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We apply the Riemann–Hilbert method to the generalized mixed nonlinear Schrödinger equation and

obtain a new formula for an explicit N-soliton solution, which is expressed as a ratio of (N +1)× (N +1)

andN×N determinants. Using asymptotic analysis and the property of the Cauchy determinant, we derive
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1. Introduction

Propagations of ultrashort light pulses in optical fibers have attracted considerable attention because of

their extensive applications to telecommunication and ultrafast signal-routing systems. In 1973, Hasegawa

and Tappert [1], [2] theoretically proposed an accurate model describing propagation of soliton-type optical

pulses in a monomode fibers without the inclusion of higher-order nonlinear effects in the picosecond regime,

i.e., the well-known nonlinear Schrödinger (NLS) equation [3], [4]. Due to experimental achievements in

soliton-type pulse propagation in optical fibers [5], it is increasingly believed that the next generation of

optical communication will be revolutionized by optical solitons.

The realization of picosecond pulse propagation through a single-mode nonlinear optical fiber in accor-

dance with the NLS equation depends on the delicate balance between group velocity dispersion and self-

phase modulation. self-phase modulation is the dominant nonlinear effect in silica fibers due to the Kerr

effect. Nevertheless, as the advances in the area of laser technology and the demand to have the large

channel handing capacity and the high speed, one always has to transmit solitary waves at a high bit rate

of ultrashort pulses. For example, the current technology can generate few-cycle pulses at the attosecond

scale [6], [7]. In this case, the standard NLS equation is inadequate to accurately model the propagation of

ultrashort pulses [8]. Thus, it is our task to derive new models or a generalized NLS equation to describe

ultrashort pulses, including other effects such as self-steepening, the self-frequency shift, and a quintic
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non-Kerr nonlinearity. By considering the higher-order nonlinear effects, a variety of generalized nonlin-

ear Schrödinger equations were proposed to describe the propagation of ultrashort light pulses in optical

fibers [9]–[15].

In this paper, we focus on the integrable generalized mixed nonlinear Schrödinger (GMNLS) equation

iqt + qxx − b|q|2q − ia(|q|2q)x + β(4β − a)|q|4q + 4iβ(|q|2)xq = 0, a, b, β ∈ R, (1)

which was derived by Kundu in studying gauge transformations for NLS-type equations [16]. With suitable

choices of the parameters a, b, and β, it was shown in [16] that the GMNLS equation can reduce to a series

of nonlinear evolution equations that are important in mathematical physics; among them, there are four

celebrated equations: the three kinds of derivative nonlinear Schrödinger equations [17]–[19] and the Kundu–

Eckhaus equation [16], [20]. It has been noted that the GMNLS equation may be the simplest integrable

extension of the nonlinear Schrödinger equation containing both the quintic and self-steepening terms and

is a reduction of certain cubic–quintic extended nonlinear Schrödinger equations [14], [15]. In physics, the

last three terms in Eq. (1) respectively represent the self-steepening effect, the quintic nonlinearity, and

the self-frequency shift effect. The GMNLS equation can also be viewed as a degeneration of the Johnson

equation [21]. Many interesting and exciting results have been obtained for the GMNLS equation. Its

Lax pair was given by Kundu [16] and its Painlevé property was tested by Clarkson and Cosgrove [22].

It admits both multi-soliton solutions and rogue-wave solutions, which were obtained by the Hirota bilinear

method and the Darboux transformation method [23]–[26]. In [27], the authors calculated infinitely many

conservation laws for it.

Based on the original inverse scattering transformation [28]–[30], Novikov et al. [31] developed the

Riemann–Hilbert method, which is a simple version of the dressing method and allows avoiding the com-

plicated Gel’fand–Levitan–Marchenko integral equations. In recent years, many researchers have been

interested in applying the Riemann–Hilbert method to numerous integrable soliton equations with initial

boundary values [32]–[40].

In this paper, we apply the Riemann–Hilbert method to GMNLS equation (1), being motivated by the

following three problems.

1. The N -soliton formula for the GMNLS equation was constructed by virtue of the Darboux transfor-

mation very recently [24]. It can be seen that the N -soliton solution constructed there is the ratio of

2N×2N determinants, which may not be convenient for practical purposes. Moreover, the formula for

N -soliton solutions obtained in [24] relies on an extra variable ρn, which satisfies a rather complicated

system of two differential equations. Thus, it is an interesting question to apply the Riemann–Hilbert

method to the GMNLS equation to obtain a more compact and explicit formula for the N -soliton

solutions of the GMNLS equation.

