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1. Introduction

As is well known, the parity and time (PT) symmetry is one of the most important symmetries in

quantum theory. In 1998, Bender and Boettcher [1] obtained the PT symmetry by replacing the Hermiticity

of Hamiltonians in quantum theory and showed that most basic quantum properties are preserved for PT-

symmetric Hamiltonians. Subsequently, researchers also applied PT symmetry to optics, electricity, and so

on [2]–[8]. Ablowitz proposed the nonlocal nonlinear Schrödinger equation in 2013 [9], and a large number

of models of nonlocal integrable systems have been proposed and studied since then [10]–[14].

In this paper, we consider the coupled Kundu–nonlinear-Schrödinger (Kundu–NLS) equations [15]

iqt + qxx + 2αei(θ−φ)q2r − (θt + θ2x − iθxx)q + 2iθxqx = 0,

− irt + rxx + 2αe−i(φ−θ)r2q − (φt + φ2x + iφxx)r − 2iφxrx = 0,
(1.1)

where θ(x, t), φ(x, t) are arbitrary gauge functions. The Lax pair of Eqs. (1.1) can be written as

vx =Mv = (−iλσ3 +
√
αU0)v,

vt = Nv = (−2iλ2σ3 + 2
√
αλU0 + U1)v,

(1.2)
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and

U0 =

(
0 qeiθ

−re−iφ 0

)
, U1 =

(
iαqrei(θ−φ) i

√
α(qeiθ)x

i
√
α(re−iφ)x −iαqrei(θ−φ)

)
, σ3 =

(
1 0

0 −1

)
.

Setting r(x, t) = q∗(−x, t) and φ(x, t) = θ(−x, t), we reduce Eqs. (1.1), to the nonlocal Kundu–NLS

equation [15]

iqt + qxx + 2αei(θ−θ(−x,t))q2q∗(−x, t)− (θt + θ2x − iθxx)q + 2iθxqx = 0. (1.3)

When α = 1, nonlocal Kundu–NLS equation (1.3) is focusing, and when α = −1, it is defocusing.

The main goal in this paper is to study the long-time asymptotics for the nonlocal Kundu–NLS equa-

tion (1.3) with a decaying initial value q(x, 0) = q0(x) ∈ S(R), where

S(R) =

{
f(x)

∣∣∣∣
∫ ∞

−∞
(1 + |x|γf(x)) dx <∞, γ > 1

}
(1.4)

is the Schwartz space. Our interest in the long-time behavior of the initial value problem for the integrable

nonlocal Kundu–NLS equation was largely motivated by Rybalko and Shepelsky [16], [17], who studied the

long-time behavior of solutions of the nonlocal NLS equation. Generally speaking, the long-time asymptotics

of the solutions of integrable systems are a hot topic, with various outstanding approaches having been

proposed [18]–[24].

An extremely efficient method to analyze solutions of integrable systems is the nonlinear steepest-

descent method [25] proposed by Deift and Zhou based on the preceding studies. The main idea is to

reduce the oscillating Riemann–Hilbert (RH) problem to a solvable one through a series of rapidly descend-

ing deformation paths. With this effective method, more and more integrable systems have been studied,

including the dispersion KdV equation [26], the defocusing NLS equation [27], [28], the Camassa–Holm

equation [29], the Kundu–Eckhaus equation [30], the three-component coupled nonlinear Schrödinger sys-

tem [31], the Fokas–Lenells and derivative NLS equations [32], [33], the MKdV equation in a quarter plane

{x � 0, t � 0} [34], [35], and coupled modified Korteweg–de Vries equations [36].

This paper is organized as follows. In Sec. 2, we construct the RH problem of the nonlocal Kundu–

NLS equation via transformation (2.2), Volterra equations (2.3), scattering relation (2.4), and symmetry

relations (2.7). Then, using the steepest decent contours, trigonometric decomposition, and a scaling

transformation, we obtain the Cauchy problem (1.3) with the decaying value. In the Appendix, we give the

proof of Theorem 1 based on the use of the Weber equation and the standard parabolic cylinder function.

2. The RH problem for the nonlocal Kundu–NLS equation

By changing the variable as

w = veiλxσ3+2iλ2tσ3 , |x| → ∞, (2.1)

we reduce Lax pair (1.2) to

wx + iλ[σ3, w] = U0w,

wt + 2iλ2[σ3, w] = V1w,
(2.2)

where V1 = 2
√
αλU0 + U1, [σ3, w] = σ3w − wσ3 is the Lie bracket operation. The tracelessness condition

trU0 = tr V1 = 0 implies that detw = 1.

To construct the RH problem for the nonlocal Kundu–NLS equation, we introduce two Volterra

equations

w1(x, t;λ) = I +

∫ x

−∞
eiλ(x−y) adσ3(U0w1(y, λ)) dy,

w2(x, t;λ) = I −
∫ +∞

x

e−iλ(x−y) adσ3(U0w2(y, λ)) dy,

(2.3)
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where eadσ3 (M) = eσ3Me−σ3 for a matrix M and I is the identity matrix. It follows from Eqs. (2.3) that

eiλ(x−y)σ3
√
αU0e

−iλ(x−y)σ3 =

(
0

√
αqeiθe2iλ(x−y)

−√
αq∗(−x, t)e−iθ(−x,t)e−2iλ(x−y) 0

)
.

Let w1(x, t; k) = (w
(1)
1 , w

(2)
1 ) and w2(x, t; k) = (w

(1)
2 , w

(2)
2 ). It follows that w

(1)
1 and w

(2)
2 are analytic in

the lower half-plane C
− = {λ ∈ C | Imλ < 0}, and w

(2)
1 and w

(1)
2 are analytic in the upper half-plane

C
+ = {λ ∈ C | Imλ > 0}.

The matrix solutions of system (1.2) with λ ∈ R satisfy the relation

v1(x, t;λ) = v2(x, t;λ)S(λ), (2.4)

where S(λ) is the scattering matrix. From [37], we have

v∗1(−x, t;−λ∗) = Δ−1v(x, t;λ)Δ, Δ =

(
0 σ

1 0

)
, σ = ±1. (2.5)

Based on scattering relation (2.4) and symmetry (2.5), the expression for the scattering matrix S(λ) can

be written as

S(λ) =

(
A1(λ) −σB∗(−λ∗)
B(λ) A2(λ)

)
, λ ∈ R, (2.6)

and the elements A1(λ), A2(λ) of S(λ) satisfy the symmetry relations

A1(λ) = A∗
1(−λ∗), A2(λ) = A∗

2(−λ∗). (2.7)

It is obvious that symmetry relation (2.7) for the nonlocal Kundu–NLS equation differ from those in the

local case, which highlights the necessity of studying nonlocal integrable systems.

