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ON AN ALTERNATIVE STRATIFICATION OF KNOTS

E. N. Lanina,∗† A. V. Popolitov,∗†‡ and N. S. Tselousov∗†

We introduce an alternative stratification of knots: by the size of the lattice on which a knot can be

first met. Using this classification, we find the fraction of unknots and knots with more than 10 minimal

crossings inside different lattices and answer the question of which knots can be realized inside 3× 3 and

5× 5 lattices. In accordance with previous research, the fraction of unknots decreases exponentially with

the growth of the lattice size. Our computational results are consistent with theoretical estimates for the

number of knots with a fixed crossing number inside lattices of a given size.
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1. Introduction

The study of knot representations is a central theme in knot theory. We are especially interested

in the so-called universal representations, which contain all knots. These include the minimum braid

representations, Morse link representations, arc representations, and many others. However, for example,

arborescent knots are not universal, because an arbitrary knot cannot be represented in arborescent form.

Different knot representations are useful for different purposes. For example, the braid representation

allows calculating quantum knot invariants using the Reshetikhin–Turaev algorithm [1]–[14]. The HOMFLY

polynomials for arborescent knots are easier to calculate in terms of modular transformation matrices S

and T and their conjugates [15]–[19].

In this paper, we investigate classical knot theory questions with the use of the so-called lattice repre-

sentation. A lattice representation is defined on a square lattice of size (2n+ 1) × (2n+ 1). Each node of

the lattice is equipped with one of two crossings, denoted as + and − . It has been proved that each knot

has at least one lattice diagram [20], and hence this representation is universal. Moreover, each lattice knot

in a fixed-size lattice can also be realized inside any bigger lattice. We can therefore introduce the knot

representation by lattice diagrams (also see Sec. 2).
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The set of all distinct knots K is infinite and to deal with this infinity, the set is usually stratified

(split) into finite parts Kn, n = 1, 2, . . . according to the value of some simple knot invariant. Commonly

used is the splitting by the crossing number, i.e., the minimal number of crossings among all the knot

representations for a given knot. Knots with small crossing numbers are collected in the celebrated Rolfsen

table (see, e.g., [21]).

After a stratification of the knot set K is chosen, one can ask how this splitting relates to some other

splitting of the knot set into different classes; for instance, what is the asymptotic fraction of different knot

classes (with respect to the latter splitting) in the Kn stratum as n → ∞?

Indeed, following Thurston’s famous theorem, all knots are divided into three types: torus, satellite,

and hyperbolic. For knots classification by a crossing number n, it was proved that hyperbolic knots do not

dominate as n → ∞, and it was argued that satellite knots do dominate [22]. However, this result is rather

unexpected because based on numerical evidence for small n it had long been believed that hyperbolic knots

dominate for infinitely large crossing numbers due to a well-known conjecture (see [23], p.119). It was also

obtained that the number of prime knots grows exponentially with n [24]. Given an alternative stratification

of knots, one can ask whether these counterintuitive statements are stable/sensitive with respect to changing

the stratification. In particular, which type of knots dominates if we split knots by the minimal size of their

respective lattice diagram? What is the distribution of knots coming from a fixed-size lattice? In this short

note, we give some theoretical bounds on the number of different types of knots in a fixed-size lattice (see

Sec. 4) and present some numerical computation results to answer these questions (see Sec. 5).

The results in this paper are as follows. First, we derive the upper and lower bounds for the number

of knots with fixed crossing numbers that can be realized inside a fixed-size lattice (Sec. 4). Second, we

confirm our bounds by numerical computations of knots that can be obtained from 3× 3 and 5× 5 lattice

diagrams (Sec. 5.1). In addition, we calculate the number of unknots and knots with crossing numbers

greater than 10 inside bigger lattices (Sec. 5.2).

