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ON PERIODIC GIBBS MEASURES OF THE ISING MODEL

CORRESPONDING TO NEW SUBGROUPS OF THE GROUP

REPRESENTATION OF A CAYLEY TREE

F. H. Haydarov∗† and R. A. Ilyasova∗

We give a full description of all index-4 subgroups of the group representation of a Cayley tree. Also,

we give new weakly periodic Gibbs measures of the Ising model corresponding to index-4 subgroups of the
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1. Introduction

There are many open problems of group theory that arise in studying problems in natural sciences, such

as physics, mechanics, coding theory, biology, and so on. For instance, a configuration of a physical system

on trees can be regarded as a function defined on the set of vertices of a Cayley tree (see, e.g., [1]–[3]).

There are several main directions in the theory of Gibbs measure, such as splitting Gibbs measures,

Euclidean Gibbs measures, gradient Gibbs measures, and so on. For instance, by Kolmogorov’s extension

theorem, we define a special family of Gibbs measures for Hamiltonians—the splitting Gibbs measures (see,

e.g., [4]). Also, a Gibbs measure that satisfies the DLR equilibrium equations is called a Euclidean Gibbs

measure (see, e.g., [5], [6]). It is known that the set of periodic and weakly periodic Gibbs measures is

a subset of the set of splitting Gibbs measures, and this paper is devoted to such measures.

On the set of configurations of a model, one defines a Gibbs measure. The theory of periodic and

weakly periodic Gibbs measures is one of the main directions in the theory of splitting Gibbs measures.

To give a definition of periodic and weakly periodic Gibbs measures on Cayley trees, one needs subgroups of

the group representation of the trees (see [7], [3]). As usual, by using the invariance property of subgroups

of the group representation of Cayley trees, the description of the set of periodic or weakly periodic Gibbs

measures for Hamiltonians with finite spin values on Cayley trees can be reduced to solving a system of

algebraic equations (see [3]). Also, the description of the set of periodic or weakly periodic Gibbs measures

for Hamiltonians with infinite spin values on Cayley trees reduces to solving a system of algebraic equations

(see, e.g., [8]–[10]). If the invariance property holds, then it allows finding periodic and weakly periodic

Gibbs measures corresponding to an arbitrary finite-index subgroup of the group representation of the

Cayley tree. Also, for any normal finite-index subgroup of the group representation of a Cayley tree,
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the invariance property holds. For this reason, the theory of periodic and weakly periodic Gibbs measures

corresponding to normal subgroups is well developed (see, e.g., [11], [3]). On the other hand, for any

(not normal) subgroup of the group representation of the Cayley tree, the invariance property does not

hold in general (see [12]).

In this paper, we give a full description of all (normal and not normal) index-4 subgroups of the group

representation of the Cayley tree (see Theorem 2). In Theorem 4, we give new weakly periodic Gibbs

measures of the Ising model with nearest-neighbor interaction corresponding to the (not normal) index-4

subgroups of the group representation of the Cayley tree.

2. Index-4 subgroups for the group representation of a Cayley tree

Cayley tree. A Cayley tree (Bethe lattice) Γk of order k � 1 is an infinite homogeneous tree, i.e.,

a graph without cycles, such that exactly k + 1 edges originate from each vertex. Let Γk = (V, L), where

V is the set of vertices and L is the set of edges. Two vertices x and y are called nearest neighbors if there

exists an edge l ∈ L connecting them. We use the notation l = 〈x, y〉. A collection of nearest-neighbor

pairs 〈x, x1〉, 〈x1, x2〉, . . . , 〈xd−1, y〉 is called a path from x to y. The distance d(x; y) on the Cayley tree is

the number of edges of the shortest path from x to y.

Group representation of the Cayley tree. Let Gk be the free product of k+1 cyclic groups of the

order 2 with respective generators a1, a2, . . . , ak+1. It is known that there exists a one-to-one correspondence

between the set of vertices V of the Cayley tree of order k � 1 and elements of the group Gk. To give

this correspondence, we fix an arbitrary element x0 ∈ V and let it correspond to the unit element e of Gk.

Using a1, a2, . . . , ak+1, we label the nearest-neighbors of e, moving in the positive direction. We next label

the nearest neighbors of each ai, i = 1, 2, . . . , k + 1, by aiaj , j = 1, 2, . . . , k + 1. Because all ai have

eas a the common neighbor, we assign aiai = a2i = e to it. Other neighbors are labeled starting from

aiai in the positive direction. We label the set of all nearest neighbors of each aiaj by words aiajaq,

q = 1, 2, . . . , k + 1, starting from aiajaj = ai in the positive direction. Iterating this argument yields

a one-to-one correspondence between the set of vertices V of the Cayley tree Γk and the group Gk (see,

e.g., [13]).