2. It was shown in [16] that there exists a simple gauge transformation q = u exp(−2iβ
∫ x |u|2 dx) con-

necting a solution q of the GMNLS equation and a solution u of the mixed nonlinear Schrödinger

equation, and the transformation implies that |q| = |u|. However, it is difficult to apply this trans-

formation to express an N -soliton solution of the GMNLS equation given a solution of the mixed

nonlinear Schrödinger equation. In this paper, we show that in using the Riemann–Hilbert method

to obtain an explicit expression for the N -soliton solution, a key question is how to solve the explicit

expression for J0 (it is given in Sec. 2).

3. As we know, a remarkable character of the interactions between N solitons is that the profile and

velocity of N solitons are preserved, while each soliton merely suffers a phase shift. Recently, an elastic

collision of two solitons for the GMNLS equation was discussed in [24]. Naturally, it is worth verifying

the elastic collision property of the soliton solutions of the GMNLS equation in the general situation.
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The structure of this paper is as follows. In Sec. 2, based on the Jost solutions of the Lax pair

for (1), we formulate the Riemann–Hilbert problem. In Sec. 3, we discuss the solution of the nonregular

Riemann–Hilbert problem by applying the Plemelj formula. The expression for J0 (a key factor to construct

an explicit solution) and the determinant expressions for N -soliton solutions are obtained. Based on the

formula for N -soliton solutions, the explicit one-soliton solution is constructed and the evolution of two- and

three-soliton solutions is plotted. Furthermore, the detailed asymptotic behavior of the N -soliton solution

is analyzed. Finally, conclusions are given in Sec. 4.

2. Constructing the Riemann–Hilbert problem

GMNLS equation (1) can be obtained as the compatibility condition for two linear spectral prob-

lems [16]

Φx = UΦ, (2a)

Φt = VΦ, (2b)

with

U = iaσ3λ
2 − aλQ+ iβQ2σ3 +

ib

2a
σ3,

V = −2ia2σ3λ
4 + 2a2λ3Q+ λ2(−2ibσ3 − ia2Q2σ3) +

+ λ((a2 − 2aβ)Q3 + iQxσ3a+ bQ)−

− β(QxQ−QQx)− iβ

2
(3a− 8β)Q4σ3 − ib2

2a2
σ3,

Q =

(
0 q

−q∗ 0

)

, σ3 =

(
1 0

0 −1

)

.

Here, Φ(x, t, λ) is an eigenfunction, λ is the spectral parameter, and the asterisk denotes complex conjuga-

tion. In what follows, we restrict our discussion to the zero boundary condition

q(x, t) → 0, x→ ∞. (3)

We observe that

H̃ = exp

[

i

(

aλ2 +
b

2a

)(

x− 2

(

aλ2 +
b

2a

)

t

)

σ3

]

is a plane wave solution of linear spectral problems (2a) and (2b) as x→ ∞. By setting Φ = JH̃ , the spectral

problems are transformed to

Jx − i

(

aλ2 +
b

2a

)

[σ3, J ] = ÛJ, (4a)

Jt + 2i

(

aλ2 +
b

2a

)2

[σ3, J ] = V̂ J. (4b)

with

Û = −aλQ+ iβQ2σ3,

V̂ = 2a2λ3Q− ia2Q2σ3λ
2 + λ((a2 − 2aβ)Q3 + iQxσ3a+ bQ)−

− β(QxQ−QQx)− iβ

2
(3a− 8β)Q4σ3.
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Under the boundary conditions

J± → I, x→ ±∞,

the Jost solutions of spectral problem (4a) can be written as

J± = I +

∫ x

±∞
exp

[

i

(

aλ2 +
b

2a

)

σ3(x− y)

]

Û(y)J± exp

[

−i
(

aλ2 +
b

2a

)

σ3(x− y)

]

dy. (5)

In what follows, we restrict ourself to the case a < 0. Let [J±]k denote the kth column vector of J±. It can
be proved that [J−]1, [J+]2 are analytic for λ ∈ D+ and continuous for λ ∈ D+ ∪ R ∪ iR, and [J+]1, [J−]2
are analytic for λ ∈ D− and continuous for λ ∈ D− ∪ R ∪ iR, where

D+ =

{

λ

∣
∣
∣
∣ argλ ∈

(

0,
π

2

)

∪
(

π,
3π

2

)}

, D− =

{

λ

∣
∣
∣
∣ argλ ∈

(
π

2
, π

)

∪
(
3π

2
, 2π

)}

.