On the other hand, it is worth noting that the scattering matrix S(λ) can be uniquely determined as

S(λ) = v−1
2 (x, 0;λ)v1(x, 0;λ) = eixλw−1

2 (x, 0;λ)w1(x, 0;λ)e
−ixλ, (2.8)

where w1(x, 0;λ), w2(x, 0;λ) are defined by the Volterra equations (2.3). If

w1(x, 0;λ) =

(
(w1)11 (w1)12

(w1)21 (w1)22

)
, (2.9)

then we have

(w1)11(x;λ) = 1 +
√
α

∫ x

−∞
q(y)eiθ(y)(w1)21(y;λ) dy,

(w1)21(x;λ) = −√
α

∫ x

−∞
q∗(−y)e−iθ(−y)(w1)11(y;λ)e

−2iλ(x−y) dy,

(w1)12(x;λ) =
√
α

∫ x

−∞
q(y)eiθ(y)(w1)22(y;λ)e

2iλ(x−y) dy,

(w1)22(x;λ) = 1−√
α

∫ x

−∞
q∗(−y)e−iθ(−y)(w1)12(y;λ) dy.

(2.10)

Thus, the scattering data A1(λ), A2(λ), B(λ) are given by

A1(λ) = lim
x→+∞(w1)11(x;λ),

A2(λ) = lim
x→+∞(w1)22(x;λ),

B(λ) = lim
x→+∞ e−2ixλ(w1)21(x;λ). (2.11)
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We rewrite relation (2.4) as

w1(x, t;λ) = w2(x, t;λ)e
−iλx−2iλ2tS(λ)eiλx+2iλ2t, λ ∈ R, (2.12)

with

w
(1)
1 = w

(1)
2 A1(λ) + w

(2)
2 B(λ)e2iλx+4iλ2t,

w
(2)
1 = −σw(1)

2 B∗(−λ∗)e−2iλx−4iλ2t + w
(2)
2 A2(λ).

(2.13)

Equation (2.13) can be written in matrix form

(
w

(1)
1

A1(λ)
, w

(2)
2

)
=

(
w

(1)
2 ,

w
(2)
1

A2(λ)

)
e−i(λx+2λ2t) adσ3

(
1 + σH1(λ)H2(λ) σH2(λ)

H1(λ) 1

)
,

where H1(λ) = B(λ)/A1(λ) and H2(λ) = B∗(−λ)/A2(λ). This follows from

H∗
2 (−λ) =

B(λ)

A∗
2(−λ)

= H1(λ)
A1(λ)

A∗
2(−λ)

= H1(λ)
A1(λ)

A2(λ)
, (2.14)

and

H∗
1 (−λ) = H2(λ)

A2(λ)

A1(λ)
, 1 + σH1(λ)H2(λ) =

1

A1(λ)A2(λ)
. (2.15)

To obtain the original oscillatory RH problem of the nonlocal Kundu–NLS equation (1.3), we define

a piecewise analytic function as

P (x, t;λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
w

(1)
1

A1(λ)
, w

(2)
2

)
, λ ∈ C

−,(
w

(1)
2 ,

w
(2)
1

A1(λ)

)
, λ ∈ C

+.

(2.16)

It satisfies the RH problem

P+(x, t;λ) = P−(x, t;λ)J(x, t;λ), P (x, t;λ) → I, λ→ ∞ (2.17)

with the jump matrix

J(x, t;λ) =

(
1 + σH1(λ)H2(λ) σH2(λ)e

−i(2λx+4λ2t)

H1(λ)e
i(2λx+4λ2t) 1

)
. (2.18)

Therefore, the solution of nonlocal Kundu–NLS equation (1.3) can be written as

q(x, t)eiθ = 2i lim
λ→∞

λ (P (x, t;λ))12,

−q∗(−x, t)e−iθ(−x,t) = 2i lim
λ→∞

λ (P (x, t;λ))21.
(2.19)

The approach in this paper extends Deift–Zhou’s method to obtain the long-time asymptotic behavior

of the solution through the related phase point drop.

1709



Fig. 1. Contours L and L.

2.1. The steepest decent contours. let F (λ) = (x/t)λ+ 2λ2. From

dF (λ)

dλ
=
x

t
+ 4λ = 0,

d2F (λ)

dλ2
= 4 �= 0, (2.20)

we then obtain a stationary point λ0 = −x/4t and two steepest decent contours (see Fig. 1)

L = {λ = λ0 + μe3iπ/4, μ ∈ R},
L = {λ = λ0 + μe−3iπ/4, μ ∈ R}.

(2.21)

Let λ = λ1 + iλ2. For the above stationary point λ0, we have

F (λ) = −4λλ0 + 2λ2 = −4λ1λ0 + 2(λ21 − 2λ22) + 4i(λ1 − λ0)λ2. (2.22)

It thus follows that

• the oscillating factor eitF (λ) decays exponentially on Re(iF ) < 0,

• the oscillating factor e−itF (λ) decays exponentially on Re(iF ) > 0.

The constant-sign intervals of Re(iF ) = −4(Reλ− λ0) Imλ are shown in Fig. 2.

Fig. 2. The constant-sign intervals of Re(iF ) on the complex λ-plane.

2.2. Trigonometric decomposition. In the physically interesting region |x/t| � C, following [25],

we can decompose the jump matrix J(x, t;λ) in (2.17) as follows:

J(x, t;λ) =

(
1 σH2(λ)e

−2itF

0 1

)(
1 0

H1(λ)e
2itF 1

)
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for λ ∈ (λ0,+∞) and

J(x, t;λ) =

(
1 0

H1(λ)e
2itF

1+σH1(λ)H2(λ)
1

)(
1 + σH1H2 0

0 1
1+σH1H2

)(
1 σH2(λ)e

−2itF

1+σH1(λ)H2(λ)

0 1

)
.

for λ ∈ (−∞, λ0).

It is known that the diagonal matrix has to be eliminated for λ < λ0. We therefore introduce the

transformation

P (1) = Pδ−σ3(λ), (2.23)

where δ(λ) satisfies the scalar RH problem and

δ(λ) =

⎧⎨
⎩δ−(λ)(1 + σH1(λ)H2(λ)), λ ∈ (−∞, λ0),

δ−(λ), λ ∈ (λ0,∞),

δ(λ) → 1, λ→ ∞.

