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QUASIDIFFERENTIAL OPERATOR

AND QUANTUM ARGUMENT SHIFT METHOD

Y. Ikeda∗

We describe an explicit formula for the first-order quasiderivation of an arbitrary central element of the

universal enveloping algebra of a general linear Lie algebra. We apply it to show that derivations of

any two central elements of the universal enveloping algebra commute. This contributes to the Vinberg

problem of finding commutative subalgebras in universal enveloping algebras with the underlying Poisson

algebras determined by the argument shift method.
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1. Introduction

The argument shift method introduced by Mischenko and Fomenko [1] is a well-known method devised

to construct commutative families of elements in Poisson algebras. Loosely speaking, it consists in shifting

the central elements of this algebra (central in the sense of a Poisson bracket) in the direction of a vector

field ξ that satisfies an algebraic relation involving the Poisson tensor

L2
ξπ = 0, (1)

where Lξπ is the Lie derivative of the Poisson tensor π with respect to ξ. This relation is often called the

“Nijenhuis equation,” or “Nijenhuis property” and can be regarded as a sort of linearity condition. If this

relation holds, then the shifted (in the direction of ξ) central elements, although no more central, continue

to commute with each other.

The most common nontrivial example of this Nijenhuis property and the one that was originally

discovered by Manakov, Mischenko, and Fomenko [1], [2] is the case where the Poisson structure is given

by the usual Kirillov–Kostant brackets on the dual space of a Lie algebra and the field is any constant

vector field on this space: the Kirillov–Kostant brackets have linear coefficients and hence the Nijenhuis

equation holds automatically. This method is quite productive and gives rise to maximal commutative

Poisson subalgebras in polynomials on the dual space.

The purpose of this note is to suggest a construction that generalizes the argument shift method to

the domain of universal enveloping algebras. Namely, Vinberg asked whether the commutative subalgebras
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generated by the shift can be lifted to the universal enveloping algebra of the Lie algebra. In about 30 years

several constructions have appeared that determine such a lift, see, e.g., [3]–[5]. But all these constructions

are based on the considerations of generating elements in the center of the Poisson algebras and do not

address the question of whether the shift itself can be transfered into the noncommutative situation. In this

note, we address this question and suggest a method that hypothetically leads to its solution, at least for

the Lie algebra g = gld.

Our approach is based on the considerations of the so-called “quasiderivations” of the algebra Ugld,

introduced in [6]. Namely, we prove an explicit formula for the first quasiderivation of such an element

(Theorem 1) and thus show that the first quasiderivations in any direction of any central element in

the universal enveloping algebra commute (Corollary 1). These observations support the conjecture that

quasiderivations induce a shift in the universal enveloping algebras analogous to the shift in Poisson algebras.

2. Preliminaries and statement of the results

We let F denote the real number field R or the complex number field C and let d be a nonnegative

integer. The d× d matrix units are denoted by

Ej
i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0

1

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
0 . . . 0 1 0 . . . 0

)
(2)

with 1 in the ith place of the column vector and in the jth place of the row vector. We then have the

commutation relations [Eq
p , E

s
r ] = δqrE

s
p − Eq

r δ
s
p. The universal enveloping algebra of the general linear Lie

algebra gld = gld(F) is denoted by U = Ugld and its center is denoted by Z = Z(Ugld). We let π denote

the canonical Lie-algebra homomorphism of the general linear Lie algebra gld into its universal enveloping

algebra Ugld and set eji = π(Ej
i ) for each i and j. The generators eji satisfy the same commutation relations

[eqp, e
s
r] = δqre

s
p − eqrδ

s
p as the matrix units Ej

i . We define

e =

d∑
i,j=1

eij ⊗ Ej
i ∈ U ⊗M(d,F) =

⎛
⎜⎜⎜⎜⎝

e11 e12 . . . e1d
e21 e22 . . . e2d
...

...
. . .

...

ed1 ed2 . . . edd

⎞
⎟⎟⎟⎟⎠

∈ M(d, U). (3)

We remark that the (i, j) entry of the matrix e is the generator eij = π(Ei
j), whereas the (j, i) entry

of the corresponding matrix unit Ei
j is equal to 1. The role of the lower and upper indices is opposite

here. In other words, we let e denote the transposed matrix of generators of the algebra Ugld; this choice

of notation simplifies our computations below. We have

(e2)ij =

d∑
k=1

eike
k
j , [eqp, (e

n)sr] = [(en)qp, e
s
r] = δqr(e

n)sp − (en)qrδ
s
p. (4)

It can be shown that the center of Ugld is generated by the set
{
tr en

}d

n=1
.
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Definition 1 (see [6]). Quasiderivations of Ugld is a unique family of linear operators ∂i
j on U satis-

fying the equations

• ∂i
j1 = 0 for any i and j;

• ∂i
je

q
p = δipδ

q
j for any i, j, p, and q;

• the twisted Leibniz rule

∂i
j(fg) = (∂i

jf)g + f(∂i
jg) +

d∑
k=1

(∂i
kf)(∂

k
j g) (5)

for any i and j and for any elements f and g of U .