Lattice diagrams are also interesting because they connect knot theory and statistical models. The rela-

tion between knot theory and statistical mechanics was first noted by Jones [25]. In that paper, a connection

between the Jones polynomials and the Potts model was established. Later, Jones developed a method to

compute the HOMFLY polynomials using vertex models. This method was also used by Turaev for the

Kauffman polynomials [26]. The connection between knot theory and statistical mechanics was formalized

and further extended by Jones [27] with the use of spin models. The connection between exactly solvable

statistical models and knot theory is interesting because it can lead to progress both in proving mathe-

matical theorems in knot theory (for example, regarding the dominance of satellite knots [22]) and in the

search for new knot invariants and simpler methods for computing well-known invariants. We hope to move

forward in this direction using the well developed theory of integrable models of statistical physics [28], [29].

2. Basic theorems

In this section, we introduce some basic facts about lattice diagrams to be used in what follows.

Detailed explanations can be found in recent paper [20].

Definition 1. A lattice diagram Ln is a closed immersed curve that has 2n+1 horizontal and 2n+1

vertical line segments and (2n+ 1)2 crossing points.

In [20], lattice diagrams are called potholder curves or potholders. Knots carried by potholder curves

were studied by Grosberg and Nechaev [30], [31], who calculated the number of unknots carried by such

curves via a connection to the Potts model of statistical mechanics. A lattice knot is obtained from a lattice

diagram by resolving each crossing to one of the two types, here denoted by + and − . Examples of lattice

knots coming from L1, L2 and L3 are shown in Fig. 1.
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Fig. 1. Examples of lattice knots: 3× 3, 5× 5, and 7× 7 lattice knots.

Theorem 1. Every knot is carried by lattice knots.

Theorem 2. All lattice knots coming from Ln also come from Ln+1.

From these two theorems, we conclude that there is another classification of knots. Namely, we can

sort knots by the minimal size of lattice diagrams from which they are produced.

3. How can knots be distinguished?

The main question that we address here is which types of knots come from the lattice diagram Ln?

To answer it, we discuss how lattice knots can be distinguished.

3.1. Reidemeister moves. The simplest but laborious way is to use the Reidemeister theorem.

Theorem 3. Two knots K1 and K2 are equivalent if there exists a sequence of Reidemeister moves

(Fig. 2) that transforms one projection into the other.

Fig. 2. Reidemeister moves.

Given a lattice knot, this theorem allows obtaining the same knots but inside bigger lattices. We use

this approach to present theoretical bounds (Sec. 4).

3.2. The Jones polynomial. Knots can be distinguished in practice with the help of peculiar special

functions, knot invariants.

Definition 2. A knot invariant I(K) is a function of a knot K that takes the same value on equivalent

knots:

K1 = K2 =⇒ I(K1) = I(K2). (3.1)
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In this paper, we use the following property of knot invariants:

K1 �= K2 =⇒ I(K1) �= I(K2). (3.2)

Many known knot invariants of different types are known in the literature; we are interested in polynomial

ones because they can be effectively computed with the help of special computer programs. One of the

most famous polynomial knot invariants is the Jones polynomial JK,

JK : K → Z[q, q−1]. (3.3)

Given a knot K, it returns a Laurent polynomial JK(q). We give examples of Jones polynomials for several

knots with small crossing numbers:

J01 = 1,

J31 = q2 + q6 − q8,

J41 = 1− q2 − q−2 + q4 + q−4.

(3.4)

We consider the reduced or normalized Jones polynomial whose value for the unknot is 1 rather than

q + q−1. The Jones polynomial is a very good tool to distinguish knots with small crossing numbers.

It distinguishes almost all knots in the Rolfsen table through 9 crossings. The first example of knots that

cannot be distinguished by the Jones polynomial is

J51(q) = J10132 (q). (3.5)

The Jones polynomial has a number of particular properties.