(2.24)

From the Sokhotski–Plemelj formula, the solution of this scalar RH problem can be expressed as

δ(λ) = exp

(
1

2πi

∫ λ0

−∞

log(1 + σH1(ξ)H2(ξ))

ξ − λ
dξ

)
. (2.25)

It is worth emphasizing that in contrast to the general local integrable system, 1 + σH1(ξ)H2(ξ) is not

real-valued in the nonlocal Kundu–NLS equation. Deformation (2.25) can be expressed as

δ(λ) = (λ0 − λ)iκ(λ0)eτ(λ), (2.26)

where

κ(λ0) = − 1

2π
log(1 + σH1(λ0)H2(λ0)),

τ(λ) =
1

2iπ

∫ λ0

−∞
log(ξ − λ) d [ log(1 + σH1(ξ)H2(ξ))].

(2.27)

From symmetry relations (2.7) and Eq. (2.15), we have

κ(−λ0) = κ∗(λ0),

Imκ(λ0) = − 1

2π

∫ λ0

−∞
d arg(1 + σH1(ξ)H2(ξ)), | Imκ(λ0)| < 1

2
,

τ∗(−λ0) + τ(λ0) =
1

2iπ

∫ ∞

−∞

log[A1(λ0)A2(λ0)]

ξ − λ0
dξ.

(2.28)

Therefore, the RH problem (2.17) becomes

P
(1)
+ (x, t;λ) = P

(1)
− (x, t;λ)J (1)(x, t;λ), P (1)(x, t;λ) → I, λ→ ∞, (2.29)

where

J (1)(x, t;λ) =

(
1 σH2(λ)δ

2(λ)e−2itF

0 1

)(
1 0

H1(λ)δ
−2(λ)e2itF 1

)
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for λ ∈ (λ0,+∞) and

J (1)(x, t;λ) =

⎛
⎝ 1 0

H1(λ)e
2itF δ−2

− (λ)

1 + σH1(λ)H2(λ)
1

⎞
⎠
⎛
⎝1

σH2(λ)e
−2itF δ2+(λ)

1 + σH1(λ)H2(λ)
0 1

⎞
⎠

for λ ∈ (−∞, λ0).

Obviously, the jump matrix contains four oscillating factors

H1(λ), H2(λ),
H1(λ)

1 + σH1(λ)H2(λ)
,

σH2(λ)

1 + σH1(λ)H2(λ)
,

where

H∗
1 (−λ) = H2(λ)

A2(λ)

A1(λ)
, Aj = 1 +O

(
1

λ

)
, λ→ ∞

(with j = 1, 2). Following [25], we define a piecewise function

ω(λ) =

⎧⎪⎨
⎪⎩

H1(λ)

1 + σH1(λ)H2(λ)
, λ ∈ (−∞, λ0),

H1(λ), λ ∈ (λ0,+∞).

(2.30)

Because ω∗(−λ) = ρ(A1(λ), A2(λ))ω(λ), where ρ(A1(λ), A2(λ)) is a constant as λ→ ∞ it follows that ω(λ)

defined this way can also be approximated by similar rational functions. For λ ∈ (−∞, λ0), we write it as

ω(λ) =
H1(λ)

1 + σH1(λ)H2(λ)
= He(λ

2) + λHo(λ
2), (2.31)

where He( · ), Ho( · ) ∈ S. For an integer m ∈ Z
+, it follows from Taylor’s formula with remainder that

He(λ
2) = μe

0 + μe
1(λ

2 − λ20) + · · ·+ μe
m(λ2 − λ20)

m +

+
1

m!

∫ λ2

λ2
0

H(m+1)
e (γ)(λ2 − γ)m dγ,

Ho(λ
2) = μo

0 + μo
1(λ

2 − λ20) + · · ·+ μo
m(λ2 − λ20)

m +

+
1

m!

∫ λ2

λ2
0

H(m+1)
o (γ)(λ2 − γ)m dγ.

(2.32)

We set

R(λ) =

m∑
j=0

μe
j(λ

2 − λ20)
j + λ

m∑
j=0

μo
j(λ

2 − λ20)
j . (2.33)

Comparing Eqs. (2.31) and (2.33), we then have

djω(λ)

dλj

∣∣∣∣
±λ0

=
djR(λ)

dλj

∣∣∣∣
±λ0

, 0 � j � m, (2.34)

where μe
j = μe

j(λ
2
0) and μ

0
j = μ0

j(λ
2
0) decay rapidly as λ0 → ∞, which follows because

μe
j(λ

2
0) =

1

j!

djHe(u)

duj

∣∣∣∣
λ2
0

, μo
j (λ

2
0) =

1

j!

djHo(u)

duj

∣∣∣∣
λ2
0

. (2.35)
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Let ω(λ) = r(λ) +R(λ) for λ ∈ (−∞, λ0). From (2.34) we then have

djr(λ)

dλj

∣∣∣∣
±λ0

= 0, 0 � j � m. (2.36)

We write r(λ) as

r(λ) = r1(λ) + r2(λ), (2.37)

where r1(λ) is small and r2(λ) has an analytic continuation to λ+ i0. Thus,

ω(λ) = r1(λ) + r2(λ) +R(λ). (2.38)

Proposition 1. Let m = 4n + 1, n ∈ Z
+. As t → ∞, the functions r1(λ), r2(λ), R(λ) satisfy the

estimates
|e−2iF (λ)r1(λ)| � c

(1 + |λ|2)t
 , λ ∈ R,

|e−2iF (λ)r2(λ)| � c

(1 + |λ|2)t
 , λ ∈ L,

R(λ) � ce−4tμ2

, λ ∈ C, μ = const,

(2.39)

where � is a positive integer. The complex conjugate of ω(λ) yields similar estimates for r∗1(λ), r
∗
2(λ), R

∗(λ)
on R ∪L.

Proof. We define the function

ψ(λ) = (λ2 − λ20)
n, λ < λ0. (2.40)

For λ < λ0, the map λ �→ F (λ) = −4λλ0 + 2λ2 is one-to-one, F (λ0) = −2λ20, and

dλ

dF
=

1

4(λ(F )− λ0)
.

We can therefore define a function

(
r

ψ

)
(F ) =

⎧⎪⎨
⎪⎩
r(λ(F ))

ψ(λ(F ))
, F (λ0) � −2λ20,

0, F < −2λ20.

