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We study the long-time asymptotics of the nonlocal Kundu—nonlinear-Schrédinger equation with a decay-
ing initial value. The long-time asymptotics of the solution follow from the nonlinear steepest descent
method proposed by Deift—-Zhou and the Riemann—Hilbert method.
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1. Introduction

As is well known, the parity and time (PT) symmetry is one of the most important symmetries in
quantum theory. In 1998, Bender and Boettcher [1] obtained the PT symmetry by replacing the Hermiticity
of Hamiltonians in quantum theory and showed that most basic quantum properties are preserved for PT-
symmetric Hamiltonians. Subsequently, researchers also applied PT symmetry to optics, electricity, and so
on [2]-[8]. Ablowitz proposed the nonlocal nonlinear Schrédinger equation in 2013 [9], and a large number
of models of nonlocal integrable systems have been proposed and studied since then [10]-[14].

In this paper, we consider the coupled Kundu—nonlinear-Schrédinger (Kundu-NLS) equations [15]

iq; + Qpy + 2aei(9*¢)q2r — (0, + 9?6 —i0,.)q + 2i0,_q, =0,

) 1.1
— i1y + Ty + 2067 TG — (3 + OF + iy, )r — 2id,r, =0, -y

where 6(z,t), ¢(x,t) are arbitrary gauge functions. The Lax pair of Egs. (1.1) can be written as

vy = Mv = (—i\oz + valUy)v,
vy = Nv = (—2i)\203 + 2v/aXUg + Uy)v,
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Setting r(x,t) = ¢*(—x,t) and ¢(x,t) 0(—x,t), we reduce Egs. (1.1), to the nonlocal Kundu-NLS
equation [15]

19 + Qpy + 2aei(9*9(*w7t))q2q*(—x, t)— (0, + 9325 —i0,,)q + 26,9, = 0. (1.3)

When a = 1, nonlocal Kundu-NLS equation (1.3) is focusing, and when oo = —1, it is defocusing.
The main goal in this paper is to study the long-time asymptotics for the nonlocal Kundu-NLS equa-
tion (1.3) with a decaying initial value ¢(x,0) = go(x) € S(R), where

s®) = { @)

/00 (14 |z|" f(2)) dz < oo, ’y>1} (1.4)

is the Schwartz space. Our interest in the long-time behavior of the initial value problem for the integrable
nonlocal Kundu-NLS equation was largely motivated by Rybalko and Shepelsky [16], [17], who studied the
long-time behavior of solutions of the nonlocal NLS equation. Generally speaking, the long-time asymptotics
of the solutions of integrable systems are a hot topic, with various outstanding approaches having been
proposed [18]—[24].

An extremely efficient method to analyze solutions of integrable systems is the nonlinear steepest-
descent method [25] proposed by Deift and Zhou based on the preceding studies. The main idea is to
reduce the oscillating Riemann—Hilbert (RH) problem to a solvable one through a series of rapidly descend-
ing deformation paths. With this effective method, more and more integrable systems have been studied,
including the dispersion KdV equation [26], the defocusing NLS equation [27], [28], the Camassa—Holm
equation [29], the Kundu-Eckhaus equation [30], the three-component coupled nonlinear Schrédinger sys-
tem [31], the Fokas—Lenells and derivative NLS equations [32], [33], the MKdV equation in a quarter plane
{z > 0,t > 0} [34], [35], and coupled modified Korteweg—de Vries equations [36].

This paper is organized as follows. In Sec. 2, we construct the RH problem of the nonlocal Kundu—
NLS equation via transformation (2.2), Volterra equations (2.3), scattering relation (2.4), and symmetry
relations (2.7). Then, using the steepest decent contours, trigonometric decomposition, and a scaling
transformation, we obtain the Cauchy problem (1.3) with the decaying value. In the Appendix, we give the
proof of Theorem 1 based on the use of the Weber equation and the standard parabolic cylinder function.

2. The RH problem for the nonlocal Kundu—NLS equation

By changing the variable as

. 2
w = Uel)\r03+21)\ 15(737

|z| = oo, (2.1)

we reduce Lax pair (1.2) to
Wg + iA[os, w] = Upw,

(2.2)
wy + 2iN%[o3, w] = Viw,

where Vi = 2y/a\Uy + Uy, [03,w] = o3w — wos is the Lie bracket operation. The tracelessness condition
tr Uy = tr V4 = 0 implies that detw = 1.
To construct the RH problem for the nonlocal Kundu—NLS equation, we introduce two Volterra
equations
wy (z, ;) = I+/ eNe=v)ades (1700, (y, N)) dy,
(2.3)
wala i =1 [ P U)o,
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where 2473 (M) = 7> Me™7% for a matrix M and [ is the identity matrix. It follows from Eqs. (2.3) that

) 3 . 3 0 \/aqeiOEQiA(r—y)
iXN(z—y)o iNz—y)os _
e 3/alpe 3 — (—\/ozq*(—x,t)e_ie(_rvt)e_zi)‘(z_y) 0 )

Let wq(x,t; k) = (w§1>,w§2>) and wa(z,t;k) = (wél),wgz)). It follows that wgl) and w§2) are analytic in
the lower half-plane C~ = {\ € C|Im )\ < 0}, and wgz) and wél) are analytic in the upper half-plane
Ct={XeC|ImA\>0}.

