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We consider an initial boundary value problem for a singularly perturbed parabolic system of two reaction–

diffusion-type equations with Neumann conditions, where the diffusion coefficients are of different degrees

of smallness and the right-hand sides need not be quasimonotonic. We obtain an asymptotic approximation

of the stationary solution with a boundary layer and prove existence theorems, the asymptotic stability

in the sense of Lyapunov, and the local uniqueness of such a solution. The obtained result is applied to

a class of problems of chemical kinetics.
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1. Introduction

We consider a parabolic system of two reaction–diffusion-type equations with Neumann conditions

with the diffusion coefficients of different degrees of smallness. Equations of this type are used to model

processes in various applications. In particular, in chemical kinetics, they describe the interaction between

substances in an inhomogeneous medium by modeling fast biomolecular reactions at different rates (with

different intensities of sources). Their solutions describe the variation in the concentration of reactants in

space and time. For example, similar problems were considered in [1]–[4] (also see the references therein) in

studying the front-type solutions in problems of urban ecology. Stationary solutions with internal transition

layers in such systems were studied in [5], and in problems with discontinuous sources, in [6]. A rigorous

asymptotic analysis of such systems is based on the asymptotic method of differential inequalities (see [7]).

This method is based on basic theorems of differential inequalities (comparison theorems), which can be

found, for example, in book [8]. Such systems were studied under the condition that the right-hand sides of

the equations are quasimonotonic. The physical interpretation of such conditions in problems of chemical

kinetics, where the quantities have the meaning of concentrations of substances, amounts to specifying how

variations in the concentration of one of the components affects the rate of variation in the second component

of the system. The relevant studies commonly either resort to one of the four possible versions (see, e.g., [9])

or successively apply all possible combinations, each with specific conditions (see, e.g., [10]). We note that
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the study of quasimonotonic singularly perturbed systems started quite a long time ago in applications to

systems of Tikhonov-type ordinary differential equations [11], and was then extended to some classes of

systems of partial differential equations and boundary value problems (see [12] and the references therein).

At the same time, there are several important applications in which the quasimonotonicity condition is not

satisfied.

In this paper, we study the problem of the existence and asymptotic stability of a stationary solution

of a system with Neumann boundary conditions without requiring the quasimonotonicity of the right-hand

sides. We construct an asymptotic approximation of the stationary solution and prove its asymptotic

stability in the sense of Lyapunov. The obtained result can be applied to a class of problems of chemical

kinetics.

2. Statement of the problem

We consider a system of two reaction–diffusion-type equations with different powers of a small param-

eter multiplying the differential operator. The problem is considered in a closed simply connected two-

dimensional domain D bounded by a sufficiently smooth boundary ∂D:

Nu := ε4Δu− ∂u

∂t
− f(u, v, x, ε) = 0,

Nv := ε2Δv − ∂v

∂t
− g(u, v, x, ε) = 0,

x = (x1, x2) ∈ D, t > 0,

u(x, 0, ε) = uinit(x, ε), v(x, 0, ε) = vinit(x, ε), x ∈ D,

∂u

∂n

∣
∣
∣
∣
∂D

= h(x),
∂v

∂n

∣
∣
∣
∣
∂D

= q(x), x ∈ ∂D.

(1)

Here, ε > 0 is a small parameter, and the functions f(u, v, x, ε) and g(u, v, x, ε) are defined for (u, v, x) ∈
G ≡ Iu × Iv ×D and 0 < ε ≤ ε0, where ε0 is a positive constant. The derivative in the boundary condition

is taken with respect to the inner normal to ∂D. Our goal is to study the existence and Lyapunov stability

of the stationary solution of problem (1). This solution is a solution of the elliptic boundary value problem

Lu := ε4Δu− f(u, v, x, ε) = 0,

Lv := ε2Δv − g(u, v, x, ε) = 0,
x ∈ D,

∂u

∂n

∣
∣
∣
∣
∂D

= h(x),
∂v

∂n

∣
∣
∣
∣
∂D

= q(x), x ∈ ∂D.