• at the point q = 1, the Jones polynomial of any knot reduces to unity:

JK(1) = 1; (3.6)

• the Jones polynomial of the mirror image of a knot Kmir is expressed by the following formula in

terms of the Jones polynomial of the original knot K:

JKmir

(q) = JK(q−1); (3.7)

• the Jones polynomial of a composite knot K1#K2 is factored:

JK1#K2(q) = JK1(q) · JK2(q); (3.8)

• the Jones polynomial of a disjoint union of two knots K1

⊔K2 is

JK1
⊔K2(q) = (q + q−1) · JK1(q) · JK2(q). (3.9)

We use properties (3.8) and (3.7) in our computations.

The Jones polynomial has several equivalent definitions and approaches to its computation. In our

computations, we use the state sum formula or the Khovanov algorithm [32], [33], which is related to the

rapidly growing field of the knot homology theory. We briefly describe this algorithm to demonstrate its

usefulness for distinguishing lattice knots.
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Fig. 3. Khovanov’s algorithm for calculating the Jones polynomial for the trefoil [33].

Given a knot diagram, we write all knot smoothings (each intersection can be replaced with either

a 0- or a 1-smoothing); they then become vertices of the so-called Khovanov cube. Each knot smoothing

correspond to a summand (−1)rqr(q + q−1)k, where r is the number of 1-smoothings and k is the number

of components of the smoothing. We then add the contributions of each knot smoothings and multiply the

resulting polynomial by (−1)n−qn+−2n−(q+ q−1)−1, where n− is the number of − crossings and n+ is the

number of + crossings.

This algorithm becomes clear in the example of the trefoil (Fig. 3).

Remark 1. Khovanov cubes are the same for all lattice knots coming from a lattice diagram of

a fixed size.

This fact allows us to effectively calculate the Jones polynomials for lattice knots. Namely, we need

to construct the Khovanov cube for a fixed-size lattice only once, and then, in order to obtain the Jones

polynomials for all lattice knots inside a fixed-size lattice, we start the Khovanov algorithm for each vertex

of the cube. This is exactly how our computer program in Sec. 5.1 works.

4. Upper and lower bounds

For any n > k, the types of knots realized on a lattice of size (2k + 1)× (2k + 1) can also be obtained

on a lattice of size (2n+ 1)× (2n+ 1). Thus, we introduce another enumeration of knots analogous to the

Rolfsen table: each knot is enumerated by two numbers, m and lm, where m corresponds to the minimal

lattice size (2m+ 1)× (2m+ 1) on which the knot can be met and lm just enumerates distinct knots that

can be represented as lattice knots with a fixed minimal m. For example, for the trivial knot, we have

m = 0 and l0 = 1, and for the trefoil, we have m = 1 and l1 = 1.

We want to know which knot dominates (i.e., has more representations) on a fixed-size lattice. It was

proved recently in [22] that hyperbolic knots with a crossing number ≤ n do not dominate as n → ∞ for the

standard stratification of knots, and it was argued that satellite knots dominate instead. Does this picture

change if knots are classified by the lattices size?
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In this section, we evaluate how many different knots can be met inside a fixed-size lattice. Namely,

we establish the connection between the introduced stratification by lattice diagrams and by the Rolfsen

table. In other words, we answer the question of how many knots nm given in the Rolfsen table come from

a lattice diagram Lk.

To evaluate the numbers of different lattice knots, we split the problem into two parts.

1. First, in Sec. 4.1, we evaluate how many times the (2k+ 1)× (2k+ 1) lattice can be found inside the

(2n+ 1)× (2n+ 1) lattice for n > k;

2. Second, in Sec. 4.2, we define which knots classified by the Rolfsen table can be found in the (2k+1)×
(2k + 1) lattice.

This allows us to eliminate the trivial combinatorial contribution and count only distinct knots.

4.1. Lattice embeddings. To find the number of ways to embed a fixed lattice (2k + 1)× (2k + 1)

into a lattice of size (2n+ 1)× (2n+ 1), we “untie” the bigger lattice to a lattice of a smaller size.