The matrix solutions of system (1.2) with A € R satisfy the relation

vi(x,t; A) = va(x, t; A)S(N), (2.4)

where S(A) is the scattering matrix. From [37], we have

vH—a,t—N) = A (2, 5 A, A= <(1) g) R (2.5)

Based on scattering relation (2.4) and symmetry (2.5), the expression for the scattering matrix S(A) can

S(\) = <A1(A) _”B*(_A*)> . )A€eR, (2.6)

be written as

B(A) Az ()

and the elements A;(A), A2(A) of S(A) satisfy the symmetry relations
A0) = A=), Ap(N) = A3(—N"), (2.7)

It is obvious that symmetry relation (2.7) for the nonlocal Kundu-NLS equation differ from those in the
local case, which highlights the necessity of studying nonlocal integrable systems.
On the other hand, it is worth noting that the scattering matrix S(A) can be uniquely determined as

S(\) = Ugl(x, 0; Mvy(z,0;0) = eim)‘wgl(x, 0; Mw (z, 0; /\)e_i“7 (2.8)

where w1 (z,0; ), wa(x,0; ) are defined by the Volterra equations (2.3). If

wi (@, 0;\) = (“”1)“ (““)12) : (2.9)

w1 )21 (w1)22

then we have N

(i) (2:3) = 1+ Vo / 4()e®W (wy )1 (y: ) dy.

— 00
x

(w1)21 (x5 \) = —\/a/ ¢ (—y)e Y (wy) 11 (y; N)e 2@ gy,
- (2.10)

x

(w1)12(z; A) = \/oz/ a()e® @) (wy ) oo (y; N)e2 X&) gy,

— 00
x

(w1)22(2;5A) =1~ \/Oé/ g*(—y)e Y (wi)1a(y; A) dy.

— 00

Thus, the scattering data A;(\), Aa()\), B(XA) are given by

Ar(N) = lim (wq)11(x; A),

zorteo : —2iz)
B(A) = lim e (w1)21 (w5 A). (2.11)
Az(A) = lim (wi)ez (a5 A), rrFoe
T—+00
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We rewrite relation (2.4) as
wr (z, 6 \) = wa(x, t; /\)e*imfm)‘%S(/\)ei)‘w”“‘%, A ER,

with
s
wi = w41 (A) + wl? B(A)e2re it

,wg?) _ _owél)B*(_/\*)6721‘)\1741')\215 + ’ng)Ag(/\).
Equation (2.13) can be written in matrix form
Wy 7,
2 Ag(

A (N2 Hi()\)

1 2
<w§> (2)):< 1wy’ ><+> <1+0H1<A>H2<A> o Hy(M)
\)

where Hy(A\) = B(A\)/A1(\) and Ha(\) = B*(—\)/A2(N). This follows from

= 50 o A0 A0
and
Hi(=)) = Hy()) ﬁfg L+ o HiWH(A) = Al(/\)lAg()\)'

(2.12)

(2.13)

(2.14)

(2.15)

To obtain the original oscillatory RH problem of the nonlocal Kundu-NLS equation (1.3), we define

a piecewise analytic function as

(1)

Wy (2) -

AeC

o <A1<A>’w2 ) ko
P(x,t,)\)— (2)

It satisfies the RH problem
Py(z,t;\) = P_(z,t; \)J(z, t; A), Plz,t;\) =1, A— o0

with the jump matrix

H, (/\)ei(2)\ac+4)\2t) 1

—i(2Az+4X%t)
J(x,t; ) = (1 +oHi(A\)Ha(\) oHz(Me ) |

Therefore, the solution of nonlocal Kundu-NLS equation (1.3) can be written as

q(z,t)e?® = 2i lim X (P(x,t;\))12,
A—00

—q* (—z,)e” P20 = 25 lim A\ (P(z,t;\))a1.

A—00

(2.16)

(2.17)

(2.18)

(2.19)

The approach in this paper extends Deift—Zhou’s method to obtain the long-time asymptotic behavior

of the solution through the related phase point drop.
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Fig. 1. Contours L and L.