(2.41)

Then (
r

ψ

)
(F ) = O[(λ2(F )− λ20)

m+1−n] ∈ H
j , 0 � j � 3n+ 2

2
,

where H
j is the Hilbert space of rapidly decreasing functions. Using the Fourier transformation, we have

(
r

ψ

)
(λ) =

1√
2π

∫ ∞

−∞
eisF (λ)

︷ ︸︸ ︷(
r

ψ

)
(s) ds, λ < λ0,

where ︷ ︸︸ ︷(
r

ψ

)
(s) = − 1√

2π

∫ λ0

−∞
e−isF (λ)

(
r

ψ

)
(λ) dF (λ), s ∈ R.
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It follows from Eqs. (2.32) and (2.40) that

(
r

ψ

)
(λ) =

(λ2 − λ20)
3n+2

m!

(∫ 1

0

H(m+1)
e [λ20 + γ(λ2 − λ20)](1 − γ)m dγ +

+

∫ 1

0

H(m+1)
o [λ20 + γ(λ2 − λ20)](1 − γ)m dγ

)
.

For 0 � j � (3n+ 2)/2, we have the estimate

1√
2π

∫ λ0

0

∣∣∣∣
(
d

dF

)j(
r

ψ

)
(λ)

∣∣∣∣
2

|dF | = 1√
2π

∫ λ0

0

∣∣∣∣
(

1

4(λ− λ0)

d

dλ

)j(
r

ψ

)
(λ)(λ)

∣∣∣∣
2

|4(λ− λ0)| dλ � c1 <∞.

Using Plancherel’s formula, we obtain

∫ ∞

−∞
(1 + s2)j

∣∣∣∣
︷ ︸︸ ︷(
r

ψ

)
(s)

∣∣∣∣
2

ds � c2 <∞, 0 � j � 3n+ 2

2
. (2.42)

In accordance with (2.37) and (2.41), we have

r(λ) =
ψ(λ)√
2π

∫ ∞

t

eisF
∣∣∣∣
︷ ︸︸ ︷(
r

ψ

)
(s)

∣∣∣∣
2

ds+
ψ(λ)√
2π

∫ t

−∞
eisF

∣∣∣∣
︷ ︸︸ ︷(
r

ψ

)
(s)

∣∣∣∣
2

ds ≡ r1(λ) + r2(λ).

It hence follows that

|e−2itF (λ)r1| = |ψ(λ)| 1√
2π

∫ ∞

t

∣∣∣∣
︷ ︸︸ ︷(
r

ψ

)
(s)

∣∣∣∣ ds �
� |ψ(λ)|

[
1√
2π

∫ ∞

t

(1 + s2)−p ds

]1/2[
1√
2π

∫ t

−∞
(1 + s2)p

∣∣∣∣
︷ ︸︸ ︷(
r

ψ

)
(s)

∣∣∣∣
2

ds

]1/2
�

� c

t1/2−p
.

It can also be shown that r2(λ) has an analytic continuation to L defined by (2.21). Hence, using formula

(2.42) again, we have

|e−2itF (λ)r2| = e−tRe(iF )|ψ(λ)| 1√
2π

∫ t

−∞
e(s−t)Re(iF )

∣∣∣∣
︷ ︸︸ ︷(
r

ψ

)
(s)

∣∣∣∣ ds � ce−tRe(iF ).

Because F (λ) = 2(λ− λ0)
2 − 2λ20 and hence Re(iF ) = 2μ2, it follows that

|e−2itF (λ)r2| � C
1

tq/2
, C = const.

Finally,

|e−2itF (λ)R(λ)| � Ce−4tμ2

.

On the other hand, in the case λ > λ0, we can set ω(λ) = H1(λ). Similarly, from Taylor’s formula,

we have

(λ− i)m+5ω(λ) =

m∑
j=0

μj(λ − λ0)
j +

1

m!

∫ λ

λ0

[(γ − i)m+5ω(γ)](m+1)(λ− γ)m dγ. (2.43)
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We define

R(λ) =
1

(λ − i)m+5

m∑
j=0

μj(λ− λ0)
j , r(λ) = ω(λ)−R(λ). (2.44)

Comparing with Eq. (2.34), we see that

djω(λ)

dλj

∣∣∣∣
λ0

=
djR(λ)

dλj

∣∣∣∣
λ0

, 0 � j � m.

Let ψ̃(λ) = (λ− λ0)
n/(λ− i)n+2. Then

(
r

ψ̃

)
(λ) =

1√
2π

∫ ∞

−∞
eisF (λ)

︷ ︸︸ ︷(
r

ψ̃

)
(s) ds, λ � λ0,

where ︷ ︸︸ ︷(
r

ψ̃

)
(s) =

∫ ∞

λ0

eisF (λ)

(
r

ψ̃

)
(λ) dF (λ).

Combining Eqs. (2.43) and (2.44) gives

(
r

ψ̃

)
(λ) =

(λ− λ0)
3n+2

(λ − i)3n+4
g(λ, λ0),

where

g(λ, λ0) =
1

m!

∫ 1

0

[(γ − i)m+5ω(γ)](λ+5)[λ0 + γ(λ− λ0)](1− γ)m dγ.

We thus see that ∣∣∣∣djg(λ, λ0)dλj

∣∣∣∣ � C, λ � λ0.

This finishes the proof.

Thus, the RH problem (2.29) can be rewritten as

P
(2)
+ (x, t;λ) = P

(2)
− (x, t;λ)J

(2)
δ (x, t;λ), P

(2)
+ (x, t;λ) → I, λ→ ∞, (2.45)

where J
(2)
δ (x, t;λ) = δadσ3± e−itF (λ) adσ3b± with

b+ = I +Φ+ =

(
1 ω(λ)

0 1

)
, b− = I − Φ− =

(
1 0

ω∗(λ) 1

)
. (2.46)

According to decomposition (2.38), b± can be decomposed into two parts:

b+ = bo+b
a
+ =

(
1 r1

0 1

)(
1 r2 +R

0 1

)
,

b− = bo−b
a
− =

(
1 0

r∗1 1

)(
1

r∗2 +R∗ 1

)
.

(2.47)

Hence, the jump matrix J
(2)
δ (x, t;λ) can be written as

J
(2)
δ (x, t;λ) = δadσ3e−itF (λ) adσ3 (ba−)

−1︸ ︷︷ ︸
L

(bo−)
−1bo+︸ ︷︷ ︸
R

ba+︸︷︷︸
L

, (2.48)
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where we indicate that (ba−)
−1 is continued analytically to L, (bo−)

−1bo+ has no analytic continuation but

decays rapidly as t→ ∞, and ba+ is continued analytically to L. We introduce the transformation

P (3)(x, t;λ) = P (2)(x, t;λ)T, (2.49)

where

T =

⎧⎪⎪⎨
⎪⎪⎩
I, λ ∈ Ω2 ∪ Ω5,

(ba−)−1, λ ∈ Ω1 ∪ Ω4,

(ba+)
−1, λ ∈ Ω3 ∪ Ω6,

(2.50)

and Ωi (i = 1, . . . , 6) are shown in Fig. 3.

