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APPLICATION OF THE TRIGONAL CURVE

TO A HIERARCHY OF GENERALIZED TODA LATTICES

Qiulan Zhao,∗ Caixue Li,∗ and Xinyue Li∗

Starting from the zero-curvature equation and Lenard recurrence relations, we derive a hierarchy of gen-

eralized Toda lattices. The trigonal curve is introduced through the Lax pair characteristic polynomial

for the discrete hierarchy, from which a Dubrovin-type equation is established. Then the asymptotic

behavior of the Baker–Akhiezer function and the meromorphic function is analyzed, and the divisors of

the two functions are also discussed. Moreover, the Abel map is defined and the corresponding flows are

straightened out on the Jacobian variety, such that the final algebro-geometric solutions of the hierarchy

are calculated in terms of the Riemann theta function.
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1. Introduction

The Toda lattice [1], [2]

∂2y

∂t2
= exp(y− − y)− exp(y − y+), y = y(n, t), (n, t) ∈ Z× R, (1.1)

is an absolutely integrable equation with exponential interaction that was discovered in the course of seeking

a system with rigorous periodic solutions; its exponential interaction was used to explain the nonergodic

character of the famous Fermi–Pasta–Ulam problem [3]. It has abundant mathematical structures and is

regarded as a model of physical phenomena, with the well-known equations such as the nonlinear Schrödinger

(NLS) and Korteweg–de Vries equations being closely related to it or deduced from it by appropriate limit

procedures [4], [5]. In addition, it can describe the motion of a chain of particles with nearest-neighbor

interaction in constructing different mathematical models; the Toda lattice model of DNA is also a typical

representative in biology [6].

It is worth mentioning that by the variable transformation � = − exp(y − y+) and x = yt, the Toda

lattice can be rewritten in the form

�t = �(x− x+), xt = � −�−. (1.2)
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With the increase in scholars’ attention to the Toda lattice, a variety of important methods were

applied to it and numerous results have been achieved since it was proposed [7]–[12]. As one of the most

effective research tools, the algebro-geometric methods were extensively applied to the Toda lattices. With

the development of the finite-gap integration method in the works of Novikov, Matveev, Its, and others, the

mathematical theory of the algebro-geometric method has been systematically developed since the early

1970s [13], [14]. The solutions can not only describe the integrability properties of the equations but also

reveal the internal structure of the solutions for soliton equations [15]–[18].

The algebro-geometric solutions for numerous soliton equations related to a 2 × 2 matrix spectral

problem have been obtained using the theta functions of hyperelliptic curves in a series of studies [19]–[21].

However, the studies of algebro-geometric solutions of 3rd-order soliton equations are very few. In the

course of studying the algebro-geometric solutions of the 3rd-order soliton equations, the most classical

findings originates in the Boussinesq equation, whose 3rd-order differential operators were studied in terms

of the reduction theory of Riemann theta functions [22]; finite-gap solutions of the NLS equation were also

confirmed smoothly by means of a special algorithm [23]. In 1999, based on the algebro-geometric method,

Dickson, Gesztesy, and Unterkofler proposed a unified framework that yields all algebro-geometric solutions

of the entire Boussinesq hierarchy related to a 3rd-order differential operator [24]. Based on the framework

proposed previously, a systematic method for introducing a trigonal curve was developed with the help of

the characteristic polynomial of the Lax matrix associated with the higher-order matrix spectral problem,

from which the algebro-geometric method was successfully generalized to yield algebro-geometric solutions

of the continuous hierarchies related to 3 × 3 matrices [25], [26]. Then the algebro-geometric method was

further extended to 3rd-order discrete hierarchies [27], [28].

In this paper, we introduce the trigonal curve to define the Baker–Akhiezer function Ξ and the corre-

sponding meromorphic function Θ. The soliton equations can then be separated into solvable Dubrovin-type

ordinary differential equations. Based on the above step, the characteristics of the functions can be fur-

ther analyzed. With the systematic algebro-geometric theory as support, we discuss the application of the

algebro-geometric methods to the discrete hierarchy of a 3rd-order generalized Toda lattice

qt = 2rq−−q− − s+q

s
, rt =

s

s−
− s+

s
+ 2(qv+ − q−v),

st = −qsv − rs, vt =
qs

s−
− 2rv + 2v−,

(1.3)

which becomes is the Toda lattice mentioned above (1.2) if q = 0, r = �+, x = s/s−, and v = 0. The

Hamiltonian system for (1.3) was constructed in [29].

The paper is organized as follows. In Sec. 2, the difference operators Kn and Jn are deduced in

accordance with the Lenard recurrence relations and hierarchy (1.3) is then derived from the zero-curvature

equation. In Sec. 3, the trigonal curve Kl−1 is defined for the characteristic polynomial of the Lax pair

for hierarchy (1.3), whence the functions Ξ and Θ can be defined. In Sec. 4, in the stationary case, we

analyze the characteristics of the functions and introduce the Abel differentials; the potentials of the Lax

pair are then expressed in terms of the Riemann theta function. In Sec. 5, we apply the analysis in last

two sections to the time-dependent case and separate hierarchy (1.3) into solvable Dubrovin-type ordinary

differential equations. Then we straighten out the flows and obtain the Riemann theta representation. On

the whole, the algebro-geometric solutions of hierarchy (1.3) are obtained and we rewrite the Riemann theta

representation of the potentials for low genera. We summarize and conclude in Sec. 6.

2. The hierarchy of a generalized Toda lattice

We suppose that q, r, s, and v satisfy the following conditions: in the stationary case,

q(n, · ), r(n, · ), s(n, · ), v(n, · ) ∈ C1(R),
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and in the time-dependent case,

q( · , t), r( · , t), s( · , t), v( · , t) ∈ C
Z, t ∈ R,

where C
Z is the set of all complex-valued functions of a variable in Z.

On the complex-valued sequence � = {�(n)}n∈Z, we define the shift operators E± as

(E±
�)(n) = �(n± 1), n ∈ Z,

and write �
± = E±

� with � ∈ C
Z.

We consider the discrete 3× 3 matrix spectral problem [29]

EΞ = UΞ, Ξ =

⎛
⎜⎝

Ξ1

Ξ2

Ξ3

⎞
⎟⎠ , U =

⎛
⎜⎝
1 q 0

v λ+ r s

0 −1/s 0

⎞
⎟⎠ , (2.1)

where q, r, s, and v are potentials and λ is a constant. The Lenard recurrence relations are

Kng̃j = Jng̃j+1, g̃j = (ãj , b̃j, c̃j , d̃j)
T,

Knḡj = Jnḡj+1, ḡj = (āj , b̄j, c̄j , d̄j)
T

(2.2)

We then introduce the starting points

g̃0 = (1, 0,−1, 0)T, ḡ0 = (−1, 0, 2, 0)T, (2.3)

and define two difference operators Jn and Kn as

Jn =

⎛
⎜⎜⎜⎜⎝

0 E 0 0

0 0 E − 1 0

0 0 0 s2E

−1

q
(E − 1) −v

q
E 0 0

⎞
⎟⎟⎟⎟⎠

,

Kn =

⎛
⎜⎜⎜⎜⎜⎝

−qE K12 q
1

s
Eqs2E

−qE
1

q
(E − 1) v − qE

v

q
E −r(E − 1) s− 1

s
Es2E

−s vsE −sE − s K34

K41 K42 −vE −sE−1vE

⎞
⎟⎟⎟⎟⎟⎠

,

where

K12 = 1 +
1

s
EsE − rE, K34 = vqs2E − rs2E,

K41 = (r − E)
1

q
(E − 1) +

s(E−1 − 1)

s−q−
+ v,

K42 = −E
v

q
+

rv

q
E − sE−1vE

s−q−
.

(2.4)

Hence, g̃j and ḡj can be found using the operators Kn and Jn; the first two members are given by

g̃1 =

(
1,−2q−, 0,

1

s−

)T

, ḡ1 =

(
1, 3q−, 1,− 3

s−

)T

. (2.5)
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To deduce the hierarchy related to spectral problem (2.1), we introduce the stationary zero-curvature

equation

(EΓ)U − UΓ = 0, Γ = (Γij)3×3 =

⎛
⎜⎝
Γ11 Γ12 Γ13

Γ21 Γ22 Γ23

Γ31 Γ32 −Γ11 − Γ22

⎞
⎟⎠ , (2.6)

which is equivalent to

EΓ11 + vEΓ12 − Γ11 − qΓ21 = 0,

qEΓ11 + (r + λ)EΓ12 −
1

s
EΓ13 − Γ12 − qΓ22 = 0,

sEΓ12 − Γ13 − qΓ23 = 0,

EΓ21 + vEΓ22 − vΓ11 − (r + λ)Γ21 − sΓ31 = 0,

qEΓ21 + (r + λ)EΓ22 −
1

s
EΓ23 − vΓ12 − (r + λ)Γ22 − sΓ32 = 0,

sEΓ22 − vΓ13 − (r + λ)Γ23 + s(Γ11 + Γ22) = 0,

EΓ31 + vEΓ32 +
1

s
Γ21 = 0,

qEΓ31 + (r + λ)EΓ32 +
1

s
E(Γ11 + Γ22) +

1

s
Γ22 = 0,

sEΓ32 +
1

s
Γ23 = 0.