A loop that intersects m threads can be pulled out in 2m ways such that the intersections of each

individual thread are of the same type. Examples are given in Fig. 4.

Fig. 4. Examples of pulling loops out.

Thus, to obtain the (2k+1)× (2k+1) lattice from the (2n+1)× (2n+1) lattice, we follow three steps.

1. Pull out k horizontal and k vertical loops that belong to the (2k + 1) × (2k + 1) lattice. We can do

this in 22(n−k)·2k ways.

2. Then, pull out n− k vertical loops in 22(n−k+1)(n−k) ways. We give examples in Fig. 5.

Fig. 5. Pulling out vertical loops. The smaller 3 × 3 lattice is placed in the upper right corner; its

intersections are left empty because they can be chosen arbitrarily to form any lattice knot. The other

intersections are to be determined so as to “untie” the bigger lattice to the 3× 3 lattice.

3. At the last step, we obtain a trivial loop, and hence the corresponding intersections can be arbitrary.

This yields another 22(n−k) options.

Actually, after step 1, we can untangle the remaining part of the lattice starting with the n−k horizontal

loops. This is possible if n− k > 1. We emphasize that the variants obtained at the previous stages must

be excluded.
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2′. Pull out n− k horizontal loops. This way, we obtain 2(n−k+2)(n−k) more options.

3′. Finally, pull out n− k vertical loops, in 22(n−k) ways.

We note that the position of the (2k+1)× (2k+1) lattice inside the (2n+1)× (2n+1) lattice can be

chosen in (n− k + 1)× (n− k + 1) ways, and the number of the above variants stays the same even if the

(2k + 1)× (2k + 1) lattice does not lie on the boundary of the (2n+ 1)× (2n+ 1) lattice (for example, see

Fig. 6). It is crucial that the (2k+1)× (2k+1) lattice be untiable to a lower-size lattice because otherwise

we would overcount the options to transform a bigger lattice knot into a smaller one.

Fig. 6. A smaller lattice knot in the middle of a bigger lattice.

In this analysis, we do not consider the cases where the resultant smaller lattice knot is split into

several parts separated in the bigger lattice. We then have the following lemma.

Lemma 1. In total, there are more than

(σn
k )min = (n− k + 1)2[22(n−k)(n+k+2) + 2(n−k)(n+3k+4)(1− δn−k,1 − δn−k,0)]. (4.1)

lattices of size (2k + 1)× (2k + 1) inside the (2n+ 1)× (2n+ 1) lattice.

Remark 2. We emphasize that in this analysis, we systematically exclude repeated knots.

4.2. Knots inside lattices. To find how many knots with a fixed crossing number can be embedded

into a lattice of size (2n + 1) × (2n + 1), we need to find which crossing numbers are allowed in a lattice

with a fixed size.

It can be shown that there are knots with an odd crossing number ≤ (2+1)2−2 in the (2k+1)×(2k+1)

lattice. Namely, we can easily find the biggest knot, which is the endless knot with the crossing number

(2k+1)2− 2. To obtain other knots, we pulls out loops of the endless knot, leaving the remaining crossings

alternating. An example is given in Fig. 7 (each step results in removing two crossings, leaving an alternating

remaining knot).

We note that there is no need to obtain other knots with smaller crossing numbers due to the theorem

stating that all knots realized in a smaller lattice can also be realized in a bigger one.

Thus, because we just need to embed an untiable lattice of size (2k+1)× (2k+1) into the (2n+1)×
(2n+ 1) lattice, we have the following lemma.

Lemma 2. The number σn
k of knots with the crossing numbers

(2k − 1)2, (2k − 1)2 + 2, . . . , (2k + 1)2 − 4, (2k + 1)2 − 2

in the (2n+1)× (2n+1) lattice can be estimated from below by the number (σn
k )min of lattice embeddings

in (4.1) (for k = 1, the knot with the crossing number 1 is the unknot and it must be discarded).
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Fig. 7. Knots with crossing numbers 23, 21, 19, 17, 15, 13, 11, and 9 inside the 5× 5 lattice.