In [11], [13], a full description of normal index-4 subgroups for the group representation of the Cayley

tree is given. Also, all index-3 subgroups were constructed in [12]. In this section, we continue these

investigations and give all forms of (not normal) index-4 subgroups of the group representation of the

Cayley tree.

Normal finite-index subgroups of the group Gk. Any (minimally represented) element x ∈ Gk

has the form x = ai1ai2 . . . ain , where 1 � im � k+1, m = 1, 2, . . . , n. The number n is called the length of

the word x and is denoted by l(x). The number of letters ai, i = 1, 2, . . . , k+1, that enter a noncontractible

representation of a word x is denoted by wx(ai).

Definition 1. Let M1,M2, . . . ,Mm be some sets and Mi �= Mj for i �= j. We say that the intersection
⋂m

i=1 Mi is contractible if there exists i0 (1 � i0 � m) such that

m⋂

i=1

Mi =

( i0−1⋂

i=1

Mi

)⋂( m⋂

i=i0+1

Mi

)

.

Let Nk = {1, 2, . . . , k + 1}. We set

HA =

{

x ∈ Gk

∣
∣
∣
∣

∑

i∈A

ωx(ai) is even

}

. (2.1)
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The following theorem [3], [13] describes several normal subgroups of Gk.

Theorem 1. For any A, ∅ �= A ⊆ Nk, the set HA ⊂ Gk satisfies the following properties:

• HA is a normal subgroup and |Gk :HA| = 2;

• HA �= HB for all A �= B ⊆ Nk;

• let A1, A2, . . . , Am ⊆ Nk; if
⋂m

i=1 HAi is noncontractible, then it is a normal subgroup of index 2m;

• any normal index-4 subgroup has the form HA ∩HB, i.e.,

{H | |Gk :H | = 4} = {HA ∩HB | A,B ⊆ Nk, A �= B};

• the group Gk does not have normal subgroups of an odd index (�= 1);

• the group Gk has normal subgroups of an arbitrary even index.

By Theorem 1, we can conclude that any subgroup of an odd index (�= 1) of the group Gk is not

a normal subgroup. In addition, all normal index-4 subgroups of Gk are described. We now prove that

there exists (not normal) index-4 subgroups of Gk and give a full description of such subgroups.

Let A0 ⊂ Nk, 0 � |A0| � k − 2. Let also (A1, A2, A3) be a partition of the set Nk\A0 and mj be the

minimal element of Aj , j = 1, 2, 3. Then we consider the homomorphism uA1A2A3 : Gk → {e, am1 , am2 , am3}
given by

uA1A2A3(x) =

⎧
⎨

⎩

e, if x = ai, i ∈ Nk\(A1 ∪ A2 ∪ A3),

amj , if x = ai, i ∈ Aj , j = 1, 2, 3,
(2.2)

For i ∈ {1, 2, . . . , 8}, we define the maps γi : 〈am1 , am2 , am3〉 → {e, am1, am2 , am3} by the following formulas:

γ1(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

e, x = e,

am1 , x ∈ {am3am1 , am2am3},
am2 , x ∈ {am1am3 , am3am2},
am3 , x ∈ {am1am2 , am2am1},
γ1(ai1ai2 . . . ain−2γ1(ain−1ain)), x = ai1ai2 . . . ain , l(x) > 2,

(2.3)

γ2(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

e, x = e,

am1 , x ∈ {am3am2 , am2am1},
am2 , x ∈ {am1am3 , am3am1},
am3 , x ∈ {am1am2 , am2am3},
γ2(ai1ai2 . . . ain−2γ2(ain−1ain), x = ai1ai2 . . . ain , l(x) > 2,

(2.4)

γ3(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

e, x = e,

am1 , x ∈ {am3am1 , am2am1},
am2 , x ∈ {am1am3 , am3am2},
am3 , x ∈ {am1am2 , am2am3},
γ3(ai1ai2 . . . ain−2γ3(ain−1ain)), x = ai1ai2 . . . ain , l(x) > 2,

(2.5)
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γ4(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

e, x = e,

am1 , x ∈ {am2am3 , am3am2},
am2 , x ∈ {am1am2 , am3am1},
am3 , x ∈ {am1am3 , am2am1},
γ4(ai1ai2 . . . ain−2γ4(ain−1ain)), x = ai1ai2 . . . ain , l(x) > 2,

(2.6)

γ5(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

e, x = e,

am1 , x ∈ {am2am1 , am3am1},
am2 , x ∈ {am1am2 , am3am2},
am3 , x ∈ {am1am3 , am2am3},
γ5(ai1ai2 . . . ain−2γ5(ain−1ain)), x = ai1ai2 . . . ain , l(x) > 2,

(2.7)

γ6(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

e, x = e,

am1 , x ∈ {am2am3 , am3am1},
am2 , x ∈ {am1am2 , am3am2},
am3 , x ∈ {am1am3 , am2am1},
γ6(ai1ai2 . . . ain−2γ6(ain−1ain)), x = ai1ai2 . . . ain , l(x) > 2,