(2.7)

where each element Γij = Γij(a, b, c, d) is a Laurent expansion in λ,

Γ11 = a, Γ12 = b, Γ13 = sEb+ qs2Ed,

Γ21 =
1

q
(E − 1)a+

v

q
Eb, Γ22 = c, Γ23 = −s2Ed, (2.8)

Γ31 =
(E−1 − 1)

s−q−
a− E−1vE

s−q−
b− E−1vEd, Γ32 = d, − Γ11 − Γ11 = −a− c,

with

a =
∑
j�0

ajλ
−j , b =

∑
j�0

bjλ
−j , c =

∑
j�0

cjλ
−j , d =

∑
j�0

djλ
−j . (2.9)

We can show by direct calculation that Eqs. (2.6) and (2.7) imply the Lenard equation

KnG = λJnG, G = (a, b, c, d)T. (2.10)

We substitute (2.8) in (2.9) and compare the powers of λ to deduce the recurrence relations

KnGj = λJnGj+1, JnG0 = 0, j � 0, (2.11)

where Gj = (aj , bj , cj , dj)
T. It is evident that kerJn = {α0g̃0+β0ḡ0 | α0, β0 ∈ R} and Gj has the expansion

Gj = α0g̃j + β0ḡj + · · ·+ αj g̃0 + βj ḡ0, j � 0, (2.12)

where αj and βj are constants.
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Assuming that Ξ satisfies the discrete matrix spectral problem (2.1), we have

Ξtm = Γ̂(m)Ξ, Γ̂(m) = (Γ̂
(m)
ij )3×3 =

⎛
⎜⎝
Γ̂
(m)
11 Γ̂

(m)
12 Γ̂

(m)
13

Γ̂
(m)
21 Γ̂

(m)
22 Γ̂

(m)
23

Γ̂
(m)
31 Γ̂

(m)
32 −Γ̂

(m)
11 − Γ̂

(m)
22

⎞
⎟⎠ , (2.13)

where Γ̂
(m)
ij = Γ̂ij(â

(m), b̂(m), ĉ(m), d̂(m)) and

â(m) =

m∑
j=0

âjλ
m−j , b̂(m) =

m∑
j=0

b̂jλ
m−j ,

ĉ(m) =

m∑
j=0

ĉjλ
m−j , d̂(m) =

m∑
j=0

d̂jλ
m−j .

(2.14)

Similarly, the elements âj , b̂j , ĉj , and d̂j can be determined as

Ĝj = α̂0g̃j + β̂0ḡj + · · ·+ α̂j g̃0 + β̂j ḡ0, j � 0, (2.15)

where Ĝj are also solutions of (2.10). We note, importantly, that α̂j , β̂j and αj , βj in (2.12) are absolute of

each other. The zero-curvature equation Utm = (EΓ̂m)U−U Γ̂m is generated by the compatibility condition

of Eqs. (2.1) and (2.12), which is equivalent to discrete hierarchy (1.3),

(qtm , rtm , stm , vtm)T = Îm, m � 0, (2.16)

and the vector can be represented as

Îj = KnĜj = JnĜj+1, Îj = I(q, r, s, v, α̂(j), β̂
(j)

),

where α̂(j) = (α̂0, . . . , α̂j), and β̂
(j)

= (β̂0, . . . , β̂j) for j � 0.

The first nontrivial member of hierarchy (2.16) is given by as

Î0 = KnĜ0 = Kn(α0g̃0 + β0ḡ0),

whence, with α0 = 1 and β0 = 0, we have

qt0 = −2q, rt0 = 0, st0 = s, vt0 = 2v. (2.17)

Similarly, for j = 2 and Î1 = Kn(α0g̃1 + α1g̃0 + β0ḡ1 + β1ḡ0) with α0 = 1, β0 = 1, and t0 = t, we obtain

the hierarchy that we study in what follows:

qt = 2rq−−q− − s+q

s
, rt =

s

s−
− s+

s
+ 2(qv+ − q−v),

st = −qsv − rs, vt =
qs

s−
− 2rv + 2v−.

(2.18)

If q = 0, r = �+, x = s/s−, and v = 0, Eqs. (2.18) become the Toda lattice (1.2).

499



3. The stationary meromorphic function

We consider hierarchy (1.3) in the stationary case Ip = I(q, r, s, v;α(p), β(p)) = 0, α(p) = (α0 . . . αp),

and β(p) = (β0 . . . βp). It is then equivalent to the stationary zero-curvature equation

(EΓ(p))U − UΓ(p) = 0, Γ(p) = (λpΓ)+ = (Γ
(p)
ij )3×3, (3.1)

with Γ
(p)
ij = Γij(a

(p), b(p), c(p), d(p)),

a(p) =

p∑
j=0

ajλ
p−j , b(p) =

p∑
j=0

bjλ
p−j , c(p) =

p∑
j=0

cjλ
p−j , d(p) =

p∑
j=0

djλ
p−j . (3.2)

Direct calculation indicates that the characteristic polynomial �l(λ, f) = det(fI−Γ(p)) of Γ(p) also satisfies

zero-curvature equation (3.1) and is a constant independent of n. It has the expansion

det(fI − Γ(p)) = f3 − f2Xl(λ) + fYl(λ)− Zl(λ), (3.3)

where Xl(λ), Yl(λ) and Zl(λ) are constant-coefficient polynomials in λ,

Xl(λ) = trΓ
(p) = Γ

(p)
11 + Γ

(p)
22 + (−Γ

(p)
11 − Γ

(p)
22 ) = 0,

Yl(λ) =

∣∣∣∣∣
Γ
(p)
11 Γ

(p)
12

Γ
(p)
21 Γ

(p)
22

∣∣∣∣∣+
∣∣∣∣∣
Γ
(p)
11 Γ

(p)
13

Γ
(p)
31 −Γ

(p)
11 − Γ

(p)
22

∣∣∣∣∣+
∣∣∣∣∣
Γ
(p)
22 Γ

(p)
23

Γ
(p)
32 −Γ

(p)
11 − Γ

(p)
22

∣∣∣∣∣ =

= (−α2
0 + α0β0 − 3β2

0)λ
2p + · · · ,

Zl(λ) = det Γ(p)
n =

∣∣∣∣∣∣∣

Γ
(p)
11 Γ

(p)
12 Γ

(p)
13

Γ
(p)
21 Γ

(p)
22 Γ

(p)
23

Γ
(p)
31 Γ

(p)
32 −Γ

(p)
11 − Γ

(p)
22

∣∣∣∣∣∣∣
=

= (α0
2β0 − 3α0β0

2 + 2β0
3)λ3p + · · · .

(3.4)

Then the trigonal curve �l(λ, f) = 0 whose degree is l = 3p for α0β0 �= 0 can be introduced as

Kl−1 : �l(λ, f) = f3 − f2Xl(λ) + fYl(λ) − Zl(λ) = 0. (3.5)

Under the condition l = 3p, it is obvious that the trigonal curve Kl−1 can be compactified by adding

different infinite points u∞′ and u∞′′ based on (3.2) and (3.4), where we choose u∞′′ as a double branch

point. We still use Kl−1 to denote the compactified curve. The discriminant of (3.5) is

Δ(λ) = 27Zl
2 − 18XlSlZl + 4Yl

3 −Xl
2Yl

2 + 4Xl
3Zl. (3.6)

By the Riemann–Hurwitz formula, we can obtain that the arithmetic genus of Kl−1 is l − 1. Therefore,

Kl−1 turns into a three-sheet Riemann surface of genus l − 1 if the curve is irreducible and

(
∂�l(λ, f)

∂λ
,
∂�l(λ, f)

∂f

)∣∣∣∣
(λ,f)=(λ0,f0)

�= 0

for any u0 = (λ0, f0) ∈ Kl−1.
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We introduce the stationary Baker–Akhiezer function Ξ as

EΞ(u, n, n0) = U(q(n), r(n), s(n), v(n);λ(u))Ξ(u, n, n0),

Γ(p)(q(n), r(n), s(n), v(n);λ(u))Ξ(u, n, n0) = f(u)Ξ(u, n, n0),

Ξ1(u, n0, n0) = 1, u = (λ, f) ∈ Kl−1\{u∞′, u∞′′}, n, n0 ∈ Z.

(3.7)

Based on the function Ξ, the meromorphic function Θ on Kl−1 is defined as

Θ(u, n) =
Ξ2(u, n, n0)

Ξ1(u, n, n0)
, u ∈ Kl−1, n ∈ Z, (3.8)

whence we have

Ξ1(u, n, n0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n−1∏
n′=n0

(1 + q(n)Θ(u, n′)), n � n0 + 1,

1, n = n0,
n−1∏

n′=n0

(1 + q(n)Θ(u, n′))−1, n � n0 − 1.

(3.9)

The meromorphic function Θ(u, n) obtained in accordance with (3.7) and (3.8) is

Θ(u, n) =
yΓ

(p)
23 +Al(λ, n)

fΓ
(p)
13 +Bl(λ, n)

=
El−1(λ, n)

f2Γ
(p)
23 − fAl(λ, n) + Cl(λ, n)

=

=
f2Γ

(p)
13 − fBl(λ, n) +Dl(λ, n)

Fl−1(λ, n)
, (3.10)

where

Al = Γ
(p)
13 Γ

(p)
21 − Γ

(p)
11 Γ

(p)
23 , Bl = Γ

(p)
12 Γ

(p)
23 − Γ

(p)
13 Γ

(p)
22 ,

Cl = Γ
(p)
21 (Γ

(p)
13 Γ

(p)
22 − Γ

(p)
12 Γ

(p)
23 )− Γ

(p)
23 (Γ

(p)
11 Γ

(p)
22 + (Γ

(p)
22 )

2 + Γ
(p)
23 Γ

(p)
32 ),

Dl = Γ
(p)
12 (Γ

(p)
11 Γ

(p)
23 − Γ

(p)
13 Γ

(p)
21 )− Γ

(p)
13 ((Γ

(p)
11 )

2 + Γ
(p)
11 Γ

(p)
22 + Γ

(p)
13 Γ

(p)
31 ),

El−1 = (Γ
(p)
23 )

2Γ
(p)
31 + Γ

(p)
21 Γ

(p)
23 (2Γ

(p)
11 + Γ

(p)
22 )− (Γ

(p)
21 )

2Γ
(p)
13 ,

Fl−1 = (Γ
(p)
13 )

2Γ
(p)
32 + Γ

(p)
12 Γ

(p)
13 (2Γ

(p)
22 + Γ

(p)
11 )− (Γ

(p)
12 )

2Γ
(p)
23 .

