {R1, R3} = R2, {R1, R4} = 0,

{R4, R2} = R3, {R4, R3} = −R2, {R2, R3} = R4 −R1.

As before, the existence of these integrals of motion is associated with the invariance of the Hamiltonian

under rotations of the configuration space R
5.

The characteristic equation for the Lax matrix

det(z · I − L(λ)) = z7 − 2(2λ4 +H)z5 + (8F1λ
2 +G1)z

3 − 4G2z = 0

includes four independent integrals of motion in involution, H , G1, and

F1 = R2
1 +R2

2 +R2
3 +R2

4, G2 = (R1 +R4)
2[(R1 −R4)

2 + 2(R2
2 +R2

3)].

Using the Hamiltonian and the fourth-degree polynomialG1, we can obtain the integral of motion G in (1.7),

whose principal part is determined by the curvature tensor R in (1.4), (2.9):

G = 2G1 + 2H2 = −1

4

∑

α,β,γ,δ

R−α,β,γ,−δp
αpβpγpδ + · · · =

= −4(p21 + p22 + p33 + p24 + p25)
2 + 2(2p1p5 − 2p2p4 + p23)

2 + · · · .

This integral of motion is independent of the Hamiltonian H and linear integrals of motion Rk.
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Because {Rk, G1} = 0, we have a completely integrable system with five independent integrals of

motion in involution, for instance,

R1, R4, R
2
2 +R2

3, H, G1.

Nevertheless, the spectral invariants of Lax matrix (5.1) generate only four integrals of motion, similarly to

the complete Toda chain [35].

Adding a constant nondiagonal matrix to L(λ) in (5.1) ,

Λ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 0 0 0 0 0

0 a2 0 0 0 0 0

0 0 a3 a4 0 0 0

0 0 a4 0 a4 0 0

0 0 0 a4 −a3 0 0

0 0 0 0 0 −a2 0

0 0 0 0 0 0 −a1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

we add the terms quadratic in coordinates to the original Hamiltonian (5.2):

H =
1

4
trL2

∣∣
λ=0

−2a21 − 2a22 − 2a23 − 4a24 =

=

5∑

k=1

p2k + 4

( 5∑

k=1

q2k

)2

− 2(2q1q5 − 2q2q4 + q23)
2 + (a1 − a2)q

2
1 +

+ (a1 − a3)q
2
2 + q3(a1q3 − 2a4q2 − 2a4q4) + (a1 + a3)q

2
4 + (a2 + a1)q

2
5 .

The characteristic equation for the Lax matrix

z7 − 4(λ4 − 2λ2a1 + a21 + a22 + a23 + 2a24 +H/2)z5 + (16(a22 + a23 + 2a24)λ
4 +

+ F1λ
2 +G1)z

3 − [64a22(a
2
3 + 2a24)λ

4 + F2λ
2 +G2]z = 0

then contains a sufficient number of commuting and independent integrals of motion to ensure the inte-

grability by the Liouville theorem. There are three polynomials H , F1, and F2 of the second degree in

momenta and two polynomials G1 and G2 of the fourth degree.

Thus, we can say that the constant term Λ in Lax matrix (1.3) allows removing degeneration in a certain

sense and obtaining the complete set of integrals of motion that suffices to prove the integrability of the

system by the Liouville theorem.

6. Conclusions

The problem of the existence of quadratic integrals of motion for Hamiltonians in the natural form

H =
∑

i,j

gijpipj + V (q)

has been under discussion for a long time, starting with the papers by Jacobi, Levi-Civita, and Darboux,

and until now. Most of the classic and contemporary papers study the problem of the existence of integrable

geodesic flows at V (q) = 0 or the problem of the equivalent metrics first. After that, they describe the class

of potentials V (q) �= 0 that can be added to a given geodesic flow and preserve the integrability property.

It turns out that abandoning this common such that strategy allows constructing quadratic conservation

laws for a sufficiently wide class of Hamiltonians in the natural form, describing motion in Euclidean space.

Some examples were constructed in [22]–[25] by directly solving both the Killing equation (1.6) and the

equation for potential (1.11).
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In this paper, the quadratic conservation laws for Newton equations (1.5) are constructed using the

known Lax representation [26], [28], [29]. The corresponding Killing tensors are associated with special

linear combinations of basis rotations about the coordinate axes (these combinations form a representation

of the rotation subalgebra) and with a sequences of shifts along these axes. For instance, to construct

the integrals of motion in four-dimensional Euclidean space, we use the right and left isoclinic rotations

(Clifford shifts), which are classical objects in Euclidean geometry and the theory of Clifford algebra.

Open problems include a rigorous mathematical definition of this class of Killing tensors and a construc-

tion of the corresponding integrals of motion of highest degrees in momenta in the framework of standard

Euclidean, Riemannian, and pseudo-Riemannian geometries, i.e., without using the Lax matrices.
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