2.1. The steepest decent contours. let F(\) = (x/t)\ + 2)\%. From

dF(A\) =z d>F())
= 4\ = =4 2.2
o =t 0, 2 #0, (2.20)
we then obtain a stationary point \g = —z/4t and two steepest decent contours (see Fig. 1)

L={N= X+ pe®/* 1 e R},

: 2.21
L={\=Xo+pe /% 1 R} (2.21)

Let A = A1 4+ ¢)2. For the above stationary point Ay, we have
F(X\) = —4M\\ + 207 = =4\ Ao + 2(AT — 2A3) + 4i(A1 — Ao)Aa. (2.22)

It thus follows that

e the oscillating factor ¥V decays exponentially on Re(iF) < 0,

e the oscillating factor e~ (N decays exponentially on Re(iF) > 0.

The constant-sign intervals of Re(iF) = —4(Re A — \g) Im A are shown in Fig. 2.

Im A\
Re(iF) > 0 Re(iF) < 0
Ao Re )\
Re(iF) < 0 Re(iF) > 0

Fig. 2. The constant-sign intervals of Re(¢F') on the complex A-plane.

2.2. Trigonometric decomposition. In the physically interesting region |z/t| < C, following [25],
we can decompose the jump matrix J(z,t; A) in (2.17) as follows:

(1 aHy(N)e %F 1 0
J(x’“)_<o 1 )(Hl(A)e%F 1)
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for A € (Ao, +00) and

oHy(\)e 21tF
J(z,t;0) = 1 vitF 0 (1+0H1H, 0 1 1+oi§1()A)H2(A)
' b Hy(N)e? 1 0 1 0 . .
140 Hy (A)Ha()N) 140 H; Hy

for A € (—o0, Ag).
It is known that the diagonal matrix has to be eliminated for A < Ag. We therefore introduce the
transformation

PY) = ps=a3()), (2.23)
where §(\) satisfies the scalar RH problem and

5_(N(1 + o Hi (N Hs(N), A€ (=00, o),
5_(\), A€ (Mo, 00), (2.24)

5(A) — 1, A — 00,

5(N) =

From the Sokhotski-Plemelj formula, the solution of this scalar RH problem can be expressed as

Ao oH, 2
5(\) = exp<271m,/_ log(1 + ;f E\f)H (©)) dg). (2.25)

It is worth emphasizing that in contrast to the general local integrable system, 1 4+ o H1(&)H2(&) is not
real-valued in the nonlocal Kundu-NLS equation. Deformation (2.25) can be expressed as

S(A) = (Ao — A)FQR0)em(N) (2.26)

where .
li(/\o) = _27'(' log(l + O'Hl (/\Q)Hg(/\o)),

1 Ao (227)
TN = o [ ToBle = X) d[log(1-+ o (O Hale))
From symmetry relations (2.7) and Eq. (2.15), we have
K(=Ao) = K" (M),
I 1
() = =y [ darg(+ SO (), [Tmr(h)] < . 2.28)
) _ 1 /7 log[A1(Ao)A2(o)]
7'( )\0)4—7'()\0)—21,7‘_‘/700 €— Ao dg.
Therefore, the RH problem (2.17) becomes
PO, t;0) = PO (2, 60TV (2, 6:)),  PO(z,50) = I, A — oo, (2.29)
where
1 oHy(A)8?(\)e 2P 1 0
Jm S A) = 2 )
(@,5) (0 1 Hi(\)§2(\)e2itF 1
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for A € (Ao, +00) and

1 0\ /4 oHz(\)e >3 (\)
JW (2, ;) = (Hl(/\)e%Fé:z(/\) ) ( 1+ oHy(N)Hz (M) )
0

L+ oHyi(N)Ha(N) 1

for A € (—o0, Ag).
Obviously, the jump matrix contains four oscillating factors

Hl(/\) UHQ()\)
14+ cH (N Ha(N\) 14+ oH(A\)H(N)’

where
Az(N)

Hi(-3) = Ha)

Aj:].-f—O(i), A — 00

(with j = 1,2). Following [25], we define a piecewise function

Hi(M)
w\) =<¢ 1+oH; (N)Ha (M)’ A € (=00, %), (2.30)

Hl(/\), A€ ()\0,+OO).

Because w*(—A) = p(A41(A\), A2(A))w(N), where p(A41(N), A2()N)) is a constant as A — oo it follows that w(A)
defined this way can also be approximated by similar rational functions. For A € (—o0, Ag), we write it as

Hi(\)

N = L ) ()

= H,(\?) + \H,(\?), (2.31)

where He(-), Ho(-) € S. For an integer m € Z*, it follows from Taylor’s formula with remainder that
Ho(A?) = p + pi (N = M) + -+ 4, (A = N0)™ +