(3.11)

Moreover, we introduce two other elements

Gl = Γ
(p)
13 Γ

(p)
32 + Γ

(p)
12 (Γ

(p)
11 + Γ

(p)
22 ),

Hl = Γ
(p)
12 (Γ

(p)
11 Γ

(p)
22 − Γ

(p)
12 Γ

(p)
21 ) + Γ

(p)
13 (Γ

(p)
11 Γ

(p)
32 − Γ

(p)
12 Γ

(p)
31 ).

(3.12)

Obviously, we can find various relations among polynomials (3.11), (3.12) and Xl, Yl, Zl. We list some

of them:

Fl−1 = Γ
(p)
13 Gl − Γ

(p)
12 Bl,

BlEl−1 = (Γ
(p)
23 )

2Zl +AlCl, AlFl−1 = (Γ
(p)
13 )

2Zl +BlDl,

Γ
(p)
13 El−1 = Γ

(p)
23 Cl − (Γ

(p)
23 )

2Yl −A2
l , Γ

(p)
23 Fl−1 = Γ

(p)
13 Bl − (Γ

(p)
13 )

2Yl −B2
l ,

E−
l−1 = −Fl−1, Gl = A−

l , Hl = C−
l .

(3.13)
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Using (3.1), (3.2), (3.11), and (3.13), we find that Fl−1 and El−1 are polynomials of degree l − 1 and

can therefore be represented as

Fl−1(λ, n) = Fl−1,0

l−1∏
j=1

(λ− μj(n)),

El−1(λ, n) = −Fl−1,0

l−1∏
j=1

(λ− μ+
j (n)).

(3.14)

On the trigonal curve Kl−1, we define {μ̃j(n)}j=1,l−1 and {μ̃+
j (n)}j=1,l−1 as

μ̃j(n) =
(
μj(n), y(μ̂j(n))

)
=

(
μj(n)−

Bl(λ, n)

Γ
(p)
32 (μj(n))

)
,

μ̃+
j (n) =

(
μ+
j (n), y(μ̂

+
j (n))

)
=

(
μ+
j (n)−

Al(λ, n)

Γ
(p)
32 (μ

+
j (n))

)
.

(3.15)

For convenience, we let u, u∗, and u∗∗ denote points on each of the three different sheets of the Riemann

surface Kl−1 and suppose that fi(λ) (i = 1, 2, 3) are three roots of �l(λ, f) = 0:

(
f − f1(λ)

)(
f − f2(λ)

)(
f − f3(λ)

)
= f3 − f2Xl + fYl − Zl = f3 + fYl − Zl = 0. (3.16)

Then the three points (λ, f1(λ)), (λ, f2(λ)), and (λ, f3(λ)) are also on the Riemann surface Kl−1. Let

{u, u∗, u∗∗} = {(λ, fi(λ)), i = 1, 2, 3} be any one of the three points. From (3.16), the following system can

easily be obtained:

f1 + f2 + f3 = Xl = 0, f1f2 + f2f3 + f3f1 = Yl, f1f2f3 = Zl,

f2
1 + f2

2 + f2
3 = −2Yl, f3

1 + f3
2 + f3

3 = 3Zl, f2
1 f

2
2 + f2

1 f
2
3 + f2

2 f
2
3 = X2

l ,

(f1 + f2)f
2
3 + (f2 + f3)f

2
1 + (f1 + f3)f

2
2 = −3Zl.

The function Θ(u, n) then satisfies the relations

Θ(u, n)Θ(u∗, n)Θ(u∗∗, n) = −El−1(λ, n)

Fl−1(λ, n)
,

Θ(u, n) + Θ(u∗, n) + Θ(u∗∗, n) =
3Dl(λ, n)− 2Γ

(p)
32 Yl(λ)

Fl−1(λ, n)
,

1

Θ(u, n)
+

1

Θ(u∗, n)
+

1

Θ(u∗∗, n)
=

3Cl(λ, n)− 2Γ
(p)
12 (λ, n)Yl(λ)

El−1(λ, n)
.

(3.17)

4. Algebro-geometric solutions of the stationary hierarchy

We analyze the asymptotic behavior of the functions Θ(u, n) and Ξ(u, n), and then introduce the Abel

differential and the Riemann theta function. As a result, we obtain algebro-geometric solutions in the

stationary case, whereby the potentials q, r, s, and v can be expressed as in terms of the Riemann theta

function.

First, it follows by direct calculation that Θ(u, n) satisfies the Riccati-type equation

q−(n)q(n)Θ+(u, n)Θ(u, n)Θ−(u, n) =
(
v(n)q−(n)− s(n)

s−(n)

)
Θ−(u, n) +

+ (λ + r(n))Θ(u, n)−Θ+(u, n) + v(n) + (λ+ r(n))q−(n)Θ−(u, n)Θ(u, n)−
− q(n)Θ(u, n)Θ+(u, n)− q−(n)Θ−(u, n)Θ+(u, n). (4.1)
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Introducing the local coordinate ς = λ−1 near u∞′ and comparing the powers of ς , we have the formula

Θ =

∞∑
j=1

δjς
j , u → u∞′ ,

with
δ1 = −v, δ2 = v+ − s

s−
v− + rv,

δ3 = v(r + r+ + 1− qv + r2) + v+(2 + r − qv − 2q−v− − r+)− v++.
(4.2)

As at the preceding step, we introduce the local coordinate λ = η−2 near u∞′′ and compare the powers

of η, which yields

Θ =

∞∑
j=0

κjη
j , u → u∞′′ ,

with

κ0 = 1, κ1 = −q− − v, κ2 = 1− r + q−2
+ q−v + q−q−− +

s

s−
. (4.3)

The divisors [16] of the meromorphic function are

(Θ(u, n)) = Du∞′ ,μ̃+
1 (n),...,μ̃+

l−1
(n)(u)−Du∞′′ ,μ̃+

1 (n),...,μ̃+
l−1

(n)(u), (4.4)

whence it follows that Θ(u, n) has l zeros, u∞′ , μ̃+
1 (n), . . . , μ̃

+
l−1(n), and l poles u∞′′ , μ̃1(n), . . . , μ̃l−1(n).

Besides, according to (3.8), (4.2) and (4.3), we have

Ξ1(u, n, n0) =
ς→0

Υ(n, n0)ς
n−n0(1 +O(ς)), u → u∞′ , ς = λ−1, (4.5)

where

Υ(n, n0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n−1∏
n′=n0

−v(n′), n � n0 + 1,

1, n = n0,
n0−1∏
n′=n0

(−v(n′))−1, n � n0 − 1,

and

Ξ1(u, n, n0) =
η→0

ηn−n0(1 +O(η)), u → u∞′′ , η = λ1/2. (4.6)

The divisors of the Baker–Akhiezer function Ξ1(u, n, n0) are

(Ξ1(u, n, n0)) = Dμ̃1(n),...,μ̃l−1(n) −Dμ̃1(n0),...,μ̃l−1(n0) + (n− n0)(Du∞′ −Du∞′′ ). (4.7)

The Riemann surface Kl−1 has a canonical basis of cycles w1, . . . ,wl−1 and o1, . . . ,ol−1 whose inter-

section numbers are

wj ◦ oσ = 0, wj ◦wσ = 0, oj ◦ oσ = 0, j, σ = 1, . . . , l − 1. (4.8)

On Kl−1, we define

ω̃h(u) =
1

3f2 + Yl
=

⎧⎨
⎩
λh−1dλ, 1 � h � 2p− 1,

fλh−2p−2, 2p � h � l − 1,
(4.9)
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and set

Oij =

∫

wj

ω̃i, Pij =

∫

oj

ω̃i,

where the matrices O and P are invertible. Now, we introduce new matrices Q and τ such that Q = O
−1

and τ = O
−1

P. It is easy to see that τ is symmetric (τij = τji) and its imaginary part is positive definite

(Im τ > 0).

Transforming ω̃h into the new basis ωj ,

ωj =
l−1∑
h=1

Qjhω̃h, j = 1, . . . , l − 1, (4.10)

we have

∫

wσ

ωj =

l−1∑
h=1

Qjh

∫

wi

ω̃h =

l−1∑
h=1

QjhPhσ = γjσ ,

∫

oσ

ωj =

l−1∑
h=1

Qjh

∫

oi

ω̃h =

l−1∑
h=1

QjhPhσ = τjσ .

We define the third kind holomorphic differential on Kl−1\{Q′, Q′′} as ω
(3)
Q′,Q′′ . It has poles at Qk with

the residues (−1)k+1, k = 1, 2. In particular,

∫

wj

ω
(3)
Q′,Q′′ = 0,

∫

oj

ω
(3)
Q′,Q′′ = 2πi

∫ Q′

Q′′
ωj, j = 1, . . . , l − 1.

For ω
(3)
u∞′ ,u∞′′ , we have

ω(3)
u∞′ ,u∞′′ =

ς→0
(ς−1 + ω∞′

0 ς0 +O(ς)) dς, u → u∞′ , ς = λ−1,

ω(3)
u∞′ ,u∞′′ =

η→0
(−η−1 + ω∞′′

0 η0 +O(η)) dη, u → u∞′′ , η = λ−1/2,
(4.11)

whence ∫ u

Q0

ω(3)
u∞′ ,u∞′′ =

ς→0
ln ς + �1(Q0) + ω∞′

0 ς +O(ς2), u → u∞′ ,

∫ u

Q0

ω(3)
u∞′ ,u∞′′ =

η→0
− ln η + �2(Q0) + ω∞′′

0 η +O(η2), u → u∞′′ ,

(4.12)

where Q0 is a variable base point on Kl−1{u∞′, u∞′′}, and �1(Q0), �2(Q0), ω
∞′
0 , and ω∞′′

0 are constants.