(2)

In what follows, we study the existence and Lyapunov stability of a boundary-layer solution of problem (2),

regarded as the stationary solution of problem (1).

We assume that the following conditions are satisfied.

Condition A0. The functions f(u, v, x, ε), g(u, v, x, ε), h(x), and q(x) are sufficiently smooth.

Condition A1. The degenerate system

f(u, v, x, 0) = 0,

g(u, v, x, 0) = 0
(3)

has a solution u = ū(x), v = v̄(x) such that

fu(ū(x), v̄(x), x, 0) > 0, gv(ū(x), v̄(x), x, 0) > 0 for x ∈ D.
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We use the notation f̄(x) = f(ū(x), v̄(x), x, 0), ḡ(x) = g(ū(x), v̄(x), x, 0) and a similar notation for the

derivatives of these functions.

Condition A2. The determinant of the matrix

(

f̄u(x) f̄v(x)

ḡu(x) ḡv(x)

)

is positive for x ∈ D.

Condition A3. There exist γu(x) and γv(x) such that, for any −1 ≤ Θ ≤ 1 in the expression

(

f̄u(x) Θf̄v(x)

Θḡu(x) ḡv(x)

)(

γu(x)

γv(x)

)

=

(

A(x)

B(x)

)

,

we have A(x) > 0 and B(x) > 0 for all x ∈ D.

Remark 1. In some cases, a solution of system (3) can be found as follows. The equation

f(u, v, x, 0) = 0 has a root u = φ(v, x): fu(φ(v, x), v, x, 0) > 0, v ∈ Iv, x ∈ D. The equation p(v, x) :=

g(φ(v, x), v, x, 0) = 0 has a root v = v0(x): pv(v0, x) = gv(φ(v0, x), v0, x, 0) > 0 for x ∈ D, i.e., under more

stringent conditions.

In what follows, we prove the existence of a stationary solution, construct and justify its asymptotics,

and obtain conditions for its asymptotic stability in the sense of Lyapunov.

3. Construction of the asymptotics

3.1. Local coordinates. We let the boundary ∂D be defined parametrically: x1 = φ(θ), x2 = ψ(θ),

where 0 ≤ θ < Ξ is a parameter such that as it increases from 0 to Ξ, the point (φ(θ), ψ(θ)) passes

through each point of the boundary ∂D. To describe the solution near the boundary ∂D, we introduce

a δ-neighborhood ∂Dδ := {P ∈ D : dist(P, ∂D) < δ}, δ = const > 0. In the δ-neighborhood of ∂D,

we introduce local coordinates (r, θ), where r is the distance from a given point inside this neighborhood

to the point on the boundary ∂D with coordinates (φ(θ), ψ(θ)) along the normal to ∂D. It is known that

if the boundary is sufficiently smooth (the functions φ(θ) and ψ(θ) have continuous derivatives), then,

in a sufficiently small neighborhood of the boundary, there exists a one-to-one correspondence between the

initial coordinates (x1, x2) and the local coordinates (r, θ), given by the formulas

x1 = φ(θ) − r
ψθ

√

φ2θ + ψ2
θ

, x2 = ψ(θ) + r
φθ

√

φ2θ + ψ2
θ

.

The unit vector of the tangent k and the unit vector of the normal n to ∂D are defined as

k =

⎛

⎜
⎜
⎝

1
√

1 + ψ2
θ/φ

2
θ

ψθ/φθ
√

1 + ψ2
θ/φ

2
θ

⎞

⎟
⎟
⎠
, n =

⎛

⎜
⎜
⎝

−ψθ
√

φ2θ + ψ2
θ

φθ
√

φ2θ + ψ2
θ

⎞

⎟
⎟
⎠
.