We now obtain an upper bound. As we have established, the number of knots with odd crossing

numbers from (2k− 1)2 to (2k+1)2− 2 on a (2n+1)× (2n+1) lattice satisfies the estimate σn
k � (σn

k )min,

where (σn
k )min is defined in (4.1). The number of different types of knots inside an untiable (2k+1)×(2k+1)

lattice is at least 8k for k > 1, 6 for k = 1, and 1 for k = 0, and hence their total is

Σn
k � (Σn

k )min = 8k(n− k + 1)2[22(n−k)(n+k+2) + 2(n−k)(n+3k+4)(1− δn−k,1 − δn−k,0)], k > 1,

Σn
1 � (Σn

1 )min = 6n2[22(n−1)(n+3) + 2(n−1)(n+7)(1− δn,2 − δn,1)],

Σn
0 � (Σn

0 )min = (σn
0 )min = (n+ 1)2[22n(n+2) + 2n(n+4)(1− δn,1 − δn,0)].

(4.2)

We note that in the case k > 0, we take mirror knots into account, and hence the number of knots with

a fixed crossing number doubles.

The (2n+1)× (2n+1) lattice contains 2(2n+1)2 knots because each intersection can be resolved in any

of two possible ways. Therefore, to obtain an upper bound for the number of knots with a fixed crossing

number, we need to subtract the minimal number of knots with all other crossing numbers from the total

number of 2(2n+1)2 knots. Then

σn
k � 2(2n+1)2 −

n∑

i=0

(Σn
i )min + (σn

k )min. (4.3)

To summarize, we have arrived as the following theorem.

Theorem 4. The number σn
k of knots with

(2k − 1)2, (2k − 1)2 + 2, . . . , (2k + 1)2 − 4, (2k + 1)2 − 2

crossing numbers in the (2n+ 1)× (2n+ 1) lattice satisfies the constraints

(σn
k )min � σn

k � 2(2n+1)2 −
n∑

i=0

(Σn
i )min + (σn

k )min, (4.4)

where (σn
k )min and (Σn

i )min are defined in (4.1) and (4.2) (for k = 1, the knot with crossing number 1 is

the unknot and it must be discarded). We emphasize that in this analysis, we differentiate between knot

projections and their mirror projections.
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Remark 3. According to our analysis, if there are knots with even crossing numbers (2k − 1)2 + 1,

(2k − 1)2 + 3, . . . , (2k + 1)2 − 3 (for k = 1, the knot with crossing number 2 is the unknot and it must be

discarded), their number also admit the above bounds (4.4).

We give some examples:

256 � σ1
0 � 506,

1 � σ1
1 � 252,

626 688 � σ2
0 � 225 − 6144,

1024 � σ2
1 � 225 − 631 824,

1 � σ2
2 � 225 − 632 847.

(4.5)

Here, σ1
0 is the number of unknots inside the 3 × 3 lattice and σ1

1 is the number of other types of knots

inside the 3× 3 lattice. Inside the 5× 5 lattice, σ2
0 is the number of unknots, σ2

1 is the number of knots with

crossing numbers 3, 5, 7 and 4, 6 (if they appear), and σ2
2 is the number of knots with crossing numbers

2n+1, n = 4, . . . , 11, and 2n, n = 5, . . . , 11 (if they appear). It also follows from the estimates in (4.4) that

unknots dominate for any n.

5. Numerical computations

To check our estimates (4.4), we compute the Jones polynomials for small lattice knots. The Jones

polynomials are convenient tools to distinguish small knots. The first example of knots with the identical

Jones polynomials is J51(q) = J10132(q), and such identities become essential for knots with 10 and more

crossings.

5.1. Knots inside 3× 3 and 5× 5 lattices. We have written a computer program that calculates

the Jones polynomial of lattice knots by using the state sum formula (see Sec. 3.2).