Let Tl−1 be the period lattice {z ∈ C
l−1|z = F + Hτ,F ,H ∈ Z

l−1}. On Kl−1, we regard Jl−1 =

C
l−1/Tl−1 as the Jacobian variety. We can then introduce the Abel map A : Kl−1 → Jl−1,

A(u) =
(
A1(u), . . . ,Al−1(u)

)
=

(∫ u

Q0

ω1, . . . ,

∫ u

Q0

ωl−1

)
(mod Tl−1).

We define the divisors group Div(Kl−1) and continue the above equation to it by linearity:

A
(∑

hσuσ

)
=

∑
hσA(uσ).
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We consider the nonspecial divisor Dμ̃(n) =
∑l−1

σ=1 μ̃σ(n) and define

ρ(n) = A
( l−1∑

σ=1

μ̃σ(n)

)
=

l−1∑
σ=1

A(μ̃σ(n)) =

l−1∑
σ=1

∫ μ̃σ(n)

Q0

ω , (4.13)

where ρ = (ρ1(n), . . . , ρl−1(n)) and ω = (ω1, . . . , ωl−1). We define the Riemann theta function θ(z)

on Kl−1 as

θ(z) =
∑

F∈Zl−1

exp{2πi〈F , z 〉+ πi〈F ,Fτ 〉}, z = (z1, . . . , zl−1) ∈ C
l−1,

〈F , z 〉 =
l−1∑
j=1

Fjzj, 〈F ,Fτ 〉 =
l−1∑

j,σ=1

τjσFjFσ.

(4.14)

We then introduce the function

θ(z(u, μ̃(n))) = θ(Λ −A(u) + ρ(n)),

u ∈ Kl−1, μ̃(n) = {μ̃1(n), . . . , μ̃l−1(n)} ∈ σl−1Kl−1,
(4.15)

where σl−1Kl−1 is the (l− 1)th symmetric power of Kl−1, and the expression of the vector Λ depending on

the base point Q0 is

Λj =
1

2
(1 + τjj)−

l−1∑
σ=1,
σ �=j

∫

wσ

ωσ

∫ u

Q0

ωj, j = 1, . . . , l − 1.

Theorem 1. Let u = (λ, f) ∈ Kl−1\{u∞′, u∞′′}, (n, n0) ∈ Z
2, and Dμ̃(n) be a nonspecial divisor.

Then

Θ(u, n) =
θ(z(u∞′′ , μ̃(n)))θ(z(u, μ̃+(n)))

θ(z(u∞′′ , μ̃+(n)))θ(z(u, μ̃(n)))
exp

(∫ u

Q0

ω(3)
u∞′ ,u∞′′ − �2(Q0)

)
,

Ξ1(u, n, n0) =
θ(z(u∞′′ , μ̃(n0)))θ(z(u, μ̃(n)))

θ(z(u∞′′ , μ̃(n)))θ(z(u, μ̃(n0)))
×

× exp

(
(n− n0)

(∫ u

Q0

ω(3)
u∞′,∞′′ − �2(Q0)

))
.

(4.16)

The divisor Dμ̃ can be linearized as follows under the Abel map:

ρ(n) = ρ(n0) + (n− n0)
(
A(u∞′′)−A(u∞′)

)
. (4.17)

Proof. Using the Abel theorem, we can obtain (4.17) from (4.7) and deduce the equations by (4.10),

exp

(∫ u

Q0

ω(3)
u∞′ ,u∞′′ − �2(Q0)

)
=

ς→0
ς exp(�1(Q0)− �2(Q0) +O(ς2)), u → u∞′ ,

exp

(∫ u

Q0

ω(3)
u∞′ ,u∞′′ − �2(Q0)

)
=

η→0
η−1 +O(1), u → u∞′′ .

(4.18)

Letting φ denote the right-hand side of (4.16), we find that φ and Θ have the same zeros and poles.

According to the Riemann–Roch theorem and Eqs. (4.3) and (4.18), we have

φ

Θ
=

η→0

(1 +O(η))(η−1 +O(1))

η−1 +O(1)
= 1 +O(η), u → u∞′′ .

Hence, the Riemann theta representation of Θ(u, n) can be proved and the representation of Ξ1(u, n, n0)

can also be proved by (3.8) and the representation of Θ.
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Theorem 2. Let n ∈ Z, Dμ̃(n) be a nonspecial divisor. Then the potentials q, r, s, and v can be

expressed in terms of the Riemann theta function as

q(n) = −ω∞′′
0 −

l−1∑
j=1

(
1

3β0
Qj,l−1 +

1

α0β0
Qj,2p−1

)
∂

∂zj
ln

θ(z(u∞′ , μ̃++(n)))

θ(z(u∞′ , μ̃+(n)))
−

−
θ(z(u∞′ , μ̃(n)))θ(z(u∞′ , μ++(n)))

θ(z(u∞′′ , μ̃++(n)))θ(z(u∞′ , μ̃+(n)))
exp(�1(Q0)− �2(Q0)),

r(n) = −ω∞′
0 +

l−1∑
j=1

(
2

3α0
Qj,l−1 −

1

α2
Qj,2p−1

)
∂

∂zj
ln

θ(z(u∞′ , μ̃+(n)))

θ(z(u∞′ , μ̃(n)))
,

s(n)

s−(n)
= ω∞′

0 −
l−1∑
j=1

(
2

3α0
Qj,l−1 −

1

α2
Qj,2p−1

)
∂

∂zj
ln

θ(z(u∞′ , μ̃+(n)))

θ(z(u∞′ , μ̃(n)))
,

v(n) = −
θ(z(u∞′′ , μ(n)))θ(z(u∞′ , μ+(n)))

θ(z(u∞′ , μ̃(n)))2
exp(�1(Q0)− �2(Q0)).

(4.19)

Proof. According to the Abel theorem and (4.6), we have

ρ+(n) +A(u∞′) = ρ(n) +A(u∞′′),

so

θ(z(u∞′′ , μ̃+(n))) = θ(z(u∞′ , μ̃(n))),

whence using f = Γ
(p)
11 + Γ

(p)
12 + Γ

(p)
13 /Θ

−1 we have

f =
ς→0,
η→0

⎧⎨
⎩
ς−p−1[α0 − α1ς

2 +O(ς3)], u → u∞′ , ς = λ−1,

η−2p−1[β0 − β1η
2 +O(η3)], u → u∞′′ , η = λ−1/2.

Using (4.9) and (4.10), we deduce the equality

ωj =

l−1∑
h=1

Qijω̂h =

2p−1∑
h=1

Qij
λh−1dλ

3f2 + Yl
+

l−1∑
h=2p

Qij
fλh−2p−2dλ

3f2 + Yl
, j = 1, . . . , l − 1.

The expression of ωj can then be obtained by direct calculation:

ωj =
ς→0,
η→0

⎧⎪⎨
⎪⎩

2

3α0
Qj,l−1 −

1

α0
2
Qj,2p−1 +O(ς)dς, u → u∞′ ,

− 1

3β0
Qj,l−1 −

1

α0β0
Qj,2p−1 +O(η)dη, u → u∞′′ .

With the Riemann theta representation of Θ(u, n) in (4.16), we have

θ(z(u, μ̃+(n)))

θ(z(u, μ̃(n)))
=

θ(Λ−A(u) + ρ+(n))

θ(Λ−A(u) + ρ(n))
=

θ(Λ−A(u∞′) + ρ+(n) +
∫ u∞′
u ω)

θ(Λ−A(u∞′ ) + ρ(n) +
∫ u∞′
u

ω)
=

ς→0

=
ς→0

θ(. . . ,Λj −Aj(u∞′) + ρ+j (n)− (
2

3α0
Qj,l−1 − 1

α0
2 Qj,2p−1

)
ς + O(ς2), . . .)

θ(· · · ,Λj −Aj(u∞′ ) + ρj(n)−
(

2
3α0

Qj,l−1 − 1
α0

2 Qj,2p−1

)
ς +O(ς2), . . .)

=
ς→0

=
ς→0

θ(z(u∞′ , μ̃+(n))) −∑l−1
j=1

(
2

3α0
Qj,l−1 − 1

α0
2 Qj,2p−1

)
∂

∂zj
ln θ(z(u∞′ , μ̃(n)))ς +O(ς2)

θ(z(u∞′ , μ̃(n))) −∑l−1
j=1

(
2

3α0
Qj,l−1 − 1

α0
2 Qj,2p−1

)
∂

∂zj
ln θ(z(u∞′ , μ̃+(n)))ς +O(ς2)

=
ς→0

=
ς→0

θ
′
+

θ′

(

1−
l−1∑

j=1

(
2

3α0
Qj,l−1 − 1

α0
2
Qj,2p−1)

∂

∂zj
ln

θ
′
+

θ′
ς + O(ς2)

)

,

where u → u∞′ and θ′ = θ(z(u∞′ , μ̃(n))), θ
′
+ = θ(z(u∞′ , μ̃+(n))).
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Similarly to the previous steps, we obtain

θ(z(u, μ̃+(n)))

θ(z(u, μ̃(n)))
=

θ
′′
+

θ′′

(
1−

l−1∑
j=1

(− 1

3β0
Qj,l−1 −

1

α0β0
Qj,2p−1)

∂

∂zj
ln

θ
′′
+

θ′′
η +O(η2)

)
,

where η → 0, θ′′ = θ(z(u∞′′ , μ̃(n))), and θ
′′
+ = θ(z(u∞′′ , μ̃+(n))). Hence, we have the following formulas as

η → 0 and ς → 0:

Θ(u, n) =
ς→0,
η→0

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
ς +

(
ω∞′
0 −

∑l−1
j=1

(
2

3α0
Qj,l−1 − 1

α0
2Qj,2p−1

)
∂

∂zj
ln

θ
′
+

θ′

)
ς2 +O(ς3)

)

× θ′′θ
′
+

θ
′′
+θ′ exp(�1(Q0)− �2(Q0)), u → u∞′ ,

η−1 + ω∞′′
0 +

∑l−1
j=1(

1
3β0

Qj,l−1 +
1

α0β0
Qj,2p−1)

∂
∂zj

ln
θ
′′
+

θ′′ +O(η),

u → u∞′′ .