IR .
+ o /Az H{™ D (1) (X =)™ dy,
T YA

2 2 2 2 2 (2:32)
Ho(A%) = pig + 17 (A" = Ag) + -+ i (A° = Ap)™ +
1N
+ | HTTD () =) dy.
m: )\g
We set - .
RO =Y pS(N = A + XD (X = A3). (2.33)
§=0 §=0
Comparing Egs. (2.31) and (2.33), we then have
J TR\
do@)| RN <j<m, (2.34)
dN Ly, dN |4y,
where p§ = p$(A3) and pf = p9(Ag) decay rapidly as \g — oo, which follows because
1 & Ho(u) 1 &’ H,(u)
e()\2 — \ 0(y\2 — A . 2.35
:uj (AO) ]' dud )\g) :uj (AO) j' dud )\g ( )
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Let w(A) = r(A) + R(X) for A € (=00, Ag). From (2.34) we then have

dir(\)

= <7< m. .
N, 0, 0<j<m (2.36)

We write r(\) as
r(A) = r1(A) +7r2(N), (2.37)

where 71 (A) is small and r2(A) has an analytic continuation to A 4 ¢0. Thus,
w(A) =r1(A) +72(X) + R(N). (2.38)

Proposition 1. Let m = 4n+ 1, n € Z*. Ast — oo, the functions r1()\), r2()\), R(\) satisfy the
estimates

—2iFN) . (A)] < ¢ AeER
|€ Tl( )| (1+|A|2)te’ )

—2iF(N) ., (\)| < ¢ = 2.39
|e TQ( )| ~ (1 + |A|2)té) e ) ( )
R(\) € 067475“2, A eC, 1 = const,

where ¢ is a positive integer. The complex conjugate of w(\) yields similar estimates for ri(X),r5(X), R*(\)
on RUL.

Proof. We define the function
P = A2 =2)" A< o (2.40)

For A\ < \g, the map A +— F(\) = —4X)\g + 2\? is one-to-one, F()\,) = —2)\%, and

We can therefore define a function

T(A(F)) 2
(’" ) (F) = gy TR0 =2, (2.41)
v 0, F <22

Then

(;>(F):O[(A2(F)—A%)’”“”]eHJ’, 0<j< 3n2+2,

where HY is the Hilbert space of rapidly decreasing functions. Using the Fourier transformation, we have

<;) )= \/127r /_O:o e f(:ij(S) * e

f(:ij(S) T \/1277 /_/: e r <;) (A) dF(N), s eR.

where
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It follows from Eqgs. (2.32) and (2.40) that

r 2 3n+2
(D)= O g a0 - -2 a +

1
# [ HEODE 02 = ) ).
0
For 0 < j < (3n +2)/2, we have the estimate
Lol d N NP 1
o W) (o)l ari= s |
V2r Jo dF ) \ V2 Jo

Using Plancherel’s formula, we obtain

2
[4(X — Ao)| dX < €1 < 0.

(4005 ddA)j (1) w

o NN 9
/ (1+s%)7 <;)(s) ds < ¢y < 00, 0<j< 3n2—|—2 (2.42)
In accordance with (2.37) and (2.41), we have
SN 9 ' SN 9
st r w(A) isF (T> —
r(\) = \/277 < w) () e [ ()@ ds=n .

It hence follows that

O \( w)@

<lol| [ °?1+52>pd3]”2[ o | t sy

< c
= $1/2-p°

1/2
@<

rl(C)el's

It can also be shown that ro(\) has an analytic continuation to L defined by (2.21). Hence, using formula

(2.42) again, we have

(1)

Because FI(A) = 2(XA — \g)? — 2% and hence Re(iF) = 2p2, it follows that

ds < Ce—tRc(iF).

. . 1 t .
=2t F V) gy | — o =tReGEF) ()] p / o(s—1) Re(iF)
™ J—00

) 1
—2th(>\)7,2| <C C = const.

|6 tq/27

Finally,
|672itF(>\)R(/\)| < Ce’4t“2 '

On the other hand, in the case A > Ao, we can set w(A) = Hi(A). Similarly, from Taylor’s formula,

we have \

A =)™ Pw() =Y (A=) + Ti, /A [(v = i)™ FPw()] DA = 7)™ dy. (2.43)
paur '

0
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We define
1

zumz(A_nW%E:Mu—wwﬂ r(\) = w(A) — RO).
j=0

Comparing with Eq. (2.34), we see that

dIw(N)
dN

Ao

Let () = (A — Xo)" /(A — )" "2, Then

(o Lo o 2o

(o= [ (g

Combining Eqs. (2.43) and (2.44) gives

r 3n+2

where

where

s d0) = [ L= ) = Aol = )"

We thus see that

This finishes the proof.

Thus, the RH problem (2.29) can be rewritten as

PJ(FZ) (x,t;\) = p? (z,t; A)J§2) (z,t; N), Pf)(x,t; AN =1, \— oo,

where J§2) (z,t;\) = 033 itF(Nadosp, ith

b+:1+<1>+:<(1) “’g”), b_:I—<I>_:<w*1()\) ?)