(2.8)

γ7(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

e, x = e,

am1 , x ∈ {am2am1 , am3am2},
am2 , x ∈ {am1am2 , am3am1},
am3 , x ∈ {am1am3 , am2am3},
γ7(ai1ai2 . . . ain−2γ7(ain−1ain)), x = ai1ai2 . . . ain , l(x) > 2,

(2.9)

γ8(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

e, x = e,

am1 , x ∈ {am2am3 , am3am2},
am2 , x ∈ {am1am3 , am3am1},
am3 , x ∈ {am1am2 , am2am1},
γ8(ai1ai2 . . . ain−2γ8(ain−1ain)), x = ai1ai2 . . . ain , l(x) > 2,

(2.10)

where l(x) is the length of x and is ∈ {m1,m2,m3} for s ∈ {1, 2, . . . , n}.
We set

�j
A1A2A3

(Gk) = {x ∈ Gk | γj(uA1A2A3(x)) = e}, j = 1, 2, . . . , 8. (2.11)

Proposition 1. Let A0 ⊂ Nk, 0 � |A0| � k − 2, and (A1, A2, A3) be a partition of the set Nk\A0.

Then �j
A1A2A3

(Gk) is a subgroup of the group Gk.

Proof. It is known that �j
A1A2A3

(Gk) is a subgroup if and only if xy ∈ �j
A1A2A3

(Gk) and

y−1 ∈ �j
A1A2A3

(Gk) for all x, y ∈ �j
A1A2A3

(Gk). For any j = 1, 2, . . . , 8, we consider two elements

x = ai1ai2 . . . ain ∈ �j
A1A2A3

(Gk) and y = as1as2 . . . asm ∈ �j
A1A2A3

(Gk). If

u(x) = aj1aj2 . . . ajs , s � n, ji ∈ {m1,m2,m3}, i ∈ {1, 2 . . . , s},
u(y) = at1at2 . . . atr , r � m, ti ∈ {m1,m2,m3}, i ∈ {1, 2 . . . , r},

then wee have γj(aj1aj2 . . . ajs) = e and γj(at1at2 . . . atr ) = e.
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We first prove that y−1 ∈ �j
A1A2A3

(Gk). Indeed,

γj(u(y)) = e ⇐⇒ at1at2 . . . atr�j
A1A2A3

(Gk) = �j
A1A2A3

(Gk).

We multiply both sides of the last equality by at1 from the left to obtain

at2 . . . atr�j
A1A2A3

(Gk) = at1�j
A1A2A3

(Gk).

Multiplying both sides of the last equality by at2 gives

at3 . . . atr�j
A1A2A3

(Gk) = at2at1�j
A1A2A3

(Gk).

After continuing this process r − 2 times, we have

atratr−1 . . . at1�j
A1A2A3

(Gk) = �j
A1A2A3

(Gk) =⇒ y−1 ∈ �j
A1A2A3

(Gk).

We now show that γj(xy) = e. The proof of this is equivalent to showing the equality

xy�j
A1A2A3

(Gk) = aj1aj2 . . . ajkat1at2 . . . atr�j
A1A2A3

(Gk) = �j
A1A2A3

(Gk). (2.12)

From the foregoing, we have

at1at2 . . . atr�j
A1A2A3

(Gk) = ajkajk−1
. . . aj1�j

A1A2A3
(Gk).

We multiply both sides of the last equality by ajk from the left and obtain

ajkat1at2 . . . atr�j
A1A2A3

(Gk) = ajk−1
. . . aj1�j

A1A2A3
(Gk).

After continuing this process k − 1 times (multiplying by ajk−1
, . . . , aj1), we obtain equality (2.12).

Theorem 2. For the group Gk, the following equality holds:

{K | K is a subgroup of Gk of index 4} =

=

8⋃

j=1

{�j
A1A2A3

(Gk) | (A1, A2, A3) is a partition of Nk\A0}.

Proof. Let K be a subgroup of the group Gk with |Gk :K| = 4. Then it is easy to verify that there

exist ap, aq, ar ∈ Gk such that the cosets K, apK, aqK, and arK are disjoint. We set

A0 = {i ∈ Nk | ai ∈ K}, A1 = {i ∈ Nk | ai ∈ apK},
A2 = {i ∈ Nk | ai ∈ aqK}, A3 = {i ∈ Nk | ai ∈ arK}.

Then we can conclude that (A1, A2, A3) is a partition of Nk\A0. Let mi be the minimal element of Ai,

i = 1, 2, 3. By Proposition 1, we obtain that �j
A1A2A3

(Gk), j = 1, 2, . . . , 8 is a subgroup of Gk.