In addition, in accordance with (4.2) and (4.3), we have

Θ(u, n) =
ς→0,
η→0

⎧⎪⎨
⎪⎩
−vς +

(
v+ − s

s−
v− + rv

)
ς2 +O(ς3), u → u∞′ ,

η−1 − q− + v +O(η), u → u∞′′ .

Formulas (4.19) are thus proved.

We let the o-periods of ω
(3)
u∞′ ,u∞′′ be denoted as

A(3) = (A(3)
1 , . . . ,A(3)

l−1), A(3)
σ =

1

2πi

∫

oσ

ω(3)
u∞′ ,u∞′′ , σ = 1, . . . , l − 1. (4.20)

Combining (4.11), (4.17), (4.19), and (4.20) shows that the Riemann theta representation for q(n), r(n),

s(n), and v(n) has a remarkable linearity in n ∈ Z×R. As a matter of fact, Eqs. (4.19) can be rewritten as

q(n) = −ω∞′′
0 +

l−1∑
j=1

K
(∞′′)
j,0

∂

∂zj
ln

θ(B2 +A(3)n)

θ(B1 +A(3)n)
− θ(B0 +A(3)n)θ(B2 +A(3)n)

θ(B′
2 +A(3)n)θ(B1 +A(3)n)

exp(�1(Q0)− �2(Q0)),

r(n) = −ω∞′
0 +

l−1∑
j=1

K
(∞′)
j,0

∂

∂zj
ln

θ(B1 +A(3)n)

θ(B0 +A(3)n)
,

s(n)

s−(n)
= ω∞′

0 −
l−1∑
j=1

K
(∞′)
j,0

∂

∂zj
ln

θ(B1 +A(3)n)

θ(B0 +A(3)n)
,

v(n) = − θ(B′
0 +A(3)n)θ(B1 +A(3)n)

θ(B0 +A(3)n)2
exp(�1(Q0)− �2(Q0)).

where

B0 = S −A(3), B′
0 = S ′ −A(3), B1 = S +A(3),

B′
1 = S ′ +A(3), B2 = S + 2A(3), B′

2 = S ′ + 2A(3),

K
(∞′)
j,0 =

2

3α0
Qj,l−1 −

1

α2
Qj,2p−1, K

(∞′′)
j,0 = − 1

3β0
Qj,l−1 −

1

α0β0
Qj,2p−1,

S = Λ−O(u∞′) + ρ(n0)−A(3)n0, S ′ = Λ−O(u∞′′) + ρ(n0)−A(3)n0.
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5. Algebro-geometric solutions of the hierarchy
in the time-dependent case

In this section, we discuss the algebro-geometric solutions of (1.3) in the time-dependent case. We first

define the time-dependent Baker–Akhiezer function

EΞ(u, n, n0, tm, t0m) = U(q(n, tm), r(n, tm), s(n, tm), v(n, tm);λ(u))Ξ(u, n, n0, tm, t0m),

Ξtm(u, n, n0, tm, t0m) = Γ̂mU(q(n, tm), r(n, tm), s(n, tm), v(n, tm);λ(u))Ξ(u, n, n0, tm, t0m),

Γ(p)(q(n, tm), r(n, tm), s(n, tm), v(n, tm);λ(u))Ξ(u, n, n0, tm, t0m) = f(u)Ξ(u, n, n0, tm, t0m),

Ξ1(u, n0, n0, t0m, t0m) = 1,

u ∈ Kl−1\{u∞′, u∞′′}, (n, tm), (n0, t0m) ∈ Z× R.

(5.1)

From the compatibility condition for Eqs. (5.1), we have

Utm − (EΓ̂m)U + U Γ̂m = 0, (EΓ(p))U − UΓ(p) = 0, Γ
(p)
tm − [Γ̂m,Γ(p)] = 0. (5.2)

Direct calculation shows that �l(λ, f) = det(fI−Γ(p)) satisfies the stationary zero-curvature equation.

The Lax pair Γ(p) characteristic polynomial is a constant independent of n and tm, and we have

det(fI − Γ(p)) = f3 − f2Xl(λ) + fYl(λ)− Zl(λ).

Then the trigonal curve Kl−1 is naturally defined in the time-dependent case as

Kl−1 : fl(λ, f) = f3 − f2Xl(λ) + fYl(λ) − Zl(λ).

The meromorphic function Θ(u, n, tm) on Kl−1 is defined as

Θ(u, n, tm) =
Ξ2(u, n, n0, tm, t0m)

Ξ1(u, n, n0, tm, t0m)
, u ∈ Kl−1, (n, tm) ∈ Z× R, (5.3)

whence we have

Ξ1(u, n, n0, t0, t0m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n−1∏
n′=n0

(1 + q(n, tm)Θ(u, n′, tm)), n � n0 + 1,

1, n = n0,
n−1∏

n′=n0

(1 + q(n, tm)Θ(u, n′, tm))−1, n � n0 − 1.

From (5.3), we have

Θ(u, n, tm) =
fΓm

23(λ, n, tm) +Al(λ, n, tm)

fΓm
13(λ, n, tm) +Bl(λ, n, tm)

=

=
El−1(λ, n, tm)

f2Γm
23(λ, n, tm)− fAl(λ, n, tm) + Cl(λ, n, tm)

=

=
f2Γm

13(λ, n, tm)− fBl(λ, n, tm) +Dl(λ, n, tm)

Fl−1(λ, n, tm)
, (5.4)
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where u = (λ, f) and the elements such as Al(λ, n, tm) are defined the same as in the stationary case.

Similarly,

Fl−1(λ, n, tm) = Fl−1,0

l−1∏
j=1

(λ− μj(n, tm)),

El−1(λ, n, tm) = −Fl−1,0

l−1∏
j=1

(λ− μ+
j (n, tm)).

We give the expressions for {μ̃j(n, tm)}j=1,...,l−1 ⊂ Kl−1 and {μ̃+
j (n, tm)}j=1,...,l−1 ⊂ Kl−1 in the form

μ̃j(n, tm) =
(
μj(n, tm), f(μ̂j(n, tm))

)
=

=

(
μj(n, tm)− Bl(μj(n, tm), n, tm)

Γm
32(μj(n, tm), n, tm)

)
,

μ̃+
j (n, tm) =

(
μ+
j (n, tm), f(μ̂+

j (n, tm))
)
=

=

(
μ+
j (n, tm)− Al(μj(n, tm), n, tm)

Γm
32(μ

+
j (n, tm), n, tm)

)
, (n, tm) ∈ Z× R.

(5.5)

From (5.4), the divisor of Θ(u, n, tm) can be expressed as

(Θ(u, n, tm)) = Du∞′ ,μ̃+
1 (n,tm),...,μ̃+

l−1(n,tm)(u)−Du∞′′ ,μ̃+
1 (n,tm),...,μ̃+

l−1(n,tm)(u), (5.6)

and hence Θ(u, n, tm) still has l zeros, u∞′ , μ̃+
1 (n, tm), . . . , μ̃+

l−1(n, tm), and l poles u∞′′ , μ̃1(n, tm), . . . ,

μ̃l−1(n, tm).

By the same calculation, it is clear that Θ(u, n, tm) satisfies the Riccati-type equation

q−(n, tm)q(n, tm)Θ+(u, n, tm)Θ(u, n, tm)Θ−(u, n, tm) =

=

(
v(n, tm)q−(n, tm)− s(n, tm)

s−(n, tm)

)
Θ−(u, n, tm) +

+ (λ+ r(n, tm))Θ(u, n, tm)−Θ+(u, n, tm) + v(n, tm) +

+ (λ+ r(n, tm))q−(n, tm)Θ−(u, n, tm)Θ(u, n, tm)−
− q(n, tm)Θ(u, n, tm)Θ+(u, n, tm)− q−(n, tm)Θ−(u, n, tm)Θ+(u, n, tm). (5.7)

Also similarly to the preceding subsection, it can be shown that the function Θ(u, n, tm) satisfies the system

of equations

Θ(u, n, tm)Θ(u∗, n, tm)Θ(u∗∗, n, tm) = −El−1(λ, n, tm)

Fl−1(λ, n, tm)
,

Θ(u, n, tm) + Θ(u∗, n, tm) + Θ(u∗∗, n, tm) =
3Dl(λ, n, tm)− 2Γm

32(λ, n, tm)Yl(λ, n, tm)

Fl−1(λ, n, tm)
,

1

Θ(u, n, tm)
+

1

Θ(u∗, n, tm)
+

1

Θ(u∗∗, n, tm)
=

3Cl(λ, n, tm)− 2Γm
12(λ, n, tm)(λ, n, tm)Yl(λ, n, tm)

El−1(λ, n, tm)
.

(5.8)

Differentiating the meromorphic function with respect to tm, we have

Θtm =

(
Ξ+
1

Ξ1

)

tm

=
Ξ+
1,tm

Ξ1 − Ξ+
1 Ξ1,tm

Ξ2
1

=
Ξ+
1

Ξ1

(
Ξ+
1,tm

Ξ+
1

− Ξ1,tm

Ξ1

)
=

= ΘΔ
Ξ1,tm

Ξ1
= ΘΔ

(
Γ̂m
11 + Γ̂m

12Θ+ Γ̂m
13

1

Θ−

)
,

whence
Θ(u, n, tm)tm
Θ(u, n, tm)

= Δ

(
Γ̂m
11(λ, n, tm) + Γ̂m

12(λ, n, tm)Θ + Γ̂m
13(λ, n, tm)

1

Θ−(u, n, tm)

)
, (5.9)

where Δ is the difference operator and Δ = E − 1.
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The dynamics of μj(n, tm) of Fl−1(λ, n, tm) can be described by Dubrovin-type equations in accordance

with the following lemma.