Passing to the new variables, we express the differential operator Δ in the variables (r, θ) as

Δr,θ =
∂2

∂r2
+Hθ

∂Hθ

∂r

∂

∂r
+

1

Hθ

∂

∂θ

(
1

Hθ

)
∂

∂θ
+

1

H2
θ

∂2

∂θ2
,

where

Hθ =

√
(
∂x1
∂θ

)2

+

(
∂x2
∂θ

)2

is a Lamé coefficient.
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We introduce stretched variables of two scales ξ = r/ε and η = r/ε2. Expanding the coefficients at the

partial derivatives in power series in ε, we then express the differential operators in the stretched variables as

Δξ,θ =
1

ε2
∂2

∂ξ2
+

1

ε

∂

∂ξ

φθθψθ − ψθθφθ
√

ψ2
θ + φ2θ

+
∞∑

i=0

εi−1Li, (4)

Δη,θ =
1

ε4
∂2

∂ξ2
+

1

ε2
∂

∂ξ

φθθψθ − ψθθφθ
√

ψ2
θ + φ2θ

+

∞∑

i=0

εi−2Li, (5)

where the Li are linear differential operators containing the partial derivatives ∂/∂θ and ∂2/∂θ2. Because

the local coordinate r is introduced as the distance along the inner normal to ∂D, the operator of the

boundary condition in the local and stretched coordinates becomes

∂

∂n
=

∂

∂r
=

1

ε

∂

∂ξ
=

1

ε2
∂

∂η
.

3.2. General form of the asymptotics. The formal asymptotics of a solution can be constructed

standardly by following the steps of the algorithm implementing the method of boundary functions, accord-

ing to which the sought functions are represented as

u(x, ε) = ū(x, ε) + Pu(ξ, θ, ε) +Ru(η, θ, ε),

v(x, ε) = v̄(x, ε) + Pv(ξ, θ, ε) +Rv(η, θ, ε).
(6)

The nonlinearity is represented similarly,

f(u, x, ε) = f̄ + Pf(ξ, θ, ε) +Rf(η, θ, ε),

where
Pf = f(ū(εξ, θ, ε) + Pu(ξ, θ, ε), v̄(εξ, θ, ε) + Pv(ξ, θ, ε), εξ, θ, ε)−

− f(ū(εξ, θ, ε), v̄(εξ, θ, ε), εξ, θ, ε),

Rf = f(ū(ε2η, θ, ε) + Pu(εη, θ, ε) +Ru(η, θ, ε), v̄(ε2η, θ, ε) +

+ Pv(εη, θ, ε) +Rv(η, θ, ε), ε2η, θ, ε)−
− f(ū(ε2η, θ, ε) + Pu(εη, θ, ε), v̄(ε2η, θ, ε) + Pv(εη, θ, ε), ε2η, θ, ε).

(7)

For brevity, we write the terms in terms of the new coordinates (r, θ) (in what follows, the old or new

coordinates are used in the representation of the boundary-layer part of the nonlinearity for reasons of

convenience). The function g(u, v, x, ε) is represented similarly.

The functions ū(x, ε) and v̄(x, ε) are the regular part of the asymptotics and describe the functions u

and v far away from the boundary ∂D; the functions P (ξ, θ, ε) and R(η, θ, ε) are the boundary-layer part

of the asymptotics and describe the solution near the boundary ∂D on two different scales. All terms of

asymptotics (6) can be written as power series in ε:

ū(x, ε) = ū0(x) + εū1(x) + · · · ,
Pu(ξ, θ, ε) = P0u(ξ, θ) + εP1u(ξ, θ) + · · · ,
Ru(η, θ, ε) = R0u(η, θ) + εR1u(η, θ) + · · · .

The terms of the asymptotics for the function v can be written similarly.

We introduce the notation

f̄(x) = f(ū0(x), v̄0(x), x, 0),

f̃(ξ, θ) = f(ū0(0, θ) + P0u(ξ, θ), v̄0(0, θ) + P0v(ξ, θ), θ, 0),

f̂(η, θ) = f(ū0(0, θ) + P0u(0, θ) +R0u(η, θ), v̄0(0, θ) + P0v(0, θ) +R0v(η, θ), θ, 0).

