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INVERSE SCATTERING TRANSFORM FOR A NONLOCAL

DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION

Xinxin Ma∗ and Yonghui Kuang†

We give a detailed discussion of a nonlocal derivative nonlinear Schrödinger (NL-DNLS) equation with

zero boundary conditions at infinity in terms of the inverse scattering transform. The direct scattering

problem involves discussions of the analyticity, symmetries, and asymptotic behavior of the Jost solu-

tions and scattering coefficients, and the distribution of the discrete spectrum points. Because of the

symmetries of the NL-DNLS equation, the discrete spectrum is different from those for DNLS-type equa-

tions. The inverse scattering problem is solved by the method of a matrix Riemann–Hilbert problem.

The reconstruction formula, the trace formula, and explicit solutions are presented. The soliton solutions

with special parameters for the NL-DNLS equation with a reflectionless potential are obtained, which may

have singularities.
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1. Introduction

Most of the studies of integrable nonlinear evolution equations focus on local-type equations [1]–[3].

A classic example is provided by the nonlinear Schrödinger (NLS) equation, which has been thoroughly

discussed from different standpoints [4]–[6]. The NLS equation describes the evolution of the complex

envelope of weakly nonlinear dispersive wave trains [7]. In [8], a nonlocal nonlinear Schrödinger (NL-NLS)

equation with infinitely many conservation laws was presented and its explicit solutions were derived by

the inverse scattering transform (IST) method. After that, many nonlocal integrable equations have been

introduced and broadly discussed [9]–[11]. Many of such nonlocal integrable equations can be turned into

local equations by some variable transformations [12].

The IST is a powerful tool to deal with the initial-value problems for local or nonlocal equations [1],

[13]–[24]. The inverse scattering problem is related to the Gel’fand–Levitan–Marchenko integral equa-

tions [25], which are difficult to handle in general. As a new version of the IST, the Riemann–Hilbert

approach has recently become popular in studying soliton solutions and long-time asymptotics of integrable

systems [16], [18], [19], [26]–[30].
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The derivative nonlinear Schrödinger (DNLS) equation

iqt(x, t) = qxx(x, t) + iε(q2(x, t)q∗(x, t))x, ε = ±1 (1.1)

has important applications in plasma physics [31]. Here, the subscripts denote derivatives with respect to

the corresponding variables and the star denotes complex conjugation. The IST for the DNLS equation with

zero boundary conditions (ZBCs) and nonzero boundary conditions (NZBCs) was studied in [16], [32]–[36].

In this paper, we consider the NL-DNLS equation

iqt(x, t) = qxx(x, t) + ε(q2(x, t)q∗(−x, t))x, ε = ±1, (1.2)

with ZBCs at infinity:

lim
x→±∞ q(x, t) = 0. (1.3)

The NL-DNLS equation was introduced and studied recently via the Darboux transformations in [37]. The

NL-DNLS equation can be made into the DNLS equation by the transformations x → −ix and t → −t [12].

This paper is organized as follows. In Sec. 2, we discuss the direct scattering problem with ZBCs at

infinity in detail. The Jost solutions and the scattering matrix are introduced and their analytic properties

are discussed. The key symmetries for the modified Jost solutions and scattering coefficients are found

using the uniqueness of solutions of ordinary differential equations. For constructing the inverse scattering

problems, we also analyze the asymptotic behavior of the modified Jost solutions and the scattering matrix.

To solve the inverse scattering problem, we derive the discrete spectrum, which has two completely different

sets, and give the corresponding residue conditions. In Sec. 3, the matrix Riemann–Hilbert problem for

the inverse scattering problem is established. Subsequently, we present a reconstruction formula for the

potential and a trace formula. The explicit general solutions corresponding to reflectionless potential are

obtained. In Sec. 4, we give examples of the soliton solutions in two different cases with special parameters.

2. Direct Scattering Problem

2.1. Jost solutions and analyticity. The NL-DNLS equation (1.2) is a nonlinear integrable equa-

tion, and the associated Lax pair has the form [37]

φx = Uφ, φt = V φ, (2.1)

where
U(x, t, λ) = λ2σ3 + λP,

V (x, t, λ) = −2iλ4σ3 − 2iλ3P + iλ2σ3P
2 + iλ(P 3 − σ3Px)

(2.2)

where

σ3 =

(
1 0

0 −1

)
, P =

(
0 q(x, t)

−εq∗(−x, t) 0

)
.

Comparing with the case of the DNLS equation, we see that their Lax representations are different, which

leads to the completely different spectral properties.

Solutions ϕ±(x, t, λ) of the asymptotic spectral problem for Lax pair (2.1) with ZBCs (1.3) can be

represented as

ϕ±,x(x, t, λ) = U±ϕ±(x, t, λ), ϕ±,t(x, t, λ) = V±ϕ±(x, t, λ), (2.3)

where

U± = λ2σ3, V± = −2iλ2U±.
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For simplicity, we take the basic solutions ϕ±(x, t, λ) = eθ(x,t,λ)σ3, where θ(x, t, λ) = λ2(x − 2iλ2t).