Lemma 1. Let (n, tm) ∈ Z× R. The zeros {μj(n, tm)}j=1,l−1 of Fl−1(λ, n, tm) satisfy the equations

μj,tm(n, tm) = [ Γ̂m
12(μj(n, tm), n, tm)Γ

(p)
13 (μj(n, tm), n, tm)−

− Γ̂m
13(μj(n, tm), n, tm)Γ

(p)
12 (μj(n, tm), n, tm)]

3f2(μ̂j(n, tm)) + Yl(μj(n, tm))

Fl−1,0

∏l−1
σ=1,
σ �=j

(μj(n, tm)− μσ(n, tm))
, (5.10)

where 1 � j � l − 1.

Proof. From (3.10), (3.11), and (5.2), we have

Fl−1,tm(λ, n, tm) =
(
(Γ

(p)
13 )

2Γ
(p)
32 + Γ

(p)
12 Γ

(p)
13 (Γ

(p)
22 − Γ

(p)
33 )− (Γ

(p)
12 )

2Γ
(p)
23

)
tm

=

= 3Γ̂m
11Fl−1 + 3(Γ̂m

12Al − Γ̂m
13Gl)− 2(Γ̂m

12Γ
(p)
13 − Γ̂m

13Γ
(p)
12 )Yl =

= 3Γ̂m
11Fl−1 + 3Γ̂m

12(Γ
(p)
23 Gl − Γ

(p)
22 Bl)− 3Γ̂m

13(Γ
(p)
32 Bl − Γ

(p)
33 Gl) +

+ (Γ̂m
12Γ

(p)
13 − Γ̂m

13Γ
(p)
12 )Yl.

With (3.12) and (5.5), we then have

Bl

Γ
(p)
13

∣∣∣∣
λ=μj(n,tm)

=
Gl

Γ
(p)
12

∣∣∣∣
λ=μj(n,tm)

= −f(μ̃j(n, tm)),

whence

Γ̂m
12(Γ

(p)
23 Gl − Γ

(p)
22 Bl)|λ=μj (n,tm) = f2(μ̂j(n, tm))Γ̂m

12Γ
(p)
13 |λ=μj(n,tm),

Γ̂m
13(Γ

(p)
32 Bl − Γ

(p)
33 Gl)|λ=μj (n,tm) = f2(μ̂j(n, tm))Γ̂m

13Γ
(p)
12 |λ=μj(n,tm),

(Γ̂m
12Bl − Γ̂m

13Gl)|λ=μj(n,tm) = −f(μ̂j(n, tm))(Γ̂m
12Γ

(p)
13 − Γ̂m

13Γ
(p)
12 )

∣∣
λ=μj(n,tm)

.

Therefore,

Fl−1,tm(λ, n, tm)|λ=μj(n,tm) = −μj,tm(n, tm)Fl−1,0

l−1∏
σ=1,
σ �=j

(μj(n, tm)− μσ(n, tm)) =

=
(
3f2(μ̂j(n, tm)) + Yl(μj(n, tm))

)
(Γ̂m

12Γ
(p)
13 − Γ̂m

13Γ
(p)
12 )

∣∣
λ=μj(n,tm)

,

and Eq. (5.10) is thus proved.

Moreover, in accordance with (5.1), we have

Ξ1(u, n, n0, tm, t0m) = exp

(∫ tm

t0m

(
Γ̂m
11(λ, n, tm) + Γ̂m

12(λ, n, tm)Θ + Γ̂m
13(λ, n, tm)

1

Θ−(u, n, tm)

)
dt′

)
×

×

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n−1∏
n′=n0

(1 + q(n, tm)Θ(u, n′, tm)), n � n0 + 1,

1, n = n0,
n0−1∏
n′=n

(1 + q(n, tm)Θ(u, n′, tm))−1, n � n0 − 1,

(5.11)
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and

Ξ1(u, n, n0, tm, t0m) = Ξ1(u, n, n0, tm, tm)Ξ1(u, n0, n0, tm, t0m), (5.12)

where u = (λ, f) ∈ Kl−1\{u∞′, u∞′′}, and (n, tm), (n0, t0m) ∈ Z×R. Using the function in (5.11), we define

Πm(u, n, tm) as

Πm(u, n, tm) = Γ̂m
11(λ, n, tm) + Γ̂m

12(λ, n, tm)Θ(u, n, tm) + Γ̂m
13

1

Θ−(u, n, tm)
,

whence

Π̃(k)
m (u, n, tm) =

˜̂
Γ
(m,k)
11 (λ, n, tm) +

˜̂
Γ
(m,k)
12 (λ, n, tm)Θ(u, n, tm) +

˜̂
Γ
(m,k)
13

1

Θ−(u, n, tm)
, (5.13)

where ˜̂
Γ
(m,1)
1j = Γ̃m

1j |α̂0=1,β̂1=0,
˜̂
Γ
(m,2)
1j = Γ̃m

1j |α̂0=1,β̂1=0,

and α̂1 = · · · = α̂m = β̂1 = · · · = β̂m = 0. Hence,

Πm(u, n, tm) =
m∑

h=0

α̂m−hΠ̃
(1)
h (u, n, tm) +

m∑
h=0

β̂m−hΠ̃
(2)
h (u, n, tm). (5.14)

Lemma 2. Let (n, tm) ∈ Z×R, and let ς = λ−1 and η = λ1/2 be local coordinates near u∞′ and u∞′′ .

Then

Π̃(1)
m (u, n, tm) =

ς→0,
η→0

⎧⎨
⎩
ς−(m+1) +O(ς), u → u∞′ ,

−η−(m+1) −O(η), u → u∞′′ ,

Π̃(2)
m (u, n, tm) =

ς→0,
η→0

⎧⎪⎨
⎪⎩
−b̄m(n, tm)− b̄+m+1(n, tm)d̄+m+1(n, tm) +O(ς), u → u∞′ ,

2
b̄m+1(n, tm)

b̄++
m+1(n, tm)

+
1

3
d̄+m+1(n, tm) +O(η), u → u∞′′ .

(5.15)

Proof. We set α̃m = α̂m|α̂0=1,β̂0=0. From (5.1) and (5.13), we then have

Π̃(1)
m (u, n, tm) =

˜̂
Γ
(m,1)
11 (λ, n, tm) +

˜̂
Γ
(m,1)
12 (λ, n, tm)Θ(u, n, tm) +

˜̂
Γ
(m,1)
13 (λ, n, tm)

Θ−(u, n, tm)
=

= ãm +

(
Θ(u, n, tm) + s(n, tm)E

1

Θ−(u, n, tm)

)
b̃m+

+ q(n, tm)s(n, tm)
2
Ed̃m

1

Θ−(u, n, tm)
.

Using (4.2) and (4.3), we have the following result as m = 0:

Π̃
(1)
0 (u, n, tm) =

ς→0,
η→0

⎧⎨
⎩
ς−1 +O(ς), u → u∞′ ,

−η−1 −O(η), u → u∞′′ ,

We now suppose that

Π̃(1)
m (u, n, tm) =

ς→0,
η→0

⎧⎨
⎩
ς−(m+1) +

∑∞
j=0 δj(n, tm)ςj , u → u∞′ ,

−η−(m+1) −
∑∞

j=0 κj(n, tm)ηj , u → u∞′′ ,
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where the coefficients of {δj(n, tm)}j∈Q0 and {κj(n, tm)}j∈Q0 can be determined. In accordance with (5.9)

and (5.13), we obtain

Θ(u, n, tm)tm = Θ(u, n, tm)ΔΠ̃(1)
m (u, n, tm).

Comparing the coefficients of ς and η, we have

δj,tm = δ1Δ�j−1 + δ2Δ�j−2 + · · ·+ δjΔ�0,

κj,tm = κ0Δχj + κ2Δχj−1 + · · ·+ κj−1Δχ1, j � 0,

whence

Δχ0 = 0, Δχ1 = κ1,tm = Δb̄m+1,

Δ�0 =
Θ1,tm

Θ1
=

vtm
v

= 2ãm+1,

Δ�1 =
1

Θ1
Θ2,tm − Θ2

Θ1
Δ�0 = Δ(c̃m+1 + (E − 1)

−1
ãm+1).

It then follows that

χ0(n, tm) = 0, χ1(n, tm) = b̄m+1(n, tm),

�0(n, tm) = 2(E − 1)−1ãm+1(n, tm),

�1(n, tm) = −c̃m+1(n, tm) + (E − 1)−1ãm+1(n, tm).

Therefore, in view of ΔΔ−1 = Δ−1Δ = 1, the following results can be deduced:

Π̃
(1)
m+1(u, n, tm) =

ς→0
Π̃(1)

m (u, n, tm)ς−2 +

(
Θ(u, n, tm) + snE

1

Θ−(u, n, tm)

)
b̃m+1 +

+ ãm+1(n, tm) + q(n, tm)s(n, tm)
2
Ed̃m+1

1

Θ−(u, n, tm)
=

= ς−(m+1) + ς−1
(
�0 − 2ãm+1(n, tm)

)
+ �1 + c̃m+1(n, tm)−

− (E − 1)−1ãm+1(n, tm) =

= ς−(m+1) +O(ς), u → u∞′ ,

Π̃
(1)
m+1(u, n, tm) =

η→0
Π̃(1)

m (u, n, tm)η−2 +

(
Θ(u, n, tm) + s(n, tm)E

1

Θ−(u, n, tm)

)
b̃m+1 +

+ ãm+1(n, tm) + q(n, tm)s(n, tm)
2
Ed̃m+1

1

Θ−(u, n, tm)
=

= −η−(m+1) − η−1χ0 − χ1 + b̄m+1(n, tm) =

= −η−(m+1) −O(η), u → u∞′′ .