We define a map ∂ of the universal enveloping algebra U into the matrix algebraM(d, U) by (∂f)ij = ∂i
jf

for any f ∈ U . The following theorem is the main result in this paper.

Theorem 1. We have

∂ tr en =
(e + δ)n − (e− δ)n

2
+

n−1∑
k=0

(tr ek)
(e + δ)n−k−1 − (e− δ)n−k−1

2
(6)

for any n, where δ is the d× d identity matrix.

Corollary 1. We suppose that ξ is an arbitrary element of the Lie algebra gld and let

∂ξ =

d∑
i,j=1

ξji ∂
i
j . (7)

Then we have [∂ξf, ∂ξg] = 0 for any central elements f and g.

Proof. It is sufficient to show that [tr(ξem), tr(ξen)] = 0 because we have

∂
m∏

k=1

tr enk = (tr en1 + ∂ tr en1) . . . (tr enm + ∂ tr enm)−
m∏

k=1

tr enk . (8)

From

[tr(ξem), eij ] =

d∑
p,q=1

ξqp[(e
m)pq , e

i
j] =

d∑
p,q=1

ξqp
(
δpj (e

m)iq − (em)pj δ
i
q

)
= [em, ξ]ij ,

we deduce

[tr(ξem), tr(ξen)] =

n∑
k=1

tr(ξek−1[em, ξ]en−k) =

n∑
k=1

tr[ξem+n−k, ξek−1]. (9)

We can assume that m < n. Then

[tr(ξem), tr(ξen)] =
[tr(ξem), tr(ξen)]− [tr(ξen), tr(ξem)]

2
=

=
1

2

n∑
k=m+1

tr[ξem+n−k, ξek−1] = 0. (10)
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3. The proof of the main theorem

We begin with the following observation: due to the twisted Leibniz rule in Definition 1, we have

∂i
j(e

n)pq =

d∑
r=1

∂i
j(e

p
r(e

n−1)rq) =

=
d∑

r=1

(∂i
je

p
r)(e

n−1)rq +
d∑

r=1

epr∂
i
j(e

n−1)rq +
d∑

k,r=1

(∂i
ke

p
r)(∂

k
j (e

n−1)rq) =

= (en−1)iqδ
p
j +

d∑
r=1

epr∂
i
j(e

n−1)rq + ∂p
j (e

n−1)iq. (11)

for n > 0.

Lemma 1. The quasiderivation ∂i
j(e

n)pq has the form

∂i
j(e

n)pq =
∑

k+�<n

(
a
(n)
k,� (e

k)iq(e
�)pj + b

(n)
k,� (e

k)pq(e
�)ij

)
, (12)

where a
(n)
k,� and b

(n)
k,� are nonnegative integers.

Proof. The proof is by induction on n. We have

∂i
j(e

n)pq = (en−1)iqδ
p
j +

d∑
r=1

epr∂
i
j(e

n−1)rq + ∂p
j (e

n−1)iq =

= (en−1)iqδ
p
j +

∑
k,�

a
(n−1)
k,�

d∑
r=1

epr(e
k)iq(e

�)rj +
∑
k,�

b
(n−1)
k,� (ek+1)pq(e

�)ij +

+
∑
k,�

(
a
(n−1)
k,� (ek)pq(e

�)ij + b
(n−1)
k,� (ek)iq(e

�)pj
)
. (13)

by the induction hypothesis. Because

d∑
r=1

epr(e
k)iq(e

�)rj = (ek)iq(e
�+1)pj +

d∑
r=1

[epr , (e
k)iq](e

�)rj = (ek)iq(e
�+1)pj + δpq (e

k+�)ij − (ek)pq(e
�)ij ,

we have

∂i
j(e

n)pq = (en−1)iqδ
p
j +

∑
k,�

a
(n−1)
k,�

(
(ek)iq(e

�+1)pj + δpq (e
k+�)ij

)
+
∑
k,�

b
(n−1)
k,�

(
(ek+1)pq(e

�)ij + (ek)iq(e
�)pj

)
. (14)

This equation gives rise to a recursive process

· · · → (a
(n−1)
k,� , b

(n−1)
k,� )k,� → (a

(n)
k,� , b

(n)
k,� )k,� → · · · . (15)

We have the polynomial identities

∑
k+�<n

a
(n)
k,�x

ky� = xn−1 +
∑

k+�<n−1

(a
(n−1)
k,� xky�+1 + b

(n−1)
k,� xky�), (16)