Let amjamsK ∈ {K, amjK, } for any j ∈ {1, 2, 3} and s �= j. Then it is easy to verify that |Gk :K| < 4.

If am1am2K = am3K and am1am3K = am3K, then

am1am2K = am1am3K =⇒ am2K = am3K =⇒ |Gk :K| < 4.
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Now, we consider the case am1am2K = am2K and am1am3K = am2K. In this case, we obtain

am1am2K = am1am3K =⇒ am2K = am3K =⇒ |Gk :K| < 4.

Hence, only two cases remain:

am1am2K = am2K, am1am3K = am3K

and

am1am2K = am2K, am1am3K = am3K.

Case 1. Let am1am2K = am2K and am1am3K = am3K. If we consider the coset am2am3K, it can be

equal to either am1K or am3K. If am2am3K = am1K, then am2am1K = am3K, i.e., we have the kernels

of the respective functions γ1 and γ8. In the case am2am3K = am3K, the coset am3am2K can be equal to

am1K or am2K. Namely, we obtain the kernel of the respective functions γ2 and γ3.

Case 2. If am1am2K = am2K and am1am3K = am3K, then am2am3K ∈ {am1K, am3K}. If

am2am3K = am1K, then am2am1K = am3K, i.e., we have the kernel of the respective function γ4 and γ5.

Also, for the case am2am3K = am3K, we have only one subcase am2am1K = am1K and am2am1K = am3K.

It gives the kernels of the respective functions γ6 and γ7.

Remark. Let A = {m1,m2} and B = {m1,m3}. Then

�8
A1A2A3

(Gk) = {x ∈ Gk | γ8(uA1A2A3(x)) = e} = HA ∩HB.

Namely, �8
A1A2A3

(Gk) is a normal subgroup of Gk. For any j = 1, 2, . . . , 7, the subgroup �j
A1A2A3

(Gk) is

not a normal subgroup of Gk.

3. Weakly periodic Gibbs measures for the Ising model on Cayley
trees

In this section, we give new weakly periodic Gibbs measures for the Ising model corresponding to

index-4 subgroups of the group Gk.

We consider models where spin takes values in the set Φ := {−1, 1}, and is assigned to the vertices of

the Cayley tree. For A ⊂ V , a configuration σA on A is an arbitrary function σA : A → Φ. The set of all

configurations on A is denoted by ΩA = ΦA.

The (formal) Hamiltonian of the Ising model is

H(σ) = −J
∑

〈x,y〉∈L

σ(x)σ(y), (3.1)

where J ∈ R\{0} is a coupling constant and 〈x, y〉 stands for nearest-neighbor vertices. For a fixed x0 ∈ V ,

called the root, we set

Wn = {x ∈ V | d(x0, x) = n}, Vn =

n⋃

m=0

Wm. (3.2)

Let S(x) be direct successors of x, i.e.,

S(x) = {y ∈ Gk | d(y, x0) = d(x, x0) + 1}.

For any x ∈ Gk, the set {y ∈ Gk | 〈x, y〉}\S(x) has a single element, which is denoted by x↓.

266



We define a finite-dimensional distribution of a probability measure μ in the volume Vn as

μn(σn) = Z−1
n exp

{

−βHn(σn) +
∑

x∈Wn

hxσn(x)

}

, (3.3)

where β = 1/T , T > 0 is the temperature and Z−1
n is the normalization factor.

Let {hx ∈ R, x ∈ V } be a collection of real numbers and

Hn(σn) = −J
∑

〈x,y〉∈L

σn(x)σn(y).

We say that probability distributions (3.3) are compatible if for all n � 1 and σn−1 ∈ ΦVn−1 ,

∑

ωn∈ΦWn

μn(σn−1 ∨ ωn) = μn−1(σn−1). (3.4)

Here, σn−1∨ωn is the concatenation of configurations. In this case, according to the Kolmogorov extension

theorem (see [14]), there exists a unique measure μ on ΦVn ,

μ({σ|Vn = σn}) = μn(σn).

Such a measure is called the splitting Gibbs measure corresponding to Hamiltonian (3.1) and the function

hx, x ∈ V . The following statement [15], [16] describes conditions on hx guaranteeing the compatibility

of μn(σn).

Theorem 3. The probability distributions μn(σn), n = 1, 2, . . . , in (3.3) are compatible if and only if

the following equation holds for any x ∈ V :

hx =
∑

y∈S(x)

f(hy, θ), where θ = tanh(Jβ), f(h, θ) = artanh(θ tanhh). (3.5)

Definition 2. Let K be a subgroup of Gk, k � 1. We say that a function h = {hx ∈ R : x ∈ Gk} is

K-periodic if hyx = hx for all x ∈ Gk and y ∈ K. A Gk-periodic function is called translation invariant.

A Gibbs measure μ is called K-periodic if it corresponds to a K-periodic function h.