We set

H = exp

[

i

(

aλ2 +
b

2a

)

σ3x

]

.

Then J−H and J+H are two different solutions of linear problems (2a), and they are therefore linearly

related by a scattering matrix S(λ) = (sij)2×2:

J−H = J+HS(λ), λ ∈ R ∪ iR. (6)

Because the trace of Q is zero, Abel’s identity shows that the determinants of J± are constants for all x.

Then considering system (2) with the boundary conditions, we obtain

detJ± = 1.

Based on (6), we have detS(λ) = 1. Furthermore, from the analyticity of J− and J+, we infer that s11 can

be analytically continued to D+, and s22 can be analytically continued to D−.
To discuss the behavior of the Jost solution for very large λ, we need to consider the expansion

J = J0 +
J1
λ

+
J2
λ2

+
J3
λ3

+O(λ−4). (7)

Substituting this expression in spectral problem (4a) and comparing the coefficients at powers of λ yields

[σ3, J0] = 0, i[σ3, J1]−QJ0 = 0, (8)

and

J0x +
i

2
(a− 2β)Q2σ3J0 = 0. (9)

Similarly, substituting (7) in (4b), after a straightforward analysis we obtain a differential equation satisfied

by J0:

(J0)t =
i

4
(a− 2β)((3a− 8β)Q4σ3 − 2i(QxQ −QQx))J0. (10)

We note that the compatibility of (9) and (10) is ensured by the identity

(Q2)t =

(

−1

2
(3a− 8β)Q4 + i(QxQ −QQx)σ3

)

x

,

which is a conservation law for the GMNLS equation. Equations (9) and (10) lead to (J0)22 = (J0)
−1
11 .
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Next, we define a matrix

P+ = J−1
0 ([J−]1, [J+]2), (11)

which is analytic for λ ∈ D+ and has the following asymptotic behavior at very large λ:

P+ → I, λ ∈ D+ → ∞. (12)

To obtain an analytic function in D−, denoted by P−, we first consider the adjoint scattering equation

of (4a):

Kx − i

(

aλ2 +
b

2a

)

[σ3,K] = −KÛ. (13)

It can be inferred that J−1
± solve adjoint equation (13) and satisfy the boundary conditions J−1

± → I as

x→ ±∞. By a similar procedure, letting [J−1
± ]k denote the kth row vector of J−1

± for convenience, we can

see that the matrix function

(
[J−1

− ]1

[J−1
+ ]2

)

is also analytic in λ ∈ D−, and tends to J−1
0 as λ → −∞. We can

then define a matrix function

P− =

(
[J−1

− ]1

[J−1
+ ]2

)

J0, (14)

which is analytic in D− and has the asymptotic behavior

P− → I, λ ∈ D− → ∞. (15)

Thus, we have obtained two matrix functions P±(x, λ) that are respectively analytic for λ ∈ D±. With

these two functions, we can formulate the Riemann–Hilbert problem

P−P+ = G(x, λ) = H

(
1 −s12
s21 1

)

H−1, λ ∈ R ∪ iR. (16)

In the remainder of this section, we discuss the time evolution of the scattering matrix S(λ). Because

J− solves scattering problem (4b), substituting J− = J+HSH
−1 in (4b), letting x→ +∞, and considering

the boundary condition for J+ together with the fact that V̂ → 0 as x→ +∞, we can obtain

St = −2i

(

aλ2 +
b

2a

)2

[σ3, S]. (17)

The above matrix equation implies

s12 = s12(0, λ) exp

[

−4i

(

aλ2 +
b

2a

)2

t

]

, s21 = s21(0, λ) exp

[

4i

(

aλ2 +
b

2a

)2

t

]

. (18)

We have already calculated the time evolution of scattering data. In what follows, we discuss the non-

regular Riemann–Hilbert problem involving these scattering data. Moreover, we solve the inverse problem,

and the solution Q is then recovered from the solution of the nonregular Riemann–Hilbert problem.
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3. Solution of the Riemann–Hilbert problem

To study nonregular Riemann–Hilbert problem (16), i.e., the problem where detP+ = 0 for some λ,

we consider the symmetry properties of these zero points, which are determined by s11(λ) = 0.