Similar notation is used for the function g and for the derivatives of these functions.
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3.3. Regular part of the asymptotics. Substituting (6) in initial problem (2) and standardly

dividing this problem into problems for the regular and boundary-layer parts, we obtain a sequence of

problems for the coefficients of the regular and boundary-layer parts of the asymptotic approximation. The

leading terms of the regular part, ū0(x) and v̄0(x), are determined from degenerate system (2):

f(ū0(x), v̄0(x), x, 0) = 0,

g(ū0(x), v̄0(x), x, 0) = 0.

Under condition A1, this system has the solution

ū0(x) = ū(x), v̄0(x) = v̄(x).

The coefficients of the regular part of asymptotic approximation (6) for k ≥ 1 are determined from the

system

f̄u(x)ūk + f̄v(x)v̄k = Fk(x),

ḡu(x)ūk + ḡv(x)v̄k = Gk(x),
(8)

where Fk(x) and Gk(x) are functions known at each step and depending on the coefficients of the regular

part of the asymptotic approximation of the preceding orders. The determinant of this system satisfies the

inequality Δ = f̄u(x)ḡv(x) − f̄v(x)ḡu(x) > 0 by condition A2. Hence, these systems are uniquely solvable.

3.4. Boundary-layer part of the asymptotics. The system for the functions of the boundary-layer

part is obtained by Vasil’eva’s method and has the form

∂2

∂η2
Ru+ ε2

φθθψθ − ψθθφθ
√

φ2θ + ψ2
θ

∂

∂η
Ru+

∞∑

i=0

εi+2LiRu = Rf,

1

ε2
∂2

∂η2
Rv +

φθθψθ − ψθθφθ
√

φ2θ + ψ2
θ

∂

∂η
Rv +

∞∑

i=0

εiLiRv = Rg,

ε2
∂2

∂ξ2
Pu+ ε3

φθθψθ − ψθθφθ
√

φ2θ + ψ2
θ

∂

∂ξ
Pu+

∞∑

i=0

εi+3LiPu = Pf,

∂2

∂ξ2
Pv + ε

φθθψθ − ψθθφθ
√

φ2θ + ψ2
θ

∂

∂ξ
Pv +

∞∑

i=0

εi+1LiPv = Pg.

(9)

Successively writing the terms at different powers of the small parameter and using the initial boundary

condition and the condition that the boundary-layer functions tend to zero at infinity, we obtain problems

for determining them.

The problems for the zeroth and first orders of the function Rv become

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2R0v

∂η2
= 0,

∂R0v

∂η

∣
∣
∣
∣
η=0

= 0,

R0v(∞) = 0,

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2R1v

∂η2
= 0,

∂R1v

∂η

∣
∣
∣
∣
η=0

= −∂P0v

∂ξ

∣
∣
∣
∣
ξ=0

,

R1v(∞) = 0.

These problems have the solutions R0v(η, θ) = 0, R1v(η, θ) = 0.
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Using representation (7), we find the functions P0u(ξ, θ) and P0v(ξ, θ) as

f(ū0(0, θ) + P0u(ξ, θ), v̄0(0, θ) + P0v(ξ, θ), θ, 0) = 0, (10)

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂2P0v

∂ξ2
= g(ū0(0, θ) + P0u(ξ, θ), v̄0(0, θ) + P0v(ξ, θ), θ, 0),

∂P0v

∂ξ

∣
∣
∣
∣
ξ=0

= −∂R1v

∂η

∣
∣
∣
∣
η=0

= 0,

P0v(∞, θ) = 0.

(11)

Problem (10), (11) has the solution P0v(ξ, θ) = 0, P0u(ξ, θ) = 0.

The function R0u(η, θ) is determined from the problem
⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂2R0u

∂η2
= f(ū0(0, θ) +R0u, v̄0(0, θ), 0, θ),

∂R0u

∂η

∣
∣
∣
∣
η=0

= 0,

R0u(∞) = 0,

(12)

whose solution is R0u(ξ, θ) = 0. All zeroth-order functions of the boundary-layer part of the asymptotics

are thus equal to zero. In the case under study, we therefore have f̄ = f̃ = f̂ and ḡ = g̃ = ĝ.