Let Gk :K = {K1,K2, . . . ,Kr} be a family of cosets and K a subgroup of index r ∈ N.

Definition 3. A set of quantities h = {hx, x ∈ Gk} is said to be K-weakly periodic if hx = hij , for

any x ∈ Ki, x↓ ∈ Kj . A Gibbs measure μ is said to be K-weakly periodic if it corresponds to a K-weakly

periodic set of h.

We note that the weakly periodic set of h coincides with an ordinary periodic one (see Definition 2) if

hx is independent of x↓.
The K-weakly periodic Gibbs measure of some models were mainly studied only in the case where K

is a normal subgroup of Gk. We consider K-weakly periodic Gibbs measures of the Ising model on the

Cayley tree in the case where K is not a normal index-4 subgroup of Gk.

Let A0 = {4, 5, . . . , k + 1}, As = {s}, where s ∈ {1, 2, 3}, i.e., mi = i for i ∈ {1, 2, 3}. We con-

sider the functions u{1}{2}{3} : {a1, a2, . . . , ak+1} → {e, a1, a2, a3} (defined in (2.2)) and γ1 : 〈a1, a2, a3〉 →
{e, a1, a2, a3} (defined in (2.3)):

u{1},{2},{3}(x) =

⎧
⎨

⎩

e, x = ai i = Nk\{1, 2, 3},
ai, x = ai i ∈ {1, 2, 3},

(3.6)

267



and

γ1(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

e, x = e,

a1, x ∈ {a3a1, a2a3},
a2, x ∈ {a1a3, a3a2},
a3, x ∈ {a1a2, a2a1},
γ1(ai1ai2 . . . ain−2γ1(ain−1ain)), x = ai1ai2 . . . ain , l(x) > 2.

(3.7)

Let K∗
0 := �1

{1}{2}{3}(Gk) (defined in (2.11)), i.e.,

K∗
0 = {x ∈ Gk | γ1(u{1}{2}{3}(x)) = e}.

By Theorem 2, we have that K∗
0 is an index-4 subgroup of the group Gk. We set

G2/K
∗
0 = {K∗

0 ,K
∗
1 ,K

∗
2 ,K

∗
3},

where

K∗
1 = {x ∈ G2 | γ(u{1}{2}{3}(x)) = a1},

K∗
2 = {x ∈ G2 | γ(u{1}{2}{3}(x)) = a2},

K∗
3 = {x ∈ G2 | γ(u{1}{2}{3}(x)) = a3}.

Then we have

q0(K
∗
0 ) := |{a1, a2, . . . , ak+1} ∩K∗

0 | = |{a4, a5, . . . , ak+1}| = k − 2,

q1(K
∗
0 ) := |{a1, a2, . . . , ak+1} ∩K∗

1 | = |{a1}| = 1,

q2(K
∗
0 ) := |{a1, a2, . . . , ak+1} ∩K∗

2 | = |{a2}| = 1,

q3(K
∗
0 ) := |{a1, a2, . . . , ak+1} ∩K∗

3 | = |{a3}| = 1

and

Q(K∗
0 ) := (q0(K

∗
0 ), q1(K

∗
0 ), q2(K

∗
0 ), q3(K

∗
0 )) = (k − 2, 1, 1, 1).

We assume that x ∈ K∗
1 (the cases x ∈ K∗

2 and x ∈ K∗
3 are similar), i.e., γ(u{1}{2}{3}(x)) = a1. Then it is

easy to verify that

{γ(u{1}{2}(xa1)), γ(u{1}{2}{3}(xa2)), γ(u{1}{2}{3}(xa3))} = {e, a2, a3}.

In addition, we have γ(u{1}{2}{3}(xai)) = a1, i ∈ {4, 5, . . . , k + 1}. Consequently,

q0(x) := |{xa1, xa2, . . . , xak+1} ∩K∗
0 | = 1,

q1(x) := |{xa1, xa2, . . . , xak+1} ∩K∗
1 | = k − 2,

q2(x) := |{xa1, xa2, . . . , xak+1} ∩K∗
2 | = 1,

q3(x) := |{xa1, xa2, . . . , xak+1} ∩K∗
3 | = 1.

Hence, Q(x) = (1, k−2, 1, 1). Clearly (see the details in [3], [12]), for any x ∈ Gk, there exists a permutation

πx of the coordinates of the vector Q(K0) such that πxQ(K0) = Q(x).
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Let h = (h1, h2, . . . , h12) ∈ R
12 and h′ = (h′

1, h
′
2, . . . , h

′
12) ∈ R

12. Then we define the operator

W2 : R
12 → R

12 as

W (h) = h′ ⇐⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h′
1 = f(h7, θ) + f(h10, θ), h′

2 = f(h4, θ) + f(h10, θ),

h′
3 = f(h7, θ) + f(h4, θ), h′

4 = f(h8, θ) + f(h11, θ),

h′
5 = f(h1, θ) + f(h11, θ), h′

6 = f(h1, θ) + f(h8, θ),

h′
7 = f(h5, θ) + f(h12, θ), h′

8 = f(h2, θ) + f(h12, θ),

h′
9 = f(h2, θ) + f(h5, θ), h′

10 = f(h6, θ) + f(h9, θ),

h′
11 = f(h3, θ) + f(h9, θ), h′

12 = f(h3, θ) + f(h6, θ).