We note that s11 and s22 are time-independent, and so are the roots of s11 and s22. Furthermore,

owing to the symmetries σ3Qσ3 = −Q and Q† = −Q, we have

J(x, t,−λ) = σ3J(x, t, λ)σ3, J†(x, λ∗) = J−1(x, λ), λ ∈ R ∪ iR, (19)

where † represents the operation of transposition and complex conjugation. We now use the above relations

to obtain the symmetries of the scattering coefficients. Recalling scattering relation (6) and applying these

two reduction conditions, we have

S(−λ) = σ3S(λ)σ3, S†(λ∗) = S−1(λ), λ ∈ R ∪ iR. (20)

It follows from these equations that s11 is an even function, and hence for each zero λk of s11(λ) there is

another zero −λk. Here, we only consider the case where all zeroes are simple, i.e., the kernels of P+(λk)

and P−(λk) respectively contain only a single vector |vk〉 and 〈vk|:

P+(λk)|vk〉 = 0, 〈vk|P−(λ∗k) = 0, k = 1, 2, . . . , N, (21)

Here |vk〉 = 〈vk|†. Taking the x- and t-derivatives of the first equation in (21) and recalling (4), we obtain

P+(λk)

(

|vk〉x − i

(

aλ2k +
b

2a

)

σ3|vk〉
)

= 0,

P+(λk)

(

|vk〉t + 2i

(

aλ2k +
b

2a

)2

σ3|vk〉
)

= 0.

(22)

Then

|vk〉 = exp

[

i

(

aλ2k +
b

2a

)(

x− 2

(

aλ2k +
b

2a

)

t

)

σ3

]

vk,0. (23)

Based on the above discussions, we arrive at the following theorem for the solution of nonregular

Riemann–Hilbert problem (16).

Theorem 1 (see [39]). The solution of nonregular Riemann–Hilbert problem (16) with simple zeroes

λ1, . . . , λN for detP+ and λ∗1, . . . , λ
∗
N for detP−, under the canonical normalization condition (12) and (15),

is

P+(λ) = P+(λ)T (λ), P−(λ) = T−1(λ)P−(λ), (24)

where

T (λ) =

N∏

j=1

Tj(λ) =

N∏

j=1

(

I +
Cj

λ− λ∗j
− σ3Cjσ3
λ+ λ∗j

)

,

T−1(λ) =

N∏

j=1

T−1
j (λ) =

N∏

j=1

(

I +
C†

j

λ− λj
− σ3C

†
jσ3

λ+ λj

)

,

Cj =
λ∗2j − λ2j

2

(
γj 0

0 γ∗j

)

|wj〉〈wj |, γ−1
j = 〈wj |

(
λ∗j 0

0 λj

)

|wj〉,
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|wj〉 is a column vector defined by |wj〉 = Tj−1(λj) · · ·T1(λj)|vj〉, and P± is the unique solution of the

regular Riemann–Hilbert problem

P−(λ)P+(λ) = T (λ)G(λ)T−1(λ), λ ∈ R ∪ iR, (25)

where P± are respectively analytic in D±, and P± → I as λ→ ∞.

Using (8), we can obtain the potential from the asymptotic expansion of Jost solutions as λ → ∞.

For this, we first rewrite the expression for T (λ). Due to the identity Tk(λ) = σ3Tk(−λ)σ3, T (λ) and

T−1(λ) can be represented as

T (λ) = I +

N∑

j=1

(
Aj

λ− λ∗j
− σ3Ajσ3
λ+ λ∗j

)

, T−1(λ) = I +

N∑

j=1

(
A†

j

λ− λj
− σ3A

†
jσ3

λ+ λj

)

, (26)

where Aj = |zj〉〈yj |. We consider the algebraic equations

[

I +

N∑

k=1

(
Aj

λj − λ∗k
− σ3Ajσ3
λj + λ∗k

)]

|yj〉 = 0, j = 1, 2, . . . , N. (27)

Solving them, we obtain

⎛

⎜
⎜
⎜
⎜
⎝

|z1〉1
|z2〉1
...

|zN〉1

⎞

⎟
⎟
⎟
⎟
⎠

=M−1

⎛

⎜
⎜
⎜
⎜
⎝

|y1〉1
|y2〉1
...