We have proved (5.15) for Π̃
(k)
m+1 for k = 1; the proof for k = 2 is similar.

Let ω
(2)
u∞k,j

, j � 2, be the normalized differential of the second kind that is holomorphic on Kl−1\{u∞k}
and has a jth-order pole at u∞k (k = 1, 2),

ω
(2)
u′∞,j =

ς→0
(ς−j +O(1)) dς, u → u∞′ , ς = λ−1,

ω
(2)
u′′∞,j =

η→0
(η−j +O(1)) dη, u → u∞′′ , η = λ−1/2,
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and has the w-periods
∫
wσ

ω
(2)
u∞k,j

= 0, σ = 1, . . . , l − 1. Let

�̂
(2)
m = −

m∑
h=0

α̂m−h(h+ 1)ω
(2)
u∞′ ,h+2 +

m∑
h=0

β̂m−h(2h+ 1)ω̂
(2)
u∞′′ ,2h+2. (5.16)

Integrating (5.16), we obtain

∫ u

Q0

�̂
(2)
m =

ς→0

m∑
h=0

α̂m−hς
−h−1 + �̂

(2)
1 (Q0) +O(ς), u → u∞′ ,

∫ u

Q0

�̂
(2)
m =

η→0
−

m∑
h=0

β̂m−hη
−2h−1 + �̂

(2)
2 (Q0) +O(η), u → u∞′′ .

We next find the explicit Riemann theta function representations for the functions Θ(u, n, tm) and

Ξ1(u, n, n0, tm, t0m).

Theorem 3. Let u = (λ, f) ∈ Kl−1\{u∞′ , u∞′′}, (n, n0, tm, t0m) ∈ Z
2 × R

2. If Dμ̃(n,tm) is nonspecial

and (n, tm) ∈ Z× R, then Θ(u, n, tm) and Ξ1(u, n, n0, tm, t0m) can be represented as

Θ(u, n, tm) =
θ(z(u∞′′ , μ̃(n)))θ(z(u, μ̃+(n)))

θ(z(u∞′′ , μ̃+(n)))θ(z(u, μ̃(n)))
exp

(∫ u

Q0

ω(3)
u∞′ ,u∞′′ − �2(Q0)

)
, (5.17)

and

Ξ1(u, n, n0, tm, t0m) =
θ(z(u∞′′ , μ̃(n0, t0m)))θ(z(u, μ̃+(n, tm)))

θ(z(u∞′′ , μ̃+(n, tm)))θ(z(u, μ̃(n0, t0m)))
exp

(
(n− n0)

(∫ u

Q0

ω(3)
u∞′,∞′′ − �2(Q0)

))
+

+ (tm − t0m)(�̂
(2)
2 (Q0))−

∫ u

Q0

�̂
(2)
m . (5.18)

Proof. For t0m = tm, Ξ1(u, n, n0, tm, tm) has the form

Ξ1(u, n, n0, tm, tm) =
θ(z(u∞′′ , μ̃(n0, t0m)))θ(z(u, μ̃+(n, tm)))

θ(z(u∞′′ , μ̃+(n, tm)))θ(z(u, μ̃(n0, t0m)))
exp

(
(n− n0)

(∫ u

Q0

ω(3)
u∞′,∞′′ − �2(Q0)

))
.

We also need to verify that

Ξ1(u, n0, n0, tm, t0m) = exp

(∫ tm

t0m

Πm(u, n0, t
′)dt′

)
.

We let W1(u, n0, n0, tm, tm) denote the right-hand side of (5.18). Then

W1(u, n0, n0, tm, tm) =
θ(z(u′′∞, μ̃(n0, t0m)))θ(z(u, μ̃+(n0, tm)))

θ(z(u′′∞, μ̃+(n0, tm)))θ(z(u, μ̃(n0, t0m)))
exp

(
(tm − t0m)

(
�̂
(2)
2 (Q0)−

∫ u

Q0

ω̂(2)
m

))
.

Next, we prove that

Ξ1(u, n0, n0, tm, t0m) = W1(u, n0, n0, tm, t0m).
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First, we use (3.12), (5.4), and (5.13) to obtain the formula

Πm(u, n, tm) = Γ̂m
11(λ, n, tm) + Γ̂m

12(λ, n, tm)Θ(u, n, tm) + Γ̂m
13

1

Θ−(u, n, tm)
=

= Γ̂m
11 + Γ̂m

12

f2Γ
(p)
12 − fBl +Al

Fl−1
− Γ̂m

13

f2Γ
(p)
12 − fGl +Hl

Fl−1
=

=
1

Fl−1

(
1

3
Fl−1,tm + (Γ̂m

12Γ
(p)
13 − Γ̂m

13Γ
(p)
12 )

(
f2 +

2

3
Yl

)
− (Γ̂m

12Bl − Γ̂m
12Gl)f

)
=

= − μj,tm(n, tm)

λ− μj(n, tm)
+O(1) = ∂tm ln(λ− μj(n, tm)) +O(1), λ → μj(n, tm),

where O(1) �= 0. Consequently,

Ξ1(u, n0, n0, tm, t0m) = exp

(∫ tm

t0m

∂t′ ln(λ− μj(n0, t
′) dt′)

)
=

λ− μj(n0, tm)

λ− μj(n0, t0m)
O(1) =

=

⎧⎪⎪⎨
⎪⎪⎩

(λ− μj(n0, tm))O(1), u → μ̃j(n0, tm) �= μ̃j(n0, t0m),

O(1), u → μ̃j(n0, tm) = μ̃j(n0, t0m),

(λ− μj(n0, t0m))−1O(1), u → μ̃j(n0, t0m) �= μ̃j(n0, tm).

Hence, Ξ1(u, n0, n0, tm, t0m) and W1(u, n0, n0, tm, t0m) have the same poles and zeros on Kl−1. In addi-

tion, we can find that Kl−1, Ξ1(u, n0, n0, tm, t0m) and W1(u, n0, n0, tm, t0m) have the identical essential

singularities. Because of Dμ̃(n,tm) is nonspecial, Eqs. (5.17) and (5.18) have been proved.

We let the o-periods of �̂
(2)
m be denoted as

Â
(2)

m = (Â(2)
m,1, . . . , Â

(2)
m,l−1), Â(2)

m,σ =
1

2πi

∫

oj

�̂
(2)
m , σ = 1, . . . , l− 1. (5.19)

Theorem 4 (straightening out of the flows). The following equality holds:

ρ(n, tm) = ρ(n0, t0m) +A(3)(n− n0) + Â
(2)

m (tm − t0m). (5.20)

Proof. Introducing the meromorphic differential

�(n, n0, tm, t0m) =
∂

∂λ
ln(Ξ1(u, n, n0, tm, t0m)) dλ,

we use (5.18) to obtain

�(n, n0, tm, t0m) = (n− n0)ω
(3)
u∞′ ,u∞′′ − (tm − t0m)�̂(2)

m +
l−1∑
j=1

ω
(3)
μ̃j(n,tm),μj(n0,t0m) +

l−1∑
j=1

�̌jωj ,

where �̌ ∈ C, j = 1, . . . , l − 1. On Kl−1, any of the w-periods and o-periods is an integer multiple of 2πi

because Ξ1(u, n, n0, tm, t0m) is single-valued, and hence

2πiBσ =

∫

wσ

�(n, n0, tm, t0m) =

∫

wσ

l−1∑
j=1

�̌jωj = �̌σ, σ = 1, . . . , l − 1,
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where Bσ ∈ Z. Similarly, for Cσ ∈ Z (σ = 1, . . . , l − 1), we have

2πiCσ =

∫

oσ

�(n, n0, tm, t0m) =

= (n− n0)

∫

oσ

ω(3)
u∞′ ,u∞′′ − (tm − t0m)

∫

oσ

�̂
(2)
m +

+

l−1∑
j=1

∫

oσ

ωμ̃j(n,tm),μ̃j(n0,t0m) +

∫

oσ

l−1∑
j=1

�̌jωj =

= 2πi(n− n0)A(3)
σ − 2πi(tm − t0m)

∫

oσ

�̂
(2)
m +

+ 2πi

l−1∑
j=1

∫ μ̃j(n,tm)

μ̃j(n0,t0m)

ωσ + 2πi

l−1∑
j=1

Bj

∫

oσ

ωj =

= 2πi(n− n0)A(3)
σ − 2πi(tm − t0m)Â(2)

m,σ +

+ 2πi

( l−1∑
j=1

∫ μ̃j(n,tm)

Q0

ωσ −
l−1∑
j=1

∫ μ̃j(n0,t0m)

Q0

ωσ

)
+ 2πi

l−1∑
j=1

Bjτj,σ,

whence

C = (n− n0)A(3) − (tm − t0m)Â
(2)

m +
l−1∑
j=1

∫ μ̃j(n,tm)

Q0

ω −
l−1∑
j=1

∫ μ̃j(n0,t0m)

Q0

ω + Bτ, (5.21)

where C = (C1, . . . , Cl−1) ∈ Z
l−1 and B = (B1, . . . ,Bl−1) ∈ Z

l−1. Therefore, we have proved (5.20)

because (5.21) is equivalent to (5.20).