For the function R2v(η), we have the equation

∂2R2v

∂η2
= 0

whence, using the condition that R2v(∞) = 0 at infinity, we obtain R2v(η) = 0.

The problems for determining P1v(ξ, θ) and P1u(ξ, θ) have the form

P1u = − f̄v
f̄u
P1v(ξ, θ),

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂2P1v

∂ξ2
+

(

ḡu
f̄v

f̄u
− ḡv

)

P1v = 0,

∂P1v

∂ξ

∣
∣
∣
∣
ξ=0

= q(θ)− ∂v̄0
∂r

∣
∣
∣
∣
r=0

− ∂R2v

∂η

∣
∣
∣
∣
η=0

,

P1v(∞) = 0.

We hence explicitly obtain

P1v(ξ, θ) =

(
∂v̄0
∂r

∣
∣
∣
∣
r=0

− q(θ)

)

exp

[

−ξ
√
(

ḡu
f̄v

f̄u
− ḡv

)]

,

and then find P1u(ξ, θ).

The system for the function R1u(η, θ) becomes
⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2R1u

∂η2
− f̄uR1u = 0,

∂R1u

∂η

∣
∣
∣
∣
η=0

= −∂P0u

∂ξ

∣
∣
∣
∣
ξ=0

= 0,

R1u(∞) = 0,

and it has the trivial solution R1u(η, θ) = 0.
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The boundary function R2u is determined from the problem

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2R2u

∂η2
+ f̄uR2u = 0,

∂R2u

∂η

∣
∣
∣
∣
η=0

= h(θ)− ∂ū0
∂r

∣
∣
∣
∣
r=0

− ∂P1v

∂ξ

∣
∣
∣
∣
ξ=0

,

R2u(∞) = 0,

whose solution, just as the solution of the problem for boundary functions of subsequent orders obtained

from (9), can be written explicitly and has a standard exponentially decreasing estimate.

4. Justification of the asymptotics

4.1. Existence of the solution. To prove the existence of the stationary solution (the solution of

problem (2)) we use the asymptotic method of differential inequalities (see [7] and the references therein).

For this, we construct the upper and lower solutions of problem (2) in the domain D, i.e., (uα, vα) and

(uβ , vβ), as a modification of the formal asymptotics of order k constructed in the preceding section, i.e.,

the functions Uk(x, ε) and Vk(x, ε) (the kth-order partial sums of representations (6)). By definition, these

functions must satisfy the following conditions.

Condition B1. uα(x, ε) ≤ uβ(x, ε) and vα(x, ε) ≤ vβ(x, ε) for x ∈ D.

Condition B2. The following inequalities are satisfied:

Lu(uβ) ≤ 0 ≤ Lu(uα), vα ≤ v ≤ vβ ,

Lv(vβ) ≤ 0 ≤ Lv(vα), uα ≤ u ≤ uβ, x ∈ D.

Condition B3. The following inequalities are satisfied:

∂uβ
∂n

∣
∣
∣
∣
∂D

≤ h(x) ≤ ∂uα
∂n

∣
∣
∣
∣
∂D

,

∂vβ
∂n

∣
∣
∣
∣
∂D

≤ q(x) ≤ ∂vα
∂n

∣
∣
∣
∣
∂D

.

We demonstrate the construction of the upper and lower solutions as a modification of the first order

of the above-constructed asymptotics (in what follows, these functions are used to estimate the domain of

attraction of the stationary solution):

uα(x, ε) = U1(x, ε)− εγu(x)− ε2e−κ1ξ,

vα(x, ε) = V1(x, ε)− εγv(x) − ε2e−κ2ξ,

uβ(x, ε) = U1(x, ε) + εγu(x) + ε2e−κ1ξ,

vβ(x, ε) = V1(x, ε) + εγv(x) + ε2e−κ2ξ.