|yN〉1

⎞

⎟
⎟
⎟
⎟
⎠
,

⎛

⎜
⎜
⎜
⎜
⎝

|z1〉2
|z2〉2
...

|zN〉2

⎞

⎟
⎟
⎟
⎟
⎠

= M̂−1

⎛

⎜
⎜
⎜
⎜
⎝

|y1〉2
|y2〉2
...

|yN〉2

⎞

⎟
⎟
⎟
⎟
⎠
, (28)

where the symbols |R〉1 and |R〉2 respectively denote the first and second components of a vector |R〉.
The entries of the matrices M and M̂ are given by

Mjk =
〈yk|σ3|yj〉
λj + λ∗k

− 〈yk|yj〉
λj − λ∗k

, M̂jk = −〈yk|σ3|yj〉
λj + λ∗k

− 〈yk|yj〉
λj − λ∗k

, j, k = 1, 2, . . . , N.

The Plemelj formula shows that the solution of Riemann–Hilbert problem (25) can be expressed as

(P+(λ))−1 = I +
1

2πi

∫

Γ

T (ξ)(I −G(ξ))T−1(ξ)(P+(ξ))−1

ξ − λ
dξ, λ ∈ D+. (29)

where Γ = [0,+∞) ∪ [0,−∞) ∪ (+i∞, 0] ∪ (−i∞, 0]. Thus, as λ→ ∞,

P+(λ) → I +
1

2πiλ

∫

Γ

T (ξ)(I −G(ξ))T−1(ξ)(P+(ξ))−1 dξ. (30)

From (26), we see that as λ→ ∞,

T (λ) → I +
1

λ

N∑

k=1

(|zk〉〈yk| − σ3|zk〉〈yk|σ3). (31)

Hence, J1 in (7) can be expressed as

J1 = J0

( N∑

k=1

(|zk〉〈yk| − σ3|zk〉〈yk|σ3) + 1

2πi

∫

Γ

T (ξ)(I −G(ξ))T−1(ξ)(P+(ξ))−1 dξ

)

. (32)
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To obtain the N -soliton solutions of the GMNLS equation, we set G = I, i.e., s12 = s21 = 0, which is called

the reflectionless case. From (8) and (32), the formula for the N -soliton solution is

Q = i

[

σ3, J0

N∑

k=1

(|zk〉〈yk| − σ3|zk〉〈yk|σ3)
]

J−1
0 , (33)

whence

q = 4i(J0)
2
11

N∑

k=1

|zk〉1〈yk|2. (34)

The remaining problem to obtain the explicit expression for theN -soliton solution is to solve for J0 explicitly.

We therefore analyze the expression for J in the reflectionless case. From (29) and (25), it is easy to deduce

that J is equal to J0T (λ) or T (λ)
−1J−1

0 .

It follows from (4) that

(Jx(x, t, 0))11 = iβ(Q2σ3)11(Jx(x, t, 0))11, (35a)

(Jt(x, t, 0))11 =

(

−β(QxQ−QQx)− iβ

2
(3a− 8β)Q4σ3

)

11

(Jx(x, t, 0))11. (35b)

Combining this with (9) and (10) yields

(J0)11 = (J11(x, t, 0))
−(a−2β)/2β = [J0T (0)]

−1
11 =

=

[

(J0)11

(

1−
N∑

k=1

2|wk〉1〈yk|1
λ∗k

)]−(a−2β)/2β

,
(36)

whence

(J0)11 =

[(

1−
N∑

k=1

2|wk〉1〈yk|1
λ∗k

)](2β−a)/a

. (37)

Next, we rewrite solution (34) in a compact determinant form. For this, we need the following two

identities. If B is a N ×N matrix and φ and ψ are 1×N column vectors, then

φB−1ψ† =

∣
∣
∣
∣
∣
B ψ†

−φ 0

∣
∣
∣
∣
∣

|B| , 1 + φB−1ψ† =

∣
∣
∣
∣
∣
B ψ†

−φ 1

∣
∣
∣
∣
∣

|B| .

Based on these two identities, we obtain the following theorem for the N -soliton solution of the GMNLS

equation.

Theorem 2. The explicit N -soliton solution of the GMNLS equation is given by

q = 4i
detM1

detM

(
detM2

detM

)(4β−2a)/a

, (38)

where

M1 =

⎛

⎜
⎜
⎜
⎜
⎝

M11 . . . M1N |y1〉1
...