First, we found the knot types in the 3×3 lattice and their numbers. The program returns 10 different

Jones polynomials. Comparing them with the Jones polynomials for knots with crossing numbers less than 7

(with the use of knot atlas [34]) and using property (3.7), we obtain

J01(q) = 1,

J31(q) = J3mir
1 (q−1) = q2 + q6 − q8,

J41(q) = 1− q2 − q−2 + q4 + q−4,

J52(q) = J5mir
2 (q−1) = q2 − q4 + 2q6 − q8 + q10 − q12,

J61(q) = J6mir
1 (q−1) = q−4 − q−2 + 2− 2q2 + q4 − q6 + q8,

J74(q) = J7mir
4 (q−1) = q2 − 2q4 + 3q6 − 2q8 + 3q10 − 2q12 + q14 − q16.

(5.1)

The results are given in Table 1. We note that the numbers of knots agree with our estimates (4.5). There

are 29 = 512 knots in the 3 × 3 lattice. The fraction of unknots is 0.609. Torus knots dominate, their

fraction being 0.766.

There are many more different knots inside the 5× 5 lattice. We have computed 13 829 different Jones

polynomials (up to the replacement q → q−1), and hence there are not less then 13 829 different knots inside

the 5× 5 lattice. In Table 2, we write types and numbers of knots with crossing numbers less than or equal

to 9. We note that the numbers of knots agree with our estimates (4.5).
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Table 1. The number of knots in the 3 × 3 lattice. In the “type” row, H denotes hyperbolic knots

and T torus knots. If the number of knots is split into a sum of two equal numbers, the corresponding

knot is not amphichiral, and hence the knot and its mirror image differ

knot 01 31 41 52 61 74

type T T H H H H

number 312 40+40 48 24+24 8+8 4+4

Table 2. The number of knots in the 5× 5 lattice with no more than 9 crossings. For brevity, we do

not distinguish between knots and their mirror images

knot 01 31 41 51 52 61 62 63

type T T H T H H H H

number 5 063 616 2 785 728 1 896 896 525 360 2 327 776 1 253 216 719 496 381 312

knot 71 72 73 74 75 76 77 81

type T H H H H H H H

number 26 560 508 000 350 784 519 312 426 256 475 232 281 280 250 656

knot 82 83 84 85 86 87 88 89

type H H H H H H H H

number 29 824 130 208 171 648 26 880 194 816 42 944 249 840 81 536

knot 810 811 812 813 814 815 816 817

type H H H H H H H H

number 288 704 49 536 261 184 130 144 332 752 27 456 37 312 29 440

knot 818 819 820 821 91 92 93 94

type H H T H T H H H

number 13 392 31 680 69 712 48 064 0 89 568 16 192 21 888

knot 95 96 97 98 99 910 911 912

type H H H H H H H H

number 179 072 13 632 57 088 101 104 27 968 65 392 16 000 169 152

knot 913 914 915 916 917 918 919 920

type H H H H H H H H

number 157 568 117 584 111 936 14 112 8 128 153 072 142 864 35 008

knot 921 922 923 924 925 926 927 928

type H H H H H H H H

number 165 568 44 352 98 208 28 800 25 344 32 896 40 128 15 552

knot 929 930 931 932 933 934 935 936

type H H H H H H H H

number 3 680 42 160 17 312 32 256 16 320 14 432 9 504 39 104

knot 937 938 939 940 941 942 943 944

type H H H H H H H H

number 19 200 3 792 16 304 336 5 728 44 928 57 312 64 992

knot 945 946 947 948 949

type H H H H H

number 50 464 35 712 12 608 15 592 7 264
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Fig. 8. The number of knots with up to 10 crossings in the 5 × 5 lattice, in (a) ordinary and (b)

logarithmic scales. The horizontal axis just enumerates the knots.