According to decomposition (2.38), by can be decomposed into two parts:

1 r 1 r+R
b, =bob* =
oo <o 1)(0 1 )
bo—pepe = (1Y ! .
ry 1 rs+R* 1

Hence, the jump matrix JéQ)(x, t; \) can be written as

- -

J§2)(x t: /\) _ 5dd0'3€71‘tF ) ad o3 b )71 bi)flbi bi ’
~ 7 ~ ~~
L R L

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)
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where we indicate that (b*)~! is continued analytically to L, (b°)~'b% has no analytic continuation but
decays rapidly as t — oo, and b% is continued analytically to L. We introduce the transformation

PO (z,t;)) = PP (z,t:; N)T, (2.49)
where
I, A€ QyUQs,
T=q0)™ XAeQ Uy, (2.50)

(bi)fl, A€ Q3 UQg,

and Q; (i =1,...,6) are shown in Fig. 3.

L L
Qo
Qs O
R R
Qu Ao Qe
Qs

Fig. 3. The domains €2; for i =1,...,6.

Thus, the RH problem on R can be transformed into a RH problem on Q = [, ;,
Pf’) (x,t;\) = PSB) (z,t; )\)Jé?’) (x,t; \), P(B)(x,t; A= I, A= oo, (2.51)

where
(b°)"10%, A€ER,
T (a,1;0) = i meemitF N aden & pa reL, (2.52)
(b)), ANeL.

If we take the real axis as an example, we have PI(Q = Pl(i) J, ‘;3)' From transformation (2.49), it follows that
P =Py, PR =PPTe, I = (T ) I Ty, (2:53)

If we let Tp_ = (b*)~" and T, = (b3%) ™', then we obtain (2.52) for A € RT.
Let
b = wordosemitFNados(y, 1y 5@ =pP) p®), (2.54)

From the above estimates, we have bg’),b@) € L3(Q) N L>=(2). We define a bounded Cauchy operator

Cy(f) for f € L3(Q): X

(CLHO) =, /Q Cf_(i)i

Thus, the Cy, as a map from L?(2;) to L?(€2), is independent of Ay and

dc,  Aeq. (2.55)

Ch=Co=1,  Cyuof=Cu(fOP) +C-(FOF)),
where f is a 2 X 2 matrix-valued function.
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If x(x,t;A) € L2(2) N L*(Q) is a solution of RH problem (2.51), then, based on [22] and using the
Neumann series, we have

HE)
PO (2,4 0) = I+ 27171/ X(x’té”b; Qe recsa (2.56)
; -

In addition, the solution of nonlocal Kundu-NLS equation (1.3) can be represented as

) . (3)
q*(—x, t) — _Zie—ze(—r,t) lim (A 1 / X(xv ta /\)b (C) d<> _
Q 21

A—oo \ 21 C—A
ei@(—r,t)

_ (fa-cortiowow) (2:57)

0 21

Let
b3 = p° 4+ T, (2.58)

where b¢ = b®) | R is supported on R and can be composed of the contributions to b by the terms r N
and r¥(\*), and b® = b(® | LUL is supported on LU L and can be composed of the contributions to b
by the terms 72()\) and r35(\*). We give specific expressions below, It is obvious that b = 0 for A € R, and

b3 — 0 0 0\ (ri+7 O (2.59)
0 0/ \rf O 0 0/ '

For A e L, J§3) (z,t;\) = b3, and then

. 0 r+R 0 7o 0 R
b(3) frng bd — I = = .
+ (0 0 ) <0 0) + <o 0)

For A e L, Jég)(x,t;)\) = (b*)7', and

0 0 0 0 0 0
b3 — () 1T = = + .
(62) (—r§ —R* 0) <—r§ O) —R* 0

Through careful analysis and verification, we see that the contributions to the solution of the RH problem

we hence have

are the parts of the functions R(\) and R*(\*), and the others are infinitesimal at long times. Then

/ [(1 = ) "M 10 d¢ = / [(1 = Cy) ™ (1 = Cyear + Co)Tp® d¢ =
Q Q
- / b dc + / [(1— Cy0)) ™ Co 1) d =
Q Q
= / b3 d¢ + / [(1 = Cyr) "t — Cyr)(1 — Cys)) " *Cysy 1) d¢ =
Q Q
= / b3 d¢ + / [(1 = Cypr) (1 — Cysy + Ce)(1 — Cp)) " oy 1B d¢ =
Q Q
:/b<3> d<+/[(1 — Cyr) " FCy 1D d¢ +
Q Q

+ / [(1— CbR)ilcbe (11— Cb(3>)*1cb(3)[]b(3) dc.
Q
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Using (2.58), we have

_ -171353) 7/ — R e O O T
/Q[(l Cys) " TV®) d¢ /Qb dg‘+/ﬂb dg‘+/ﬂ[(1 Cyr )~ Chys) 116 dC +