(13)

Ordering condition B1 is satisfied by virtue of representation (13). Because the first-order asymptotics

exactly satisfies the boundary conditions of problem (2), it follows that the boundary-layer additions to

representation (13) compensate the discrepancies in the boundary conditions for sufficiently large κi and

thus ensure that the corresponding boundary inequalities in condition B3 are satisfied.
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We now verify the first inequality in condition B2. It must be satisfied for all vα ≤ v ≤ vβ or, which is

the same, for all

v ∈ [V1 − εγv(x) − ε2e−κ2ξ, V1 + εγv(x) + ε2e−κ2ξ].

After the substitution in the first inequality, we obtain

Lu(uβ) = O(ε2)− ε(f̄uγu +Θf̄vγv), x ∈ D,

where −1 ≤ Θ ≤ 1. Condition A3 implies the inequality Lu(uβ) < 0. For the three remaining inequalities,

we similarly obtain

Lvvβ = O(ε2)− ε(Θḡuγu + ḡvγv) < 0, x ∈ D,

Luuα = O(ε2) + ε(f̄uγu +Θf̄vγv) > 0, x ∈ D,

Lvvα = O(ε2) + ε(Θḡuγu + ḡvγv) > 0, x ∈ D.

The inequalities in condition B2 are thus satisfied by condition A3. It follows from the comparison theorem

(see, e.g., [8]) that there exists a solution of problem (2) for which the inequalities

uα(x, ε) ≤ u(x, ε) ≤ uβ(x, ε), x ∈ D,

vα(x, ε) ≤ v(x, ε) ≤ vβ(x, ε), x ∈ D,
(14)

are satisfied. It follows from representations (13) for the lower and upper solutions that uα(x, ε)−uβ(x, ε) =
O(ε) and vα(x, ε) − vβ(x, ε) = O(ε). We can similarly use the kth-order asymptotic approximation

Uk(x, ε), Vk(x, ε) to prove the existence of the solution employing the upper and lower solutions for which

the relations uα(x, ε) − uβ(x, ε) = O(εk), vα(x, ε) − vβ(x, ε) = O(εk) hold. We thus have the following

theorem.

Theorem 1. Let conditions A0–A3 be satisfied. Then for sufficiently small ε, there exists a solution

u(x, ε), v(x, ε) of problem (2) with a boundary layer near ∂D for which the functions Un(x, ε), Vn(x, ε) are

a uniform asymptotic approximation up to εn+1 for x ∈ D.

4.2. Asymptotic stability of the stationary solution. An approach that is typically used to prove

the asymptotic stability of the stationary solution of problem (1) is efficient in many classes of problems and

involves the upper and lower solutions of a special structure (see [7]). We recall that the vector functions

(Uβ(x, t, ε), Vβ(x, t, ε)) and (Uα(x, t, ε), Vα(x, t, ε)) are respectively called the upper and lower solutions of

system (1) if they satisfy the following conditions for sufficiently small ε.

Condition C1. Uα(x, t, ε) ≤ Uβ(x, t, ε) and Vα(x, t, ε) ≤ Vβ(x, t, ε) for x ∈ D, t > 0.

Condition C2. The following inequalities are satisfied:

Nu(Uβ) ≤ 0 ≤ Nu(Uα), Vα ≤ V ≤ Vβ , x ∈ D, t > 0,

Nv(Vβ) ≤ 0 ≤ Nv(Vα), Uα ≤ U ≤ Uβ, x ∈ D, t > 0.

Condition C3. The following inequalities are satisfied:

∂Uβ

∂n

∣
∣
∣
∣
∂D

≤ h(x) ≤ ∂Uα

∂n

∣
∣
∣
∣
∂D

,

∂Vβ
∂n

∣
∣
∣
∣
∂D

≤ q(x) ≤ ∂Vα
∂n

∣
∣
∣
∣
∂D

.
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We define the functions Uα(x, t, ε) and Uβ(x, t, ε) as

Uα(x, t, ε) = u(x, ε) + (uα(x, ε)− u(x, ε))e−κt,

Uβ(x, t, ε) = u(x, ε) + (uβ(x, ε)− u(x, ε))e−κt,

where u(x, ε) is the stationary solution whose existence was proved in Theorem 1, and uα(x, ε) and uβ(x, ε)

are the lower and upper solutions for the u-component of the stationary problem determined in (13).