(3.8)

We note that K∗
0 is an index-4 subgroup of the group Gk and the set h = {hx, x ∈ Gk} is called

K∗
0 -weakly periodic if hx = hij for any x ∈ K∗

i , x↓ ∈ K∗
j , i, j ∈ {0, 1, 2, 3}. We use the operator W

to study K∗
0 -weakly periodic Gibbs measures for Ising models on the Cayley tree of order two. Because

Q(x) = (1, 0, 1, 1), the cases hx = hi,i, i ∈ {0, 1, 2, 3}, do not occur. Then a K∗
0 -weakly periodic set of h

has the form

hx =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h0,1 := h1, x ∈ K∗
0 , x↓ ∈ K∗

1 ,

h0,2 := h2, x ∈ K∗
0 , x↓ ∈ K∗

2 ,

h0,3 := h3, x ∈ K∗
0 , x↓ ∈ K∗

3 ,

h1,0 := h4, x ∈ K∗
1 , x↓ ∈ K∗

0 ,

h1,2 := h5, x ∈ K∗
1 , x↓ ∈ K∗

2 ,

h1,3 := h6, x ∈ K∗
1 , x↓ ∈ K∗

3 ,

h2,0 := h7, x ∈ K∗
2 , x↓ ∈ K∗

0 ,

h2,1 := h8, x ∈ K∗
2 , x↓ ∈ K∗

1 ,

h2,3 := h9, x ∈ K∗
2 , x↓ ∈ K∗

3 ,

h3,0 := h10, x ∈ K∗
3 , x↓ ∈ K∗

0 ,

h3,1 := h11, x ∈ K∗
3 , x↓ ∈ K∗

1 ,

h3,2 := h12, x ∈ K∗
3 , x↓ ∈ K∗

2 ,

where h = (h1, h2, . . . , h12), in view of (3.5), satisfies the equations

Wh = h. (3.9)

Finding all solutions of Eq. (3.9) is not easy. That is why we solve the equation on invariant sets on

the Cayley tree of order two. It is easy to verify that the following sets are invariant with respect to the

operator W :

I1 = {h ∈ R
12 | h1 = h2 = h3 = h4 = h5 = h6 = h7 = h8 = h9 = h10 = h11 = h12},

I2 = {h ∈ R
12 | h1 = h2 = h11 = h12, h4 = h6 = h7 = h9, h3 = h10, h5 = h8},

I3 = {h ∈ R
12 | h1 = h3 = h8 = h9, h4 = h5 = h10 = h12, h2 = h7, h6 = h11},

I4 = {h ∈ R
12 | h2 = h3 = h5 = h6, h7 = h8 = h10 = h11, h1 = h4, h9 = h12},

I5 = {h ∈ R
12 | h1 = h5 = h7, h2 = h4 = h8, h3 = h6 = h9, h10 = h11 = h12},

I6 = {h ∈ R
12 | h1 = h8 = h11, h2 = h9 = h10, h3 = h7 = h12, h4 = h5 = h6},

I7 = {h ∈ R
12 | h1 = h6 = h10, h2 = h5 = h12, h3 = h4 = h11, h7 = h8 = h9},
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I8 = {h ∈ R
12 | h1 = h2 = h3, h4 = h7 = h10, h6 = h8 = h12, h5 = h9 = h11},

I9 = {h ∈ R
12 | h1 = h2 = h4 = h5 = h7 = h8, h3 = h6 = h9, h10 = h11 = h12},

I10 = {h ∈ R
12 | h1 = h12, h2 = h11, h3 = h10, h4 = h9, h5 = h8, h6 = h7}.

We consider Eq. (3.9) on the invariant sets I2, I3, and I4. On I2, this equation can be written as

h1 = f(h3, θ) + f(h4, θ), h3 = 2f(h4, θ),

h4 = f(h1, θ) + f(h5, θ), h5 = 2f(h1, θ).
(3.10)

Also, on the set I3 Eq. (3.9) is equivalent to

h1 = f(h2, θ) + f(h4, θ), h2 = 2f(h4, θ),

h4 = f(h1, θ) + f(h6, θ), h6 = 2f(h1, θ).
(3.11)

If we change variables in (3.10), then we can obtain (3.11), i.e., h1 → h1, h4 → h4, h5 → h6, and h3 → h2.

on the set I4, Eq. (3.9) is equivalent to

h1 = 2f(h7, θ), h2 = f(h1, θ) + f(h7, θ),

h7 = f(h2, θ) + f(h9, θ), h9 = 2f(h2, θ).
(3.12)

If we change variables in (3.10), then we can obtain (3.12), i.e., h1 → h7, h3 → h9, h4 → h2, and h5 → h1.