+ / [(1- CbR)_lcbc (11— Cb<3>)‘1Cb<3>I]b(3> ag. (2.60)
Q
We consider the third integral in (2.60) and write it as

/[(1 — Cyr) " Chy 110 d¢ = / (1= Cyr) ™ (Cyr + Coe) IIp® dC =
Q Q
= / [(1— Cyr) " Che II6®) d¢ + / [(1 = Cyr) ™ CyrIlb° +
Q Q
+ / [(1—Cyr) ' CyrIpfd¢ =
Q
= [10 =) Cnb® dc + [ (1 o) Contltrd +
Q Q
+ [0 Con) (1= (1= o) =
- / (1= Cyr) " Coe IJB® dC + / [(1 = Cypr)~1Cyr 1] dC +
Q Q
+/Q[(1—ch)—lf]deg—Adec. (2.61)
Substituting (2.61) in (2.60) yields

[0 =Gy dc = [ (1= com) i ac +
Q Q
: — Cpn) G Il o) Gyt
+/Qb d§+/ﬂ[(1 Cyr) " Che I]D d§+/Q[(1 Cyr) " Cyr )b dC +
+/Q[(1—Cbn)‘lcbe(l—Cb<3>)‘1Cb<3)I]b(3) d¢ =

= / [(1— Cyr) tIHTdC + T4+ T+ TIT +1V. (2.62)
Q

Lemma 1. We have
(121 - Cull)il = RE1(1E12 - 052)71121—53127 (263)

where ¥ and X9 are two oriented lines in C, ¥19 = 31 U39, Ry, denotes the restriction map L2212 — Lzzl,
Is, 5., denotes the embedding L2El — LZEH, Cl2 denotes the Cauchy operator from L2212 — L%l,
C} denotes the Cauchy operator from L221 — L2217 and 1 denotes the identity operator.

Proof. If g € L3, , then
(1s, = Cy)Rs,9 =15, Ry, g — CiRs, g = g — Ci%g = (1x,, — C7)g.

and the sought relation (2.63) follows.

Hence, for f € L221’

(121 - Cull)Rzl (1212 - 052)71121%212][ = (1212 - 052)(1212 - 01}12)71‘[21%21%70 = f
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Let 31 = Q/R, 12 = Q. By the second resolvent identity, the norm |[(1 — Cyr) ™| L2(0/r) is equivalent to
(1 = Cy» )~ H|L2(02)- Then the operator (1 — Cyr) ™! exists and is uniformly bounded as t — oo,

(1 = Cyr) ™Ml p2() < e (2.64)
Hence follow the estimates for terms in the right-hand side of (2.62):
11| = }/ bedg‘ <6l et
Q
10 = | 100 Con) 1169 | < 1 = Cu) " Cirt 12 169 2 <
Q
< o[z (07 2 < et
1| = ‘/[(1 — Cypr) " CyprI]0° dC‘ <N = Cyr) ' Cyrl |2 ) 12 < ™,
Q
[IV| = ‘ / [(1- CbR)_lcbc(l — Cb<3))_1Cb<3)I]b(3) dc‘ <
Q
<N = Cpr) 7 Hlzz 1% 2201 (L = Cyon) 22 16| 2 < et~

(where we write L? = L?(Q) and L' = L*(Q) for brevity). It hence follows that

reen=""([a-cm 10r@w) +ou, (2.65)
21
2.3. Scaling transformation. Based on [25], [31], [32], [38], we introduce a scaling transformation
E: A== A . Q= 05 (2.66)
V8t
We then have the RH problem
P, t:3) = PO (2, t; ) JD (2, 6:8),  PD(z,6:)) > 1, A — oo, (2.67)

where J® (2, \) = E(J(SS) (z,t;\)) or, explicitly,
T® (@, 8: %) = (8t) % 2N +imo . (_;\)me—if +rN=im _ 5, . 5, (2.68)
where k and 7 (19 = 7(0)) are obtained from Eq. (2.26). As a result, we have
PORN) =2PDN) =T +EPP ) + 2RI N) + -, (2.69)

whence PY()) = PP (A)v/8t.