From Theorem 4, we have

θ(z(u∞′ , μ̃(n, tm))) = θ(B̂0 +A(3)n+ Â
(2)

m tm),

θ(z(u∞′ , μ̃+(n, tm))) = θ(B̂1 +A(3)n+ Â
(2)

m tm),

θ(z(u∞′ , μ̃++(n, tm))) = θ(B̂2 +A(3)n+ Â
(2)

m tm),

θ(z(u∞′′ , μ(n, tm))) = θ(B̂
′
0 +A(3)n+ Â

(2)

m tm),

θ(z(u∞′′ , μ+(n, tm))) = θ(B̂
′
1 +A(3)n+ Â

(2)

m tm),

θ(z(u∞′′ , μ++(n, tm))) = θ(B̂
′
2 +A(3)n+ Â

(2)

m tm),

(5.22)

where

B̂0 = Ŝ − A(3), B̂
′
0 = Ŝ

′
−A(3), B̂1 = Ŝ +A(3),

B̂
′
1 = Ŝ

′
+A(3), B̂2 = Ŝ + 2A(3), B̂

′
2 = Ŝ

′
+ 2A(3),

Ŝ = Λ −O(u∞′) + ρ(n0, t0m)−A(3)n0 −A(2)
m t0m,

Ŝ
′
= Λ−O(u∞′′) + ρ(n0, t0m)−A(3)n0 −A(2)

m t0m.
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Theorem 5. Let (n, tm) ∈ Z× R and let the divisor Dμ̃(n,tm) be nonspecial. Then

q(n, tm) = −ω∞′′
0 −

l−1∑
j=1

(
1

3β0
Qj,l−1 +

1

α0β0
Qj,2p−1

)
∂

∂zj
ln

θ(z(u∞′ , μ̃++(n, tm)))

θ(z(u∞′ , μ̃+(n, tm)))
−

−
θ(z(u∞′ , μ̃(n, tm)))θ(z(u∞′ , μ++(n, tm)))

θ(z(u∞′′ , μ̃++(n, tm)))θ(z(u∞′ , μ̃+(n, tm)))
exp(�1(Q0)− �2(Q0)),

r(n, tm) = −ω∞′
0 +

l−1∑
j=1

(
2

3α0
Qj,l−1 −

1

α2
Qj,2p−1

)
∂

∂zj
ln

θ(z(u∞′ , μ̃+(n, tm)))

θ(z(u∞′ , μ̃(n, tm)))
, (5.23)

s(n, tm)

s−(n, tm)
= ω∞′

0 −
l−1∑
j=1

(
2

3α0
Qj,l−1 −

1

α2
Qj,2p−1

)
∂

∂zj
ln

θ(z(u∞′ , μ̃+(n, tm)))

θ(z(u∞′ , μ̃(n, tm)))
,

v(n, tm) = −
θ(z(u∞′′ , μ(n, tm)))θ(z(u∞′ , μ+(n, tm)))

θ(z(u∞′ , μ̃(n, tm)))2
exp(�1(Q0)− �2(Q0)).

Combining (5.20) and (5.23) shows that the Riemann theta representation for q(n, tm), r(n, tm),

s(n, tm) and v(n, tm) has a remarkable linearity in (n, tm) ∈ Z × R. Expressions (5.23) can then be

rewritten as

q(n, tm) = −ω∞′′
0 +

l−1∑
j=1

K
(∞′′)
j,0

∂

∂zj
ln

θ(B̂2 +A(3)n+ Â
(2)

m tm)

θ(B̂1 +A(3)n+ Â
(2)

m tm)
−

− θ(B̂0 +A(3)n+ Â
(2)

m tm)θ(B̂2 +A(3)n+ Â
(2)

m tm)

θ(B̂
′
2 +A(3)n+ Â

(2)

m tm)θ(B̂1 +A(3)n+ Â
(2)

m tm)
exp(�1(Q0)− �2(Q0)),

r(n, tm) = −ω∞′
0 +

l−1∑
j=1

K
(∞′)
j,0

∂

∂zj
ln

θ(B̂1 +A(3)n+ Â
(2)

m tm)

θ(B̂0 +A(3)n+ Â
(2)

m tm)
, (5.24)

s(n, tm)

s−(n, tm)
= ω∞′

0 −
l−1∑
j=1

K
(∞′)
j,0

∂

∂zj
ln

θ(B̂1 +A(3)n+ Â
(2)

m tm)

θ(B̂0 +A(3)n+ Â
(2)

m tm)
,

v(n, tm) = −θ(B̂
′
0 +A(3)n+ Â

(2)

m tm)θ(B̂1 +A(3)n+ Â
(2)

m tm)

θ(B̂0 +A(3)n+ Â
(2)

m tm)2
exp(�1(Q0)− �2(Q0)).

Hence, formulas (5.23) and (5.24). give algebro-geometric solutions of the discrete hierarchy of the gener-

alized Toda lattice (1.3).

To clarify the algebro-geometric solutions, we consider a simpler example of the Riemann theta rep-

resentation under the condition p = 1. The genus of K2 is therefore equal to 2, and we can obtain the

following results by direct calculation:

Γ
(1)
11 = α0 + β0 + α1 − β1, Γ

(1)
12 = (3β0 − 2α0)q

−, Γ
(1)
13 = −α0sq,

Γ
(1)
21 = (3β0 − 2α0)v, Γ

(1)
22 = β0 − α1 + 2β1, Γ

(1)
23 = (3β0 − α0)s,

Γ
(1)
31 = (2α0 − 3β0)

v−

s−q−
, Γ

(1)
32 = (α0 − 3β0)

1

s−
, − Γ

(1)
11 − Γ

(1)
22 = −α0 − β0 − β1.

The trigonal curve �3(λ, f) = 0, whose degree is l = 3 (α0β0 �= 0), can then be defined as

K2 : �3(λ, f) = f3 − f2X3(λ) + fY3(λ) − Z3(λ) = 0,
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where

X3(λ) = 0,

Y3(λ) = (−α0
2 + α0β0 − 3β0

2)λ2 + ı1λ− (a2
2 + a2c2 + c2

2),

Z3(λ) = (α0
2β0 − 3α0β0

2 + 2β0
3)λ3 + ı2λ

2 + ı3λ− (a2
2c2 + a2c2

2),

and ı1, ı2, and ı3 are arbitrary constants. Therefore, the polynomials of F2 and E2 can be reexpressed as

F2(λ, n, tm) = (3β0 − α0)(λ− μ1(n))(λ − μ2(n)),

E2(λ, n, tm) = (α0 − 3β0)(λ− μ+
1 (n))(λ− μ+

2 (n)).

The Riemann theta representations of the potentials in the case of genus is 2 can therefore be rewritten as

q(n, tm) = −ω∞′′
0 +

2∑
j=1

K
(∞′′)
j,0

∂

∂zj
ln

θ(B̂2 +A(3)
2 n+ Â(2)

m,2tm)

θ(B̂1 +A(3)
2 n+ Â(2)

m,2tm)
−

−
θ(B̂0 +A(3)

2 n+ Â(2)
m,2tm)θ(B̂2 +A(3)

2 n+ Â(2)
m,2tm)

θ(B̂′
2 +A(3)

2 n+ Â(2)
m,2tm)θ(B̂1 +A(3)

2 n+ Â(2)
m tm)

exp(�1(Q0)− �2(Q0)),

r(n, tm) = −ω∞′
0 +

2∑
j=1

K
(∞′)
j,0

∂

∂zj
ln

θ(B̂1 +A(3)
2 n+ Â(2)

m,2tm)

θ(B̂0 +A(3)
2 n+ Â(2)

m,2tm)
,

s(n, tm)

s−(n, tm)
= ω∞′

0 −
2∑

j=1

K
(∞′)
j,0

∂

∂zj
ln

θ(B̂1 +A(3)
2 n+ Â(2)

m,2tm)

θ(B̂0 +A(3)n+ Â(2)
m,2tm)

,

v(n, tm) = −
θ(B̂′

0 +A(3)
2 n+ Â(2)

m,2tm)θ(B̂1 +A(3)
2 n+ Â(2)

m,2tm)

θ(B̂0 +A(3)
2 n+ Â(2)

m,2tm)2
exp(�1(Q0)− �2(Q0)),

where

θ(z) =
∑
F1∈Z

exp{2πiF1z + πiτ11F2
1},

B̂0 = Ŝ − A(3)
2 , B̂′

0 = Ŝ ′ −A(3)
2 , B̂1 = Ŝ +A(3)

2 ,

B̂′
1 = Ŝ ′ +A(3)

2 , B̂2 = Ŝ + 2A(3)
2 , B̂′

2 = Ŝ ′ + 2A(3)
2 ,

Ŝ = Λ2 −O2(u∞′) + ρ2(n0, t0m)−A(3)
2 n0 − Â(2)

m,2t0m,

Ŝ ′ = Λ2 −O2(u∞′′) + ρ2(n0, t0m)−A(3)
2 n0 − Â(2)

r,2t0m,

K
(∞′)
j,0 =

2

3α0
Qj,l−1 −

1

α2
Qj,2p−1, K

(∞′′)
j,0 = − 1

3β0
Qj,l−1 −

1

α0β0
Qj,2p−1.

These formulas define algebro-geometric solutions of the discrete hierarchy of the generalized Toda lat-

tice (1.3) in the case of genus 2.

6. Conclusions and Remarks

We have found algebro-geometric solutions of the hierarchy of generalized Toda lattices. The hierarchy

was generated using the zero-curvature equation, and the functions Ξ and Θ were introduced on the trigonal

curve. Based on the Abel differential, the Riemann theta representations of the potentials were constructed

in the stationary and time-dependent cases, and solutions of the hierarchy were obtained. Currently,

increasingly many researchers focus on trigonal curves and the application of these methods is gaining in

popularity. Discussing the algebro-geometric solutions of the 4th-order soliton equations is also interesting,

and we plan to address this problem in the future. Equally important is the study of soliton solutions

beyond the algebro-geometric solutions, such as the lump–soliton and breather solutions.
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