Hence, it is sufficient to solve Eq. (3.9) on I2 (the cases I3 and I4 are similar).

We consider Eq. (3.9) on the invariant sets Ij , j = 5, 6, 7, 8. On I5, this equation can be written as

h1 = f(h1, θ) + f(h10, θ), h2 = f(h2, θ) + f(h10, θ),

h3 = f(h1, θ) + f(h2, θ), h10 = 2f(h3, θ).
(3.13)

Also, on the set I6, Eq. (3.9) is equivalent to

h1 = f(h2, θ) + f(h3, θ), h2 = f(h2, θ) + f(h4, θ),

h3 = f(h3, θ) + f(h4, θ), h4 = 2f(h1, θ).
(3.14)

If we change variables in (3.13), then we can obtain (3.14), i.e., h1 → h2, h2 → h3, h3 → h1, h10 → h4.

On the set I7, Eq. (3.9) is equivalent to

h1 = f(h1, θ) + f(h7, θ, h2 = f(h1, θ) + f(h3, θ),

h3 = f(h3, θ) + f(h7, θ), h7 = 2f(h2, θ).
(3.15)

In this case, we change the variables as h1 → h1, h2 → h3, h3 → h2, and h10 → h7. Similarly, on the set I8

Eq. (3.9) is equivalent to

h1 = 2f(h4, θ), h4 = f(h5, θ) + f(h6, θ),

h5 = f(h1, θ) + f(h5, θ), h6 = f(h1, θ) + f(h6, θ).
(3.16)

The correspondence between (3.13) and (3.16) is given by h1 → h6, h2 → h5, h3 → h4, and h10 → h1.

Thus, we can conclude that it is sufficient to solve Eq. (3.9) on I5 (other cases are similar).

270



Theorem 4. For the Ising model on Γ2, the following assertions hold:

1. All K∗
0 -weakly periodic Gibbs measures on the invariant sets I1, I9, and I10 are translation invariant.

2. Let acr ≈ 1.69562077, then for θ ∈ [−∞,− 1
3

) ∪ (
1−acr

1+acr
,∞)

, there exists a K∗
0 -weakly periodic (not

translation-invariant) Gibbs measure on the invariant sets I2, I3, and I4.

Proof. 1. It is known that solutions of the system of equations (3.9) on the invariant set I1 are

translation invariant. Translation-invariant Gibbs measures for the Ising model are well studied (see [3]).

We consider K∗
0 -weakly periodic Gibbs measures on the invariant set I9. Then the system of equations (3.9)

can be written as

h1 = f(h1, θ) + f(h10, θ), h3 = 2f(h1, θ), h10 = 2f(h3, θ). (3.17)

Using the fact that f(h, θ) is monotonically increasing over h, we solve system (3.17). Let

max{h1, h3, h10} = h1, then

h3 = 2f(h1, θ) � f(h1, θ) + f(h10, θ) = h1 =⇒ h1 = h3.

Consequently, h3 = 2f(h1, θ) = 2f(h3, θ) = h10, i.e., h1 = h3 = h10. If max{h1, h3, h10} = h3, and we have

h10 = 2f(h3, θ) � 2f(h1, θ) = h3 =⇒ h10 = h3.

Thus, we have

2f(h1, θ) = h3 = h10 = 2f(h3, θ) =⇒ h1 = h3 =⇒ h1 = h3 = h10.

Finally, let max{h1, h3, h10} = h10, then we obtain

2f(h3, θ) = h10 � h3 = 2f(h1, θ) =⇒ h3 � h1,

whence

f(h1, θ) � f(h10, θ) =⇒ h1 � h10.

Namely, we obtain h1 = h3 = h10.

We now consider K∗
0 -weakly periodic Gibbs measures on the invariant set I10. Then the system of

equations (3.9) can be written as

h1 = f(h3, θ) + f(h6, θ), h2 = f(h3, θ) + f(h4, θ), h3 = f(h4, θ) + f(h6, θ),

h4 = f(h5, θ) + f(h2, θ), h5 = f(h1, θ) + f(h2, θ), h6 = f(h1, θ) + f(h5, θ).
(3.18)

It suffices to consider the case h1 = max{h1, h2, h3, h4, h5, h6}, other cases are proved similarly:

f(h3, θ) + f(h6, θ) = h1 � h2 = f(h3, θ) + f(h4, θ) =⇒ h6 � h4.