Then, the solution of nonlocal Kundu-NLS equation (1.3) can be expressed as
1 - i 4) (3 —1

+ot = (PPN +orh. 2.70
g O = L (B0 067 (2.70)

With the jump matrix J® (z,£; A) in (2.68), we see that Z; is independent of \, and therefore the trans-
formation P®)(z,t; \) = 2 193 PW) (z, 1; \) gives a RH problem on Qz, (see Fig. 4),

—q* (2, )" = 2PV (M)

PJ(FS) (z,t; 5\) = p® (z,t; S\)J(5) (z,t; 5\), P(5)(x,t; ;\) — 1, \— oo, (2.71)
where J®) (z,; ) = 2247 (13,)’1IA)+ and by = I + bR
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=1 =1

Q<531) oW

=1
Fig. 4. The contours QEl(;).
On one hand, for X € {5\ = pe®3™/4 1 € R}, we have

m:(g E“ﬁf”)), 6<X)=<E(R?@*)) 3) (2.72)

On the other hand, as ¢ — oo, we obtain the RH problem with a phase point, which suggests that

—ix2 .
52 _ (_/\)zn T(\/St+)\o) T()\O)e 4>‘ N (_)\)zne F (273)
and
lim (H1< + Ao)) = Hi(Xo),
t—o00
o ) ol
A 1 H H 1+ 0H (M\)Ha(No)’
e +o0H1Hy \ /8t + 0 Hi(Xo)H2(No) (2.74)
lim (CTHQ( + /\0>> = oH>(\o),
t—o00
H2 A O’HQ(/\())
11 —|— )\0 = .
t—oo\ 1+ ocH1Hs \/St 1+0’H1()\0)H2(/\0)
We thus arrive at the RH problem on the contour Qz, (see Fig. 5),
POz, t:3) = POz, t; )T O (2, 8: 1),  PO(z,5;)) > I, A— oo, (2.75)

~ ~ . 52
where JO) (z,t; \) = (=\)*xadose 2" ados is given as follows:

- . 1 0
e o). by = 5
=2 * Hi(N) 1

~ 5 1 UHQ(/\Q)
= 9(522)5 by = 1+ 0Hi(MNo)Hz2(No) |,
0 1

1 0
Hi(Mo) E
1 + O’H1 (/\0)H2(/\0)

;\ c Q(:4): (lv),)*l _ <1 CTH2(/\0)> .
0 1

>
m
2
Ye
—~
[« T
L
L
|
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Fig. 5. The contour (2=, .

According to [17], [25], [30], [32], [38], the jump matrices J® (z,¢; A) and J(© (z, ¢; \) satisfy the norm

relation

||J(5) (ZIJ, ta X) - '](6) (33, t7 S\)HLlﬁL"O(Q

whence the solution of nonlocal Kundu-NLS equation (1.3) can be given as

_q* ({E, t)efiG(fm,t) _

i

V2t

O(ct=1H2MmeQo)ly - Tm k(Ng) > 0,
(51)2(P1(6) (,t:\))12 + ¢ O(ct~'logt),

o),

where P1(6)(x, t;A) can be obtained by the expansion of P(©)(z,t; \).
Next, we introduce a transformation

where F is defined as

PO (z,t;\) = POz, t; \)F 1,

(_5\)—1’/@ ad 03,

feaP uad),

F =< (=Nwadosphy=1 X e ol ual,
(_5\)—1’;@ ad o3 (bC)_l, ;\ c Q(F4) U Q(FG)’

and the domains Qp and contours f ¢ are shown in Fig. 6. We then have

v =

52
11 ad o3

(_5\)71'/1 ad 030~

(_5\)—1’/@ ad 30— i’:\f ad o3

(_5\)—1’/@ ad 30— i’:\f ad o3

(_5\)—1’/@ ad 30— 15\42 ad o3

O’HQ(/\())
1+ o0H; ()\0)H2(/\0)
0 1

1 0
Hi(Xo) E
1+ o Hi(Ao)Hz2( o)
1 UHQ(/\Q)
0 1

Ct_l_;,_2|lmf-c()\o)\7 Im H()\O) >0,
=) <3 ct~tlogt, tm#(30) =0,
-1, Im r(Xo) <0,

0
Imli(/\()) 0,
Im KJ(/\()) < 0,

XEQQ,
Ae
Aeal®,

Xe

(2.76)

(2.77)
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(3) “)
Fig. 6. Domains Q} and contours /.

It hence follows that P(7)(z, t; 5\) satisfies the RH problem

PO, t:3) = PO, t; )T D (,6:8),  PD(z,63) = I, A — oo,
—1

. ) L8 ey [ L OHI(A0)Ha (M) o Ha(Mo) . AeR, (2.78)
J (ﬂi,t;)\) = Hl(/\O) 1
I, NeFLUF2UF3UFL
By transformation (2.76), the formula £ ~1(—X)~% 2495 can be expressed as
- 1 -
F,l(_/\)fmada?’ :[—|—O(5\>, A — 00, (2.79)

and therefore

P(7)(x,t; ;\) — P(ﬁ) (33, t: S\)F—l _ P(6)(F—l(_j\)—mos)(_;\)—ims _

_ <I+ Pﬁ"’) +O<;2>) (I+O<§)>(_;\)mg _

(6) (6)