Fig. 3. The domains Ωi for i = 1, . . . , 6.

Thus, the RH problem on R can be transformed into a RH problem on Ω =
⋃

iΩi,

P
(3)
+ (x, t;λ) = P

(3)
− (x, t;λ)J

(3)
δ (x, t;λ), P (3)(x, t;λ) → I, λ→ ∞, (2.51)

where

J
(3)
δ (x, t;λ) = δad σ3e−itF (λ) adσ3

⎧⎪⎪⎨
⎪⎪⎩
(bo−)

−1bo+, λ ∈ R,

ba+, λ ∈ L,

(ba−)
−1, λ ∈ L.

(2.52)

If we take the real axis as an example, we have P
(3)
R+ = P

(3)
R−J

(3)
δ . From transformation (2.49), it follows that

P
(3)
R+ = P

(2)
R+TR+, P

(3)
R− = P

(2)
R−TR−, J

(3)
δ = (TR−)

−1J
(2)
δ TR+. (2.53)

If we let TR− = (ba−)−1 and TR+ = (ba+)
−1, then we obtain (2.52) for λ ∈ R

+.

Let

b
(3)
± = ±δadσ3e−itF (λ) adσ3(b± − I), b(3) = b

(3)
+ − b

(3)
− . (2.54)

From the above estimates, we have b
(3)
± , b(3) ∈ L2(Ω) ∩ L∞(Ω). We define a bounded Cauchy operator

C±(f) for f ∈ L2(Ω):

(C±f)(λ) =
1

2πi

∫
Ω

f(ζ)

ζ − λ±
dζ, λ ∈ Ω. (2.55)

Thus, the C±, as a map from L2(Ωi) to L
2(Ω), is independent of λ0 and

C+ − C− = 1, Cb(3)f = C+(f(b
(3)
− )) + C−(f(b

(3)
+ )),

where f is a 2× 2 matrix-valued function.
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If χ(x, t;λ) ∈ L2(Ω) ∩ L∞(Ω) is a solution of RH problem (2.51), then, based on [22] and using the

Neumann series, we have

P (3)(x, t;λ) = I +
1

2πi

∫
Ω

χ(x, t;λ)b(3)(ζ)

ζ − λ
dζ, λ ∈ C/Ω. (2.56)

In addition, the solution of nonlocal Kundu–NLS equation (1.3) can be represented as

q∗(−x, t) = −2ie−iθ(−x,t) lim
λ→∞

(
λ

1

2πi

∫
Ω

χ(x, t;λ)b(3)(ζ)

ζ − λ
dζ

)
21

=

=
eiθ(−x,t)

π

(∫
Ω

(1− Cb(3))
−1I(ζ)b(3)(ζ) dζ

)
21

. (2.57)

Let

b(3) = be + bR, (2.58)

where be = b(3) � R is supported on R and can be composed of the contributions to b(3) by the terms r1(λ)

and r∗1(λ
∗), and bR = b(3) � L ∪L is supported on L ∪L and can be composed of the contributions to b(3)

by the terms r2(λ) and r
∗
2(λ

∗). We give specific expressions below, It is obvious that bR = 0 for λ ∈ R, and

we hence have

b(3) =

(
0 r1

0 0

)(
0 0

r∗1 0

)
=

(
r1 + r∗1 0

0 0

)
. (2.59)

For λ ∈ L, J
(3)
δ (x, t;λ) = ba+, and then

b(3) = ba+ − I =

(
0 r2 +R

0 0

)
=

(
0 r2

0 0

)
+

(
0 R

0 0

)
.

For λ ∈ L, J (3)
δ (x, t;λ) = (ba−)

−1, and

b(3) = (ba−)
−1 − I =

(
0 0

−r∗2 −R∗ 0

)
=

(
0 0

−r∗2 0

)
+

(
0 0

−R∗ 0

)
.

Through careful analysis and verification, we see that the contributions to the solution of the RH problem

are the parts of the functions R(λ) and R∗(λ∗), and the others are infinitesimal at long times. Then

∫
Ω

[(1 − Cb(3))
−1I]b(3) dζ =

∫
Ω

[(1− Cb(3))
−1(1− Cb(3) + Cb(3))I]b

(3) dζ =

=

∫
Ω

b(3) dζ +

∫
Ω

[(1 − Cb(3))
−1Cb(3)I]b

(3) dζ =

=

∫
Ω

b(3) dζ +

∫
Ω

[(1 − CbR)
−1(1− CbR)(1− Cb(3))

−1Cb(3)I]b
(3) dζ =

=

∫
Ω

b(3) dζ +

∫
Ω

[(1 − CbR)
−1(1− Cb(3) + Cbe)(1− Cb(3))

−1Cb(3)I]b
(3) dζ =

=

∫
Ω

b(3) dζ +

∫
Ω

[(1 − CbR)
−1Cb(3)I]b

(3) dζ +

+

∫
Ω

[(1− CbR)
−1Cbe · (1− Cb(3))

−1Cb(3)I]b
(3) dζ.
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Using (2.58), we have

∫
Ω

[(1− Cb(3) )
−1I]b(3) dζ =

∫
Ω

bR dζ +

∫
Ω

be dζ +

∫
Ω

[(1− CbR)
−1Cb(3)I]b

(3) dζ +

+

∫
Ω

[(1− CbR)
−1Cbe · (1− Cb(3))

−1Cb(3)I]b
(3) dζ. (2.60)

We consider the third integral in (2.60) and write it as

∫
Ω

[(1 − CbR)
−1Cb(3)I]b

(3) dζ =

∫
Ω

[(1 − CbR)
−1(CbR + Cbe)I]b

(3) dζ =

=

∫
Ω

[(1− CbR)
−1CbeI]b

(3) dζ +

∫
Ω

[(1 − CbR)
−1CbRI]b

e +

+

∫
Ω

[(1− CbR)
−1CbRI]b

R dζ =

=

∫
Ω

[(1− CbR)
−1CbeI]b

(3) dζ +

∫
Ω

[(1 − CbR)
−1CbRI]b

e dζ +

+

∫
Ω

[(1− CbR)
−1(1− (1− CbR))I]b

R dζ =

=

∫
Ω

[(1− CbR)
−1CbeI]b

(3) dζ +

∫
Ω

[(1 − CbR)
−1CbRI]b

e dζ +

+

∫
Ω

[(1− CbR)
−1I]bR dζ −

∫
Ω

bR dζ. (2.61)