The functions Vα(x, t, ε) and Vβ(x, t, ε) are determined similarly. Using the obvious estimates

|u(x, ε)− uα(x, ε)| ≤ Cε, |v(x, ε)− vα(x, ε)| ≤ Cε,

we can easily show that conditions C1–C3 are satisfied (similar calculations can be found, for example,

in [9]). It follows from [8] that if the conditions

uα(x, ε) ≤ uinit(x, ε) ≤ uβ(x, ε), vα(x, ε) ≤ vinit(x, ε) ≤ vβ(x, ε)

are satisfied, then there exists a unique solution (Uε(x, t, ε), Vε(x, t, ε)) of problem (1) such that

Uα(x, t, ε) ≤ Uε(x, t, ε) ≤ Uβ(x, t, ε), Vα(x, t, ε) ≤ Vε(x, t, ε) ≤ Vβ(x, t, ε)

for x ∈ D, t > 0. From this fact and from the structure of the lower and upper solutions of the parabolic

problem, we obtain the following result.

Theorem 2. Assume that conditions A0–A3 are satisfied. Then for sufficiently small ε, the stationary

solution uε(x, ε), vε(x, ε) of problem (1) is asymptotically stable in the sense of Lyapunov, and the domain

of attraction is at least (Uα(x, ε), Vα(x, ε))× (Uβ(x, ε), Vβ(x, ε)). This solution is also locally unique as the

solution of problem (2) in this domain.

5. Example of a system of chemical kinetics

We now consider an example of problem (1) for the following system of chemical kinetics describing

fast biomolecular and monomolecular reactions (see [12]):

ε4Δu − ∂u

∂t
= k1uv + k2u(v − p)2 + εIu(x) ≡ f(u, v, x, ε),

ε2Δv − ∂v

∂t
= k3uv + k4v(v − p) + εIv(x) ≡ g(u, v, x, ε),

u(x, 0, ε) = uinit(x, ε), v(x, 0, ε) = vinit(x, ε), x ∈ D,

∂u

∂n

∣
∣
∣
∣
∂D

= h(x),
∂v

∂n

∣
∣
∣
∣
∂D

= q(x), x ∈ ∂D, t > 0.

(15)

The functions u(x, t) and v(x, t) describe the concentrations of two substances participating in the reaction,

Iu(x) and Iv(x) are nonnegative functions describing the external sources, the function p = p(x) is suffi-

ciently smooth, and ki > 0, i = 1, 4, are constants. Two equations enter the system with different powers

of a small parameter multiplying the differential operator, which corresponds to different rates of variation

in the concentrations of the two reagents or to the diffusion coefficients of different degrees of smallness.

We note that none of the four quasimonotonicity conditions that are usually imposed in such problems is

satisfied for the system under study, because the derivative fv = k1u+ k2u2(v− p) changes sign at p in the

domain between the lower and upper solutions.
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The degenerate system

k1uv + k2u(v − p)2 = 0,

k3uv + k4v(v − p) = 0

has a solution

ū(x) = 0, v̄(x) = p(x).

The derivatives are f̄u(x) = k1p(x) > 0 and ḡv(x) = k4p(x) > 0, and hence condition A1 is satisfied.

The determinant of the matrix determining the regular part of the asymptotics is positive,
∣
∣
∣
∣
∣

f̄u f̄v

ḡu ḡv

∣
∣
∣
∣
∣
= k1k4p

2 > 0,

and if the functions in the expression
(

f̄u Θf̄v

Θḡu ḡv

)(

γu(x)

γv(x)

)

=

(

k1p 0

Θk3p k4p

)(

γu(x)

γv(x)

)

=

(

A(x)

B(x)

)

are chosen such that γu(x) > 0 and γv(x) > k3γu(x)/k4 > 0, then we have A(x) > 0 and B(x) > 0. Thus,

conditions A2 and A3 are satisfied.

The results of Theorems 1 and 2 can therefore be applied to the considered system of chemical kinetics.
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