. . .
...

...

MN1 . . . MNN |yN 〉1
〈y1|2 . . . 〈yN |2 0

⎞

⎟
⎟
⎟
⎟
⎠
, M2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

M11 . . . M1N |y1〉1
...

. . .
...

...

MN1 . . . MNN |yN 〉1
2〈y1|1
λ∗1

. . .
2〈yN |1
λ∗N

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Remark 1. We note that the GMNLS equation reduces to the Kundu equation when the parameter

b = 0. The N -soliton solution of the Kundu equation constructed by the Riemann–Hilbert method was

given in Ref. [41] (see Eq. (4.23) there). The expression for the solution of the Kundu equation in Ref. [41]

involves a complicated integral. In this sense, our formula here is more convenient for obtaining the explicit

N -soliton solution of the Kundu equation.

Applying the formula for the N -soliton solution, Eq. (38), we calculate some solutions of the GMNLS

equation and then consider the interactions of N -solitons.

Let N = 1,

θk = i

(

aλ2k +
b

2a

)(

x− 2

(

aλ2k +
b

2a

)

t

)

and vk0 = (1, 1)T in (38). Then the first-order soliton solution of the GMNLS equation is

q =
2i(λ21 − λ∗21 )e2iθ1,I

λ∗1e2θ1,R + λ1e−2θ1,R

[
λ1(λ1e

2θ1,R + λ∗1e
−2θ1,R)

λ∗1(λ∗1e2θ1,R + λ1e−2θ1,R)

](4β−2a)/a

, (39)

where the subscripts R and I denote the real and imaginary parts. The real and imaginary parts of θ1 are

θ1,R = −2aλ1,Rλ1,I

[

x+

(

4aλ21,I − 4aλ21,R − 2b

a

)

t

]

,

θ1,I =
−1

2a2
[((2a2λ21,I − 2a2λ21,R − b)2 − 16a4λ21,Rλ

2
1,I)t+ a(2a2λ21,I − 2a2λ21,R − b)x].

If

x+

(

4aλ21,I − 4aλ21,R − 2b

a

)

t = 0,

the one-soliton solution reaches the amplitude |4λ1,I |. The profile of the one-soliton solution with the

parameter λ1 = (1/2) + i is shown in Fig. 1.

Fig. 1. One-soliton solution with the parameters β = 1, a = 1, b = 1/4, λ1,I = 1, and λ1,R = 1/2.

(a) Two-dimensional plots at t = −1, 0, 1. (b) Three-dimensional plot.

We next discuss the two-soliton solution. Let N = 2 and vk0 = (1, 1)T in (38). We can obtain

two kinds of soliton solutions depending on the parameters. In the first case, there is a bound state

under the conditions λ21,R − λ21,I = λ22,R − λ22,I. In the second case, collision occurs under the condition

λ21,R − λ21,I �= λ22,R − λ22,I. The profiles of two-soliton solutions are shown in Fig. 2. Specifically, in Fig. 2,

we can see that in the first case, the two constituent solitons stay together and form a bound state;

in the second case, two solitons interact with each other and separate while preserving their amplitude and

velocity and experiencing a constant shift.
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Fig. 2. Evolution of two-soliton solutions with the parameters β = 1, a = 1, and b = 1/4. (a) Bound

state with the parameters λ1 = 1 + i and λ2 = 2 + 2i. (b) Collision with the parameters λ1 = 1 + i

and λ2 = −1 + 2i.

Fig. 3. Evolution of three-soliton solutions with the parameters β = 1, a = 1, and b = 1/4 at

(a) λ1 = 1+ 2i, λ2 = 2+ 3i/2, and λ3 = 5/2 + 5i/2, (b) λ1 = 1+ 2i, λ2 = 1+ i, and λ3 = 3/2 + 3i/2,

and (c) λ1 = 1/2 + i/2, λ2 = 1 + i, and λ3 = 3/2 + 3i/2.
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To discuss the three-soliton solution, we let N = 3 and vk0 = (1, 1)T in (38). The corresponding plots

are shown in Fig. 3. We see from Fig. 3a that the three solitons interact with each other and then separate,

experiencing only three constant shifts. Figure 3b shows that two solitons form a bound state and interact

with the third soliton. Figure 3c shows three solitons that stay together and form a bound state.