Substituting (2.61) in (2.60) yields

∫
Ω

[(1 − Cb(3))
−1I]b(3) dζ =

∫
Ω

[(1− CbR)
−1I]bR dζ +

+

∫
Ω

be dζ +

∫
Ω

[(1 − CbR)
−1CbeI]b

(3) dζ +

∫
Ω

[(1 − CbR)
−1CbRI]b

e dζ +

+

∫
Ω

[(1− CbR)
−1Cbe(1− Cb(3))

−1Cb(3)I]b
(3) dζ =

=

∫
Ω

[(1− CbR)
−1I]bR dζ + I + II + III + IV. (2.62)

Lemma 1. We have

(1Σ1 − C1
u)

−1 = RΣ1(1Σ12 − C12
u )−1IΣ1→Σ12 , (2.63)

where Σ1 and Σ2 are two oriented lines in C, Σ12 = Σ1 ∪Σ2, RΣ1 denotes the restriction map L2
Σ12

→ L2
Σ1
,

IΣ1→Σ12 denotes the embedding L2
Σ1

→ L2
Σ12

, C12
u denotes the Cauchy operator from L2

Σ12
→ L2

Σ1
,

C1
u denotes the Cauchy operator from L2

Σ1
→ L2

Σ1
, and 1 denotes the identity operator.

Proof. If g ∈ L2
Σ12

, then

(1Σ1 − C1
u)RΣ1g = 1Σ1RΣ1g − C1

uRΣ1g = g − C12
u g = (1Σ12 − C12

u )g.

and the sought relation (2.63) follows.

Hence, for f ∈ L2
Σ1
,

(1Σ1 − C1
u)RΣ1 (1Σ12 − C12

u )−1IΣ1→Σ12f = (1Σ12 − C12
u )(1Σ12 − C12

u )−1IΣ1→Σ12f = f.
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Let Σ1 = Ω/R, Σ12 = Ω. By the second resolvent identity, the norm ‖(1− CbR)
−1‖L2(Ω/R) is equivalent to

‖(1− Cb(3))
−1‖L2(Ω). Then the operator (1− CbR)

−1 exists and is uniformly bounded as t→ ∞,

‖(1− CbR)
−1‖L2(Ω) � c. (2.64)

Hence follow the estimates for terms in the right-hand side of (2.62):

|I| =
∣∣∣∣
∫
Ω

be dζ

∣∣∣∣ � ‖be‖L1 � ct−l,

|II| =
∣∣∣∣
∫
Ω

[(1 − CbR)
−1CbeI]b

(3) dζ

∣∣∣∣ � ‖(1− CbR)
−1CbeI‖L2 ‖b(3)‖L2 �

� c‖b(3)‖L2 ‖bR‖L2 � ct−l,

|III| =
∣∣∣∣
∫
Ω

[(1− CbR)
−1CbRI]b

e dζ

∣∣∣∣ � ‖(1− CbR)
−1CbRI‖L2 ‖be‖L2 � ct−l,

|IV| =
∣∣∣∣
∫
Ω

[(1− CbR)
−1Cbe(1− Cb(3) )

−1Cb(3)I]b
(3) dζ

∣∣∣∣ �
� ‖(1− CbR)

−1‖L2 ‖be‖L2‖(1− Cb(3))
−1‖L2 ‖b(3)‖L2 � ct−l

(where we write L2 = L2(Ω) and L1 = L1(Ω) for brevity). It hence follows that

q∗(−x, t) = eiθ(−x,t)

π

(∫
Ω

(1− CbR)
−1I(ζ)bR(ζ) dζ

)
21

+O(t−l). (2.65)

2.3. Scaling transformation. Based on [25], [31], [32], [38], we introduce a scaling transformation

Ξ: λ− λ0 =
λ̃√
8t
, Ω → ΩΞ. (2.66)

We then have the RH problem

P
(4)
+ (x, t; λ̃) = P

(4)
− (x, t; λ̃)J (4)(x, t; λ̃), P (4)(x, t; λ̃) → I, λ̃→ ∞, (2.67)

where J (4)(x, t; λ̃) = Ξ(J
(3)
σ (x, t;λ)) or, explicitly,

J (4)(x, t; λ̃) = (8t)−
iκ
2 e2itλ

2
0+iτ0 · (−λ̃)iκe− iλ̃2

4 +τ(λ̃)−iτ0 = Ξ1 · Ξ2, (2.68)

where κ and τ (τ0 = τ(0)) are obtained from Eq. (2.26). As a result, we have

P (4)(λ̃) = Ξ(P (3)(λ)) = I + Ξ(P
(3)
1 (λ)) + Ξ(P

(3)
2 (λ)) + · · · , (2.69)

whence P
(4)
1 (λ̃) = P

(3)
1 (λ)

√
8t.

Then, the solution of nonlocal Kundu–NLS equation (1.3) can be expressed as

−q∗(x, t)e−iθ(−x,t) = 2i(P
(4)
1 (λ̃))12

1√
8t

+O(t−l) =
i√
2t
(P

(4)
1 (λ̃))12 +O(t−l). (2.70)

With the jump matrix J (4)(x, t; λ̃) in (2.68), we see that Ξ1 is independent of λ̃, and therefore the trans-

formation P (5)(x, t; λ̃) = Ξ− adσ3
1 P (4)(x, t; λ̃) gives a RH problem on ΩΞ1 (see Fig. 4),

P
(5)
+ (x, t; λ̃) = P

(5)
− (x, t; λ̃)J (5)(x, t; λ̃), P (5)(x, t; λ̃) → I, λ̃→ ∞, (2.71)

where J (5)(x, t; λ̃) = Ξ ad σ3
2 (b̂−)−1b̂+ and b̂± = I ± bR±.
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Fig. 4. The contours ΩΞ1(λ̃)
.