We could identify only knots with up to 12 crossings because the known databases [21], [34] only

contain the Jones polynomials for knots with the crossing number not greater than 12. We cannot therefore

find the fraction of hyperbolic and satellite knots. The fraction of unknots is 0.151, and they dominate.

The numbers of knots with crossing number not greater than 9 are shown in Fig. 8.

5.2. The fraction of unknots. In the foregoing, we presented results of extensive numeric experi-

ments on 3× 3 and 5× 5 lattices. To move to bigger lattices, we need to impose two constraints, otherwise

the numerical computations required become overwhelming even for modern computers.

• Limit the scope: switch from detecting all knots to just detecting the unknots and the knots outside

the Rolfsen table (i.e., with the minimal crossing number greater than 10). As mentioned above, this

is done with help of evaluating the Jones polynomial, and hence, due to unavoidable collisions, the

result will be an estimate from above. This optimization drastically reduces memory requirements

because we do not keep track of all different knots.

• Reduce precision: instead of faithfully iterating over all knots on a given lattice, generate a (rea-

sonably) large number of random knots on this lattice (by a Monte Carlo type method). From this

sampling, we obtain an estimate of the fraction of unknots, rather than the accurate total number.

With this optimization, we can set the computation time to any (reasonable) desired value.

With these optimizations, we obtain estimates for the number of unknots and of knots with more than

10 crossings on a given lattice (see Table 3).

Table 3. The number of unknots and knots with the minimal crossing number greater than 10

Lattice size Fraction of unknots Fraction of knots with > 10 crossings

1× 1 1.0 0.0

3× 3 0.614 0.0

5× 5 0.134 0.272

7× 7 0.015 0.872

9× 9 0.0001 0.9972

We see that

1. these numbers agree (modulo the inaccuracies introduced by random sampling and Jones polynomial

collisions) with theoretical estimates (4.4) and with the full-iteration results (Tables 1 and 2);

934



2. the fraction of unknots seems to be exponentially decreasing, confirming the (asymptotic mean-field)

estimates of Grosberg and Nechaev [30], [31];

3. the number of non-Rolfsen knots (those with the minimal crossing number greater than 10) in a rect-

angular grid is rapidly (exponentially) approaching 1. This means that the computational task of

finding a knot with a small number of crossings on a large grid is exponentially complex. This also

agrees with our theoretical estimates (4.4), which predict exponential growth in the number of knots

with large crossing numbers. The implications of this will be explored in future research.

6. Conclusions and Discussion

In this paper, we have answered classical questions of knot theory regarding the introduced stratification

by lattice knots. We have obtained the following results.

1. We obtained estimates for the numbers of knots with fixed a crossing number inside the (2n+ 1) ×
(2n+ 1) lattice for all n (Section 4).

2. We classified (in accordance with the Rolfsen table) all knots in the 3× 3 lattice (Table 1) and knots

with up to 12 crossings that can be distinguished by the Jones polynomial in the 5 × 5 lattice (only

knots with no more than 9 crossings are given in Table 2), Sec. 5.1.

3. We found the numbers of unknots for five lattices (Sec. 5.2). Their fraction decreases exponentially

with as the lattice size increases.

4. We found the numbers of knots with > 10 minimal crossings for five lattices (Sec. 5.2). Their fraction

increases exponentially as the lattice size increases.

To find which type of knots dominates for large lattices, we need to learn to effectively calculate knot

invariants that distinguish between hyperbolic, torus, and satellite knots.

With the increase in the lattice size, more knots appear that cannot be distinguished by the Jones

polynomial. Moreover, for the Jones polynomial, it is not even proved whether it distinguishes the unknots.

A more effective method is to use the Khovanov polynomial [33], [32], which is a categorification of the

Jones polynomial, because there is a theorem stating that the Khovanov polynomial detects the unknot [35].

Moreover, it distinguishes more knots. However, it is much more difficult to calculate, and the development

of a simple method for its calculation for lattice knots is a separate problem.
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