Similarly, we obtain that

h1 � h3 =⇒ h3 � h, f(h1, θ) � f(h5, θ) =⇒ h5 � h4.
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From f(h3, θ) + f(h6, θ) = h1 � h5 = f(h1, θ) + f(h2, θ), we deduce that

f(h2, θ) � min{f(h3, θ), f(h6, θ)} =⇒ h2 � h3, h2 � h6.

Because f(h3, θ) + f(h6, θ) = h1 � h6 = f(h1, θ) + f(h5, θ), we have h5 � h3, h5 � h6, and h2 � h3,

and hence h3 � h6. Finally, from h3 � h5 and consequently h2 � h4, we can conclude that

h1 � h6 � h3 � h5 � h4 � h2.

From the last inequality,

h2 = f(h3, θ) + f(h4, θ) � f(h5, θ) + f(h2, θ) = h4 =⇒ h2 = h4

and h5 � h3, whence h5 = h3. We thus obtain h2 = h4 and h5 = h3 whence h1 = h6. As a result, it is easy

to verify that

h1 = h2 = h3 = h4 = h5 = h6.

2. We consider Eq. (3.9) on the invariant set I2 (it follows from the foregoing that the cases I3 and I4

are similar). On the invariant set I2, Eq. (3.9) can be written as

h1 = f(h3, θ) + f(h4, θ), h3 = 2f(h4, θ),

h4 = f(h1, θ) + f(h5, θ), h5 = 2f(h1, θ).
(3.19)

Using the fact that

f(h, θ) =
1

2
ln

(1 + θ)e2h + 1− θ

(1− θ)e2h + 1 + θ

and setting zi = e2hi , i = {1, 2, . . . , 9}, and

a =
1− θ

1 + θ
, g(z) =

z + a

az + 1

we obtain the following system of equations instead: of (3.10):

z1 = g(z3)g(z4), z3 = g2(z4), z4 = g(z1)g(z5), z5 = g2(z1).

This system can be rewritten in the form

z4 = g[g(g2(z4)) · g(z4)] · g[g2(g(g2(z4)) · g(z4))]. (3.20)

Let z4 := x, then after simple calculations we can rewrite (3.20) as

(a+ 1)(x− 1)(x+ 1)
(
(a2 − a+ 1)x2 + (a3 − 2a2 + 3a)x+ a2 − a+ 1

)×
× (

a2x2 + (a2 − 2a+ 1)x+ a2
)
Q(x) = 0,

where

Q(x) := (a5 + 3a4 + 4a2 − a+ 1)x4 + (6a5 + 20a3 + 6a)x3 +

+ (2a6 − 2a5 + 24a4 + 22a2 + 2a)x2 +

+ (6a5 + 20a3 + 6a)x+ a5 + 3a4 + 4a2 − a+ 1.
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If x = 1, then we have z1 = z3 = z4 = z5 = 1, i.e., a translation-invariant solution. If x = −1, then

z1 = z4 = −1 and z3 = z5 = 1, i.e., a periodic solution.

It is easy to verify that if a ∈ (−∞;−1] ∪ [2;∞), then the equation

(a2 − a+ 1)x2 + (a3 − 2a2 + 3a)x+ a2 − a+ 1 = 0

has at least one solution, i.e., a weakly periodic solution.

Let a ∈ [−1−√
2;−1 +

√
2], then the equation

a2x2 + (a2 − 2a+ 1)x+ a2 = 0

has at least one solution, i.e., a weakly periodic solution. We set x+ 1/x = t, then

Q(x) = (a5 + 3a4 + 4a2 − a+ 1)t2 + (6a5 + 20a3 + 6a)t+ 2a6 − 4a5 + 18a4 + 14a2 + 4a− 2 = 0.

For a ∈ (−1 +
√
2, acr), after simple calculations, we obtain that the polynomial Q(x) has at least one

solution, i.e., weakly a periodic solution. Hence, for

a ∈ (−∞; acr)
⋃
[2;∞) ⇐⇒ θ ∈

[

−∞,−1

3

)
⋃

(
1− acr
1 + acr

,∞
)

,

there exists a K∗
0 -weakly periodic (not translation-invariant) Gibbs measure on I2.
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14. R. B. Ash and C. D. Doléans-Dade, Probability and Measure Theory , Harcourt Science and Technology Company,

Burlington, MA (2000).

15. P. M. Blekher and N. N. Ganikhodzhaev, “On pure phases of the Ising model on the Bethe lattices,” Theory

Probab. Appl., 35, 216–227 (1990).

16. P. M. Bleher, J. Ruiz, and V. A. Zagrebnov, “On the purity of the limiting Gibbs state for the Ising model on

the Bethe lattice,” J. Statist. Phys., 79, 473–482 (1995).

274

http://arxiv.org/abs/1910.13733

	1 Introduction
	2 Index-4 subgroups for the group representation of a Cayley tree
	3 Weakly periodic Gibbs measures for the Ising model on Cayley trees