On one hand, for λ̃ ∈ {λ̃ = μe±3πi/4, μ ∈ R}, we have

b̂+(λ̃) =

(
0 Ξ(R(λ̃))

0 0

)
, b̂−(λ̃) =

(
0 0

Ξ(R∗(λ̃∗)) 0

)
. (2.72)

On the other hand, as t→ ∞, we obtain the RH problem with a phase point, which suggests that

Ξ2 = (−λ̃)iκeτ
(

λ̃√
8t

+λ0

)
−τ(λ0)e

−iλ̃2

4 → (−λ̃)iκe−iλ̃2

4 , (2.73)

and

lim
t→∞

(
H1

(
λ̃√
8t

+ λ0

))
= H1(λ0),

lim
t→∞

(
H1

1 + σH1H2

(
λ̃√
8t

+ λ0

))
=

H1(λ0)

1 + σH1(λ0)H2(λ0)
,

lim
t→∞

(
σH2

(
λ̃√
8t

+ λ0

))
= σH2(λ0),

lim
t→∞

(
σH2

1 + σH1H2

(
λ̃√
8t

+ λ0

))
=

σH2(λ0)

1 + σH1(λ0)H2(λ0)
.

(2.74)

We thus arrive at the RH problem on the contour ΩΞ2 (see Fig. 5),

P
(6)
+ (x, t; λ̃) = P

(6)
− (x, t; λ̃)J (6)(x, t; λ̃), P (6)(x, t; λ̃) → I, λ̃→ ∞, (2.75)

where J (6)(x, t; λ̃) = (−λ̃)iκ ad σ3e
−iλ̃2

4 adσ3 is given as follows:

λ̃ ∈ Ω
(1)
Ξ2

: b̌+ =

(
1 0

H1(λ0) 1

)
,

λ̃ ∈ Ω
(2)
Ξ2

: b̌+ =

⎛
⎝1

σH2(λ0)

1 + σH1(λ0)H2(λ0)
0 1

⎞
⎠ ,

λ̃ ∈ Ω
(3)
Ξ2

: (b̌−)−1 =

⎛
⎝ 1 0

H1(λ0)

1 + σH1(λ0)H2(λ0)
1

⎞
⎠ ,

λ̃ ∈ Ω
(4)
Ξ2

: (b̌−)−1 =

(
1 σH2(λ0)

0 1

)
.
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Fig. 5. The contour ΩΞ2 .

According to [17], [25], [30], [32], [38], the jump matrices J (5)(x, t; λ̃) and J (6)(x, t; λ̃) satisfy the norm

relation

‖J (5)(x, t; λ̃)− J (6)(x, t; λ̃)‖L1∩L∞(ΩΞ2 )
�

⎧⎪⎪⎨
⎪⎪⎩
ct−1+2| Imκ(λ0)|, Imκ(λ0) > 0,

ct−1 log t, Imκ(λ0) = 0,

t−1, Imκ(λ0) < 0,

whence the solution of nonlocal Kundu–NLS equation (1.3) can be given as

−q∗(x, t)e−iθ(−x,t) =
i√
2t
(Ξ1)

2(P
(6)
1 (x, t; λ̃))12 +

⎧⎪⎪⎨
⎪⎪⎩
O(ct−1+2| Imκ(λ0)|), Imκ(λ0) > 0,

O(ct−1 log t), Imκ(λ0) = 0,

O(t−1), Imκ(λ0) < 0,

where P
(6)
1 (x, t; λ̃) can be obtained by the expansion of P (6)(x, t; λ̃).

Next, we introduce a transformation

P (7)(x, t; λ̃) = P (6)(x, t; λ̃)�−1, (2.76)

where � is defined as

� =

⎧⎪⎪⎨
⎪⎪⎩
(−λ̃)−iκ adσ3 , λ̃ ∈ Ω

(2)
�

∪ Ω
(5)
�
,

(−λ̃)−iκ adσ3(b�+)
−1, λ̃ ∈ Ω

(1)
�

∪ Ω
(3)
�
,

(−λ̃)−iκ adσ3(b�−)
−1, λ̃ ∈ Ω

(4)
�

∪ Ω
(6)
�
,

(2.77)

and the domains Ω
(i)
�

and contours �i are shown in Fig. 6. We then have

b�+ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(−λ̃)−iκ adσ3e−
iλ̃2

4 ad σ3

⎛
⎝ 1 0

H1(λ0) 1

⎞
⎠ , λ̃ ∈ Ω

(1)
�
,

(−λ̃)−iκ adσ3e−
iλ̃2

4 ad σ3

⎛
⎜⎝1

σH2(λ0)

1 + σH1(λ0)H2(λ0)

0 1

⎞
⎟⎠ , λ̃ ∈ Ω

(3)
�
,

(b�−)
−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(−λ̃)−iκ adσ3e−
iλ̃2

4 ad σ3

⎛
⎜⎝ 1 0

H1(λ0)

1 + σH1(λ0)H2(λ0)
1

⎞
⎟⎠ , λ̃ ∈ Ω

(4)
�
,

(−λ̃)−iκ adσ3e−
iλ̃2

4 ad σ3

⎛
⎝1 σH2(λ0)

0 1

⎞
⎠ , λ̃ ∈ Ω

(6)
�
.
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Fig. 6. Domains Ωi
� and contours �i.

It hence follows that P (7)(x, t; λ̃) satisfies the RH problem

P
(7)
+ (x, t; λ̃) = P

(7)
− (x, t; λ̃)J (7)(x, t; λ̃), P (7)(x, t; λ̃) → I, λ̃→ ∞,

J (7)(x, t; λ̃) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
e−

iλ̃2

4 adσ3

⎛
⎝1 + σH1(λ0)H2(λ0) σH2(λ0)

H1(λ0) 1

⎞
⎠
−1

, λ̃ ∈ R,

I, λ̃ ∈ �
1 ∪�

2 ∪�
3 ∪�

4.

(2.78)

By transformation (2.76), the formula �
−1(−λ̃)−iκ adσ3 can be expressed as

�
−1(−λ̃)−iκ adσ3 = I +O

(
1

λ̃

)
, λ̃→ ∞, (2.79)

and therefore

P (7)(x, t; λ̃) = P (6)(x, t; λ̃)�−1 = P (6)(�−1(−λ̃)−iκσ3 )(−λ̃)−iκσ3 =

=

(
I +

P
(6)
1

λ̃
+O

(
1

λ̃2

))(
I +O

(
1

λ̃

))
(−λ̃)−iκσ3 =

=

(
I +

P
(6)
1

λ̃
+
P

(6)
2

λ̃2
+ · · ·

)
(−λ̃)−iκσ3 .