∑
k+�<n

b
(n)
k,�x

ky� =
∑

k+�<n−1

(
a
(n−1)
k,� yk+� + b

(n−1)
k,� xk+1y�

)
. (17)
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Using

∂i
j tr e

n =
∑

k+�<n

(
a
(n)
k,� (e

k+�)ij + (tr ek)b
(n)
k,� (e

�)ij
)
,

we can define polynomials f (n)(x) and g
(n)
k (x) with integer coefficients by

f (n)(x) =
∑
k,�

a
(n)
k,�x

k+�, g
(n)
k (x) =

∑
�

b
(n)
k,�x

�. (18)

Then we have

f (n)(x) = xn−1 +
∑
k,�

a
(n−1)
k,� xk+�+1 +

∑
k,�

b
(n−1)
k,� xk+� =

= xn−1 + xf (n−1)(x) +
∑

k<n−1

xkg
(n−1)
k (x), (19)

by identity (16), and also

g
(n)
0 (x) =

∑
k,�

a
(n−1)
k,� xk+� = f (n−1)(x),

g
(n)
k+1(x) =

∑
�

b
(n−1)
k,� x� = g

(n−1)
k (x) = · · · = g

(n−k−1)
0 (x) = f (n−k−2)(x),

by identity (17). In this way, we obtain the formulas

∂i
j tr e

n =

(
f (n)(e) +

∑
k<n

(tr ek)g
(n)
k (e)

)i

j

=

(
f (n)(e) +

∑
k<n

(tr ek)f (n−k−1)(e)

)i

j

(20)

and

f (n)(x) = xn−1 + xf (n−1)(x) +
∑

k<n−1

xkf (n−k−2)(x). (21)

The solution of this recursive equation is

f (n)(x) =
(x+ 1)n − (x− 1)n

2
(22)

and we have

∂i
j tr e

n =

(
(e+ δ)n − (e − δ)n

2
+

n−1∑
k=0

(tr ek)
(e + δ)n−k−1 − (e − δ)n−k−1

2

)i

j

.

Appendix: Exact formula for ∂i
j(e

n)pq

The methods that we used above can be generalized to give formulas for quasiderivations of more

general elements.

We proceed to obtain a
(n)
k,� and b

(n)
k,� and derive an exact formula for ∂i

j(e
n)pq . We set

f
(n)
± (x) =

(x+ 1)n ± (x− 1)n

2
=

n∑
k=0

1± (−1)n−k

2

(
n

k

)
xk (A.1)
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and

h
(n)
k (x) =

n−k−1∑
�=0

a
(n)
k,�x

�. (A.2)

Then we have

∂i
j(e

n)pq =

n−1∑
k=0

(
(ek)iqh

(n)
k (e)pj + (ek)pqg

(n)
k (e)ij

)
=

=

n−1∑
k=0

(
(ek)iqh

(n)
k (e)pj + (ek)pqf

(n−k−1)
− (e)ij

)
, (A.3)

whence
n−1∑
k=0

ykh
(n)
k (x) = yn−1 +

n−2∑
k=0

yk
(
xh

(n−1)
k (x) + f

(n−k−2)
− (x)

)
(A.4)

by identity (16). We have h
(n)
n−1(x) = 1 and

h
(n)
k (x) = xh

(n−1)
k (x) + f

(n−k−2)
− (x) = · · · =

= xn−k−1h
(k+1)
k (x) +

n−k−2∑
�=0

x�f
(n−k−�−2)
− (x) =

= xn−k−1 +

n−k−2∑
�=0

x�f
(n−k−�−2)
− (x) =

= f
(n−k)
− (x) − xf

(n−k−1)
− (x) = f

(n−k−1)
+ (x). (A.5)

for k < n by identity (21). Furthermore,

a
(n)
k,� =

1− (−1)n−k−�

2

(
n− k − 1

�

)
, b

(n)
k,� =

1 + (−1)n−k−�

2

(
n− k − 1

�

)
(A.6)

and

∂i
j(e

n)pq =
n−1∑
k=0

(
(ek)iqf

(n−k−1)
+ (e)pj + (ek)pqf

(n−k−1)
− (e)ij

)
=

=
n−1∑
k=0

(
(ek)iq

(
(e + δ)n−k−1 + (e − δ)n−k−1

2

)p

j

+

+ (ek)pq

(
(e+ δ)n−k−1 − (e− δ)n−k−1

2

)i

j

)
=

=

n−1∑
k+�=0

(
n− k − 1

�

)(
1− (−1)n−k−�

2
(ek)iq(e

�)pj
1 + (−1)n−k−�

2
(ek)pq(e

�)ij

)
.
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