P. P. -~ .

:<I+ L4072 +-~->(—A)—Ws.
A A2

ix2

Let P®) (x,t;0) = P (x,t; A)e™ "3 3. It then follows that P® (x,t; \) satisfies the RH problem

Pj_g)(x,t; ;\) = PSS) (z,t; S\)J(g)(x,t; ;\), P(g)ei512 73 (—;\)7““73 — 1, \— oo,

2.80
J® (2, 8:)0) = 1+ oHi(Ao)Hz(Xo) oHz(do) ) (2.80)
Hi(Mo) 1

Theorem 1. If the spectral functions are defined by Egs. (2.10), the long-time asymptotics of the
solution of the nonlocal Kundu—-NLS equation (1.3) with a decaying initial value qo(x) are given by

e O (et 21T rQo)ly - Tm k(Ng) > 0,

g (—z,t) = ¢1/2+ImeQ0) T 1 oy O(ct~1logt) Imrk(Ag) =0 (2.81)
’ Hi(A)T(~a) s o=
o1, Imk(Ao) <0,

where I'(-) is the Gamma function.
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Appendix: Proof of Theorem 1

To solve the nonlocal Kundu-NLS equation with a decaying initial value, we use the Weber equation
and the standard parabolic cylinder function. From the equalities

d ) d @) Ly e 15 50
P = 7 p® g\ Ao P = “ixos PP J®) (A
dX + dX _ J ( 0), 2Z o3l 22 o314 _ J ( 0)

we have

(a;P@ + ;AUBP(S)) = <axp<8>+ ;ixa3p<8>> J® (o). (A1)

+

Obviously, because J®)(\g) = 1, it follows that det Pf) =1 for A € R. Thus, based on the Painlevé’s
expansion theorem, we see that det P(® is analytic and bounded on C. Furthermore,

[<8XP(8)+ ;i;\agP(g)>(P(8))1} = <8XP(8) + ;i;\03P(8)> TON)(T® (X)) H(PP®) ! =
+ —

1 -~
= Kaip@ + Qi/\agP(8>>(P(8))_1] (A.2)
is also analytic and bounded on C. From the expression

(a;P@ - ;AUBP@) (P®)~1 = ;A[@,P@] = ;i[ag,le] + O(D, (A.3)

by the Liouville theorem we see that

1< (S (S
9-P® i\ P(8)) pEY-1 _ 11 12 A4
( A " 27 F) O21 O (Aa-4)

is a constant matrix. Comparing formulas (A.2) and (A.4), we have

i(le)lz = O19, —i(Pl(7))21 = Oy, ©11 = B9 =0, (A.5)

and hence the solution of nonlocal Kundu-NLS equation (1.3) can be written as

b logt
u(z,y) = y (E1) @21+O( ; ) (A.6)

2t

From (A.4), we have the system of equations

aP® 1 . dP{y 1 <
dlxl + 2@)\P1(f) =02, d? - 2z/\P2(f) =0,PY. (A7)
which reduces to a single equation
apy LI
dlj\l = (— 4 — 2Z + @12@21)131(?). (AS)

For Im \ > 0, let

PN (p@)HT
o= (el )
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Then Eq. (A.8) can be rewritten in the form

AP,

A1
dj\ = (— 4 — 2Z + @12@21>(P(8));r1, (Ag)

which is called the Weber equation. It has two linearly independent solutions D, (¢) and D,(—() called the
parabolic cylinder functions,

(PO)f, = e1Da(C) + c2Da(—C), (A.10)

where ¢ = A\e™3"/4, ¢1, ¢y are constants.

The parabolic cylinder functions D,(¢) have the following asymptotic property as ¢ — oo:
for |arg (| < 3mw/4,
D) = e+ e 072,
for m/4 < arg( < 5 /4,
Da(¢) = e AL+ 0(¢ )] = VarD ™ (—a)e ¢ e A (14 0(¢);

and for —57/4 < arg( < —7/4,

Da(¢) = e S+ 0(¢C?)] = V2D~ (—a)e ¢S A1+ O(¢C72).

Thus,
(PENf(A) = =¥ /4Dy (Ae™21),
- o N [ . (A.11)
(PENH (V) = @1 g8/ (a;Da <)\eg”/4) + ’;Da (Aew)),
12

Similarly, for Im\ < 0, let

(p(S))f _ <EP(8))1_1 (P(Z))l_2> _

Then
(P®)1;(X) = e™/ Dy (Ae'),
. 1 . X - (A.12)
(PO = e (3Due ) + D, (e ).
12
From the RH problem (2.80), we then have
~1
L+ oHi (M) Ha (M) oHa(No)\ _ (PP (PP (PP, (PO, (A13)
H1(Xo) 1 (P®))g  (P®)5, P®)y (PO, )7 '
whence
2 (ir—2mk)/4
Hi(30) = ~(PO)5 (PO + (PO (PO = V¢ . (A.14)
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