Let P (8)(x, t; λ̃) = P (7)(x, t; λ̃)e−
iλ̃2

4 σ3 . It then follows that P (8)(x, t; λ̃) satisfies the RH problem

P
(8)
+ (x, t; λ̃) = P

(8)
− (x, t; λ̃)J (8)(x, t; λ̃), P (8)e

iλ̃2

4 σ3(−λ̃)−iκσ3 → I, λ̃→ ∞,

J (8)(x, t;λ0) =

(
1 + σH1(λ0)H2(λ0) σH2(λ0)

H1(λ0) 1

)
.

(2.80)

Theorem 1. If the spectral functions are defined by Eqs. (2.10), the long-time asymptotics of the

solution of the nonlocal Kundu–NLS equation (1.3) with a decaying initial value q0(x) are given by

q∗(−x, t) = t−1/2+Im ξ(λ0)
πe

πi−2πκ
4 +iθ(−x,t)

H1(λ0)Γ(−a) +

⎧⎪⎪⎨
⎪⎪⎩
O(ct−1+2| Imκ(λ0)|), Imκ(λ0) > 0,

O(ct−1 log t), Imκ(λ0) = 0,

O(t−1), Imκ(λ0) < 0,

(2.81)

where Γ( · ) is the Gamma function.
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Appendix: Proof of Theorem 1

To solve the nonlocal Kundu–NLS equation with a decaying initial value, we use the Weber equation

and the standard parabolic cylinder function. From the equalities

d

dλ̃
P

(8)
+ =

d

dλ̃
P

(8)
− J (8)(λ0),

1

2
iλ̃σ3P

(8)
+ =

1

2
iλ̃σ3P

(8)
− J (8)(λ0)

we have (
∂λ̃P

(8) +
1

2
iλ̃σ3P

(8)

)
+

=

(
∂λ̃P

(8) +
1

2
iλ̃σ3P

(8)

)
−
J (8)(λ0). (A.1)

Obviously, because J (8)(λ0) = 1, it follows that detP
(8)
± = 1 for λ̃ ∈ R. Thus, based on the Painlevé’s

expansion theorem, we see that detP (8) is analytic and bounded on C. Furthermore,

[(
∂λ̃P

(8) +
1

2
iλ̃σ3P

(8)

)
(P (8))−1

]
+

=

(
∂λ̃P

(8) +
1

2
iλ̃σ3P

(8)

)
−
J (8)(λ0)(J

(8)(λ0))
−1(P

(8)
− )−1 =

=

[(
∂λ̃P

(8) +
1

2
iλ̃σ3P

(8)

)
(P (8))−1

]
−

(A.2)

is also analytic and bounded on C. From the expression

(
∂λ̃P

(8) +
1

2
iλ̃σ3P

(8)

)
(P (8))−1 =

1

2
iλ̃[σ3, P

(8)] =
1

2
i[σ3, P

(7)
1 ] +O

(
1

λ̃

)
, (A.3)

by the Liouville theorem we see that

(
∂λ̃P

(8) +
1

2
iλ̃σ3P

(8)

)
(P (8))−1 =

(
Θ11 Θ12

Θ21 Θ22

)
(A.4)

is a constant matrix. Comparing formulas (A.2) and (A.4), we have

i(P
(7)
1 )12 = Θ12, −i(P (7)

1 )21 = Θ21, Θ11 = Θ22 = 0, (A.5)

and hence the solution of nonlocal Kundu–NLS equation (1.3) can be written as

u(x, y) = − 1√
2t
(Ξ1)

2Θ21 +O

(
log t

t

)
. (A.6)

From (A.4), we have the system of equations

dP
(8)
11

dλ̃
+

1

2
iλ̃P

(8)
11 = Θ12P

(8)
21 ,

dP
(8)
21

dλ̃
− 1

2
iλ̃P

(8)
21 = Θ21P

(8)
11 . (A.7)

which reduces to a single equation

dP
(8)
11

dλ̃
=

(
− λ̃

2

4
− 1

2
i+Θ12Θ21

)
P

(8)
11 . (A.8)

For Im λ̃ > 0, let

(P (8))+ =

(
(P (8))+11 (P (8))+12
(P (8))+21 (P (8))+22

)
.
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Then Eq. (A.8) can be rewritten in the form

d(P (8))+11
dλ̃

=

(
− λ̃

2

4
− 1

2
i+Θ12Θ21

)
(P (8))+11, (A.9)

which is called the Weber equation. It has two linearly independent solutions Da(ζ) and Da(−ζ) called the

parabolic cylinder functions,

(P (8))+11 = c1Da(ζ) + c2Da(−ζ), (A.10)

where ζ = λ̃e−3iπ/4, c1, c2 are constants.

The parabolic cylinder functions Da(ζ) have the following asymptotic property as ζ → ∞:

for | arg ζ| < 3π/4,

Da(ζ) = ζ2e−ζ2/4 + ζ2e−ζ2/4O(ζ−2);

for π/4 < arg ζ < 5π/4,

Da(ζ) = ζ2e−ζ2/4[1 +O(ζ−2)]−
√
2πΓ−1(−a)eaiπζ−1−aeζ

2/4(1 +O(ζ−2);

and for −5π/4 < arg ζ < −π/4,

Da(ζ) = ζ2e−ζ2/4[1 +O(ζ−2)]−
√
2πΓ−1(−a)e−aiπζ−1−aeζ

2/4(1 +O(ζ−2).

Thus,

(P (8))+11(λ̃) = e−3πκ/4Da(λ̃e
−3i/4),

(P (8))+21(λ̃) =
1

Θ12
e−3πκ/4

(
∂λ̃Da

(
λ̃e−3i/4

)
+
iλ̃

2
Da

(
λ̃e−3i/4

))
,

(A.11)

Similarly, for Im λ̃ < 0, let

(P (8))− =

(
(P (8))−11 (P (8))−12
(P (8))−21 (P (8))−22

)
.

Then

(P (8))−11(λ̃) = eπκ/4Da(λ̃e
i/4),

(P (8))−21(λ̃) =
1

Θ12
eπκ/4

(
∂λ̃Da(λ̃e

i/4) +
iλ̃

2
Da(λ̃e

i/4)

)
.

(A.12)

From the RH problem (2.80), we then have

(
1 + σH1(λ0)H2(λ0) σH2(λ0)

H1(λ0) 1

)
=

(
(P (8))−11 (P (8))−12
(P (8))−21 (P (8))−22

)−1(
(P (8))+11 (P (8))+12
(P (8))21 (P (8))+22

)
, (A.13)

whence

H1(λ0) = −(P (8))−21(P
(8))+11 + (P (8))−11(P

(8))+21 =

√
2πe(iπ−2πκ)/4

Θ21Γ(−a) . (A.14)
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