Below, we give a detailed analysis of solution interactions in the N -soliton solution as the positions

and amplitudes vary under some assumptions. First, we give a theorem on the interaction of N solitons.

Theorem 3. Let vk0 = (1, 1)T and

Im(aλ2k + b/2a) < 0, k = 1, 2, . . . , N,

Re(aλ2N + b/2a) > · · · > Re(aλ22 + b/2a) > Re(aλ21 + b/2a).

Then N -soliton (38) has the simple asymptotic behavior

q ∼
N∑

k=1

2i(λ2k − λ∗2k )e2iθk,I∓i arg(αkβk)

λ∗ke2θk,R∓ln |αkβk| + λke−2θk,R±ln |αkβk|

(
ρ±(N±

k )∗

N±
k

)(4β−2a)/a

(40)

as t→ ±∞, where

N±
k = λkλ

∗
ke

−2θk,R±ln |αkβk| + λ∗2k e
2θk,R∓ln |αkβk|,

ρ+ =

⎧
⎪⎨

⎪⎩

∏k−1
j=1

λ2j
λ∗2j

, 1 < k ≤ N,

1, k = 1,

ρ− =

⎧
⎪⎨

⎪⎩

∏N
j=k+1

λ2j
λ∗2j

, 1 ≤ k < N,

1, k = N,

αk =

⎧
⎪⎨

⎪⎩

∏k−1
j=1

λ2k − λ∗2j
λ2k − λ2j

, 1 < k ≤ N,

1, k = 1,

βk =

⎧
⎪⎨

⎪⎩

∏N
j=k+1

λ2k − λ2j
λ2k − λ∗2j

, 1 ≤ k < N,

1, k = N.

The proof is given in the Appendix.

4. Conclusion and discussion

We have used the Riemann–Hilbert method to construct solutions of the GMNLS equation. The

following interesting results can be noted.

1. We observed that although the expressions for two sectional analytic functions P± are different from

those obtained previously because they involve an unknown matrix-valued function J0, the product

P−P+ magically satisfies a Riemann–Hilbert problem (16) for the GMNLS equation, which does not

contain J0.

2. The proposed strategy to obtain the explicit expression for J0 in the N -soliton solution (34) is highly

nontrivial. By virtue of the exact expression for (J0)11, we have successfully constructed the explicit

N -soliton formula (38) for the GMNLS equation, which improves the result in [41] corresponding to

N -soliton solutions of the Kundu equation.

3. Using formula (38), we obtained a one-soliton solution of the GMNLS equation and discussed the

dynamical evolution of two- and three-soliton solutions. Moreover, the asymptotic behavior of the

N -soliton solution was rigorously analyzed by employing the property of the Cauchy determinant,

and the elastic collisions of N solitons were observed from the formulas.
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In this paper, we restricted our discussion to the case where all poles of reflection coefficient are simple.

We note that the Riemann–Hilbert problem with double poles was successfully solved for the Gerdjikov–

Ivanov equation in [42]. However, as shown in the conclusion of [42], it remains a big challenge to apply

the dressing method to obtain the explicit form of higher-order solitons of the Gerdjikov–Ivanov equation.

We expect to construct higher-order soliton solutions of the GMNLS equation in the near future.

Appendix: Proof of Theorem 3

Because Im(aλ2k + b/2a) < 0, k = 1, 2, . . . , N , the asymptotic behavior of eθk is determined by

x− 4Re(aλ2k + b/2a)t. We let Ωk denote a neighborhood of x = 4Re(aλ2k+b/2a)t. In the limit as t→ +∞,

these neighborhoods are separated from each other. In Ωk, we have

x− 4

(

Re

(

aλ2j +
b

2a

))

t = 4a(Reλ2k − Reλ2j), t→ +∞, j < k,

x− 4

(

Re

(

aλ2j +
b

2a

))

t = 4a(Reλ2k − Reλ2j), t→ −∞, j > k,

e−θj → 0, j < k; eθj → 0, j > k.

Then, in Ωk,
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=

( k−1∏

j=1

(−2λ∗j )C(λ
2
1, . . . , λ

2
k−1)

N∏

j=k

(−2λj)C(λ
2
k, . . . , λ

2
N )e−2θk−2θ∗

k +
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j=1
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2
1, . . . , λ

2
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2
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Similarly, in Ωk, we have
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2
k) denotes the determinant of the Cauchy matrix (1/(λ2j − λ∗2l ))k×k, j, l = 1, 2, . . . , k.
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N−λ∗2

N

∣
∣
∣
∣
∣
∣
∣
∣

⎞

⎟
⎟
⎟
⎠

×

× exp

[ k∑

j=1

(θj + θ∗j )−
N∑

j=k+1

(θj + θ∗j )
]

=

=

( k−1∏

j=1

−2λ2j
λ∗j

C(λ21, . . . , λ
2
k−1)

N∏

j=k

(−2λj)C(λ
2
k, . . . , λ

2
N )e−2θk−2θ∗

k +

+

k∏

j=1

−2λ2j
λ∗j

C(λ21, . . . , λ
2
k)

N∏

j=k+1

(−2λj)C(λ
2
k+1, . . . , λ

2
N )

)

×

× exp

[ k∑

j=1

(θj + θ∗j )−
N∑

j=k+1

(θj + θ∗j )
]

.

The recursive property of the Cauchy determinant gives rise to the two identities

C(λ2k, . . . , λ
2
N )

C(λ2k+1, . . . , λ
2
N )

=

N∏

j=k+1

λ2k − λ2j
λ2k − λ∗2j

N∏

j=k+1

λ∗2j − λ∗2k
λ2j − λ∗2k

1

λ2k − λ∗2k
,

C(λ21, . . . , λ
2
k)

C(λ21, . . . , λ
2
k−1)

=

k−1∏

j=1

λ∗2j − λ∗2k
λ2j − λ∗2k

k−1∏

j=1

λ2k − λ2j
λ2k − λ∗2j

1

λ2k − λ∗2k
.

In Ωk, based on above results, we have

4i
detM1

detM
∼ 2i(λ2k − λ∗2k )
∏k−1

j=1

λ2
k−λ∗2

j

λ2
k−λ2

j

∏N
j=k+1

λ2
k−λ2

j

λ2
k−λ∗2

j
λke−2θk +

∏k−1
j=1

λ∗2
j −λ∗2

k

λ2
j−λ∗2

k

∏N
j=k+1

λ2
j−λ∗2

k

λ∗2
j −λ∗2

k
λ∗ke

2θ∗
k

.
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We set

αk =

k−1∏

j=1

λ2k − λ∗2j
λ2k − λ2j

, βk =

N∏

j=k+1

λ2k − λ2j
λ2k − λ∗2j

. (A.1)

We then have the simple form

4i
detM1

detM
∼ 2i(λ2k − λ∗2k )e2iθk,I−i argαk−i arg βk

λke−2θk,R+ln |αkβk| + λ∗ke
2θk,R−ln |αkβk| , t→ +∞. (A.2)

Similarly, as t→ +∞, the asymptotic behavior of detM2/ detM is

detM2

detM
∼

k−1∏

j=1

λ2j
λ∗2j

(
λkλ

∗
ke

−2θk,R+ln |αkβk| + λ2ke
2θk,R−ln |αkβk|

λkλ∗ke
−2θk,R+ln |αkβk| + λ∗2k e

2θk,R−ln |αkβk|

)

, t→ +∞. (A.3)

A similar analysis shows that

4i
detM1

detM
∼ 2i(λ2k − λ∗2k )e2iθk,I+i argαk+i arg βk

λke−2θk,R−ln |αkβk| + λ∗ke
2θk,R+ln |αkβk| , t→ −∞, (A.4)

and

detM2

detM
∼

N∏

j=k+1

λ2j
λ∗2j

(
λkλ

∗
ke

−2θk,R−ln |αkβk| + λ2ke
2θk,R+ln |αkβk|

λkλ∗ke
−2θk,R−ln |αkβk| + λ∗2k e

2θk,R+ln |αkβk|

)

, t→ −∞. (A.5)

We note that the above discussions related to the asymptotic behavior of the kth soliton requires

1 < k < N . The asymptotic behavior of the first and Nth solitons can be derived similarly: if k = 1,

we just need to set

α1 = 1,

k−1∏

j=1

λ2j
λ∗2j

= 1,

and in the case k = N set

βN = 1,

N∏

j=k+1

λ2j
λ∗2j

= 1

We thus conclude that q has the asymptotic behavior shown in (40) on the whole plane.
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