We assume that the matrix solutions of spectral problem (2.1) are Jost solutions φ±(x, t, λ) satisfying

the boundary conditions

φ±(x, t, λ) → eθ(x,t,λ)σ3, x → ±∞, λ ∈ Σ, (2.4)

where Σ := {λ ∈ C | (Reλ)2 − (Imλ)2 = 0}.
To eliminate the asymptotic exponential oscillations, we introduce the modified Jost solutions

μ±(x, t, λ) defined by

μ±(x, t, λ) = φ±(x, t, λ)e−θ(x,t,λ)σ3 , (2.5)

and then

lim
x→±∞μ±(x, t, λ) = I, (2.6)

where I denotes the 2 × 2 identity matrix. We use a shorthand notation e−θσ̂3(M) = e−θσ3Meθσ3 , where

M is an arbitrary 2× 2 matrix.

We thus obtain an equivalent Lax pair

μ±,x + λ2[μ±, σ3] = λPμ±, (2.7a)

μ±,t − 2iλ4[μ±, σ3] = V1μ±, (2.7b)

which can be rewritten in the total-derivative form

d(e−θ(x,t,λ)σ̂3μ±) = e−θ(x,t,λ)σ̂3[(λP dx+ V1 dt)μ±]. (2.8)

Here, [ · , · ] denotes the matrix commutator and V1 = −2iλ3P + iλ2σ3P
2+ iλ(P 3−σ3Px). We can formally

integrate formula (2.7a) for μ±(x, t, λ) to obtain the Volterra integral equations along two special paths:

(−∞, t) → (x, t) and (+∞, t) → (x, t)

μ−(x, t, λ) = I + λ

∫ x

−∞
eλ

2(x−y)σ̂3 [P (y, t)μ−(y, t, λ)] dy, (2.9a)

μ+(x, t, λ) = I − λ

∫ +∞

x

eλ
2(x−y)σ̂3 [P (y, t)μ+(y, t, λ)] dy. (2.9b)

Using these integral equations, we can prove that the modified Jost solutions μ±(x, t, λ) are unique solutions
of the above equations and their columns have different analyticity domains in the complex λ plane [18].

For convenience, we set

D+ = {λ ∈ C | (Reλ)2 − (Imλ)2 > 0}, D− = {λ ∈ C | (Reλ)2 − (Imλ)2 < 0},

and let μ±j(x, t, λ) denote the jth column of the matrix μ±(x, t, λ).

Proposition 1. Let the potentials belong to the absolutely integrable space, i.e., q(x, t), q(−x, t) ∈
L1(R). Then the modified Jost solutions μ±(x, t, λ) have the following properties:

• Volterra integral equations (2.9) have unique solutions with boundary conditions (2.6).

• The column vectors μ−1(x, t, λ) and μ+2(x, t, λ) can be analytically extended to D+ and continuously

extended to D+ ∪ Σ.

• The column vectors μ+1(x, t, λ) and μ−2(x, t, λ) can be analytically extended to D− and continuously

extended to D− ∪ Σ.
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2.2. Scattering matrix. Evidently, the matrices U and V are traceless. Using Abel’s theorem,

we conclude that the detφ±(x, t, λ) are independent of x and t. Hence,

detφ±(x, t, λ) = lim
x→±∞ detφ±(x, t, λ) = lim

x→±∞ detμ±(x, t, λ) = 1. (2.10)

That is, the Jost solutions φ−1(x, t, λ) and φ−2(x, t, λ) of scattering problem (2.1) with boundary conditions

(1.3) are linearly independent for all λ ∈ Σ. Similar arguments hold for the Jost solutions φ+1(x, t, λ)

and φ+2(x, t, λ). Because scattering problem (2.1) is a 2×2 linear system, the pairs {φ−1(x, t, λ), φ−2(x, t, λ)}
and {φ+1(x, t, λ), φ+2(x, t, λ)} are linearly dependent, and we can express one basis set in terms of the other;

they are two fundamental matrix solutions for the Lax pair (2.1). Therefore, there exists a 2 × 2 matrix

S(λ) (independent of x and t) such that

φ−(x, t, λ) = φ+(x, t, λ)S(λ), x, t ∈ R, λ ∈ Σ, (2.11)

called the scattering matrix. After expanding formula (2.11) we arrive at

φ−1(λ) = s11(λ)φ+1(λ) + s21(λ)φ+2(λ),

φ−2(λ) = s12(λ)φ+1(λ) + s22(λ)φ+2(λ),
(2.12)

where the sij(λ) are called the scattering coefficients. Moreover, Eqs. (2.10) and (2.11) imply

detS(λ) = 1, λ ∈ Σ. (2.13)

Proposition 2. If q(x, t), q(−x, t) ∈ L1(R), then the scattering coefficients s11(λ) can be analytically

extended to D+ and continuously extended to D+ ∪ Σ, while s22(λ) can be analytically extended to D−

and continuously extended to D− ∪Σ. However, the rest of the scattering coefficients are nowhere analytic

and are only continuous in Σ.

Proof. It follows from (2.12) that the sij(λ) have the Wronskian representation

s11(λ) = Wr[φ−1(x, t, λ), φ+2(x, t, λ)], s12(λ) = Wr[φ−2(x, t, λ), φ+2(x, t, λ)],

s21(λ) = Wr[φ+1(x, t, λ), φ−1(x, t, λ)], s22(λ) = Wr[φ+1(x, t, λ), φ−2(x, t, λ)].
(2.14)

Combining with the analytic properties of the modified Jost solutions μ±(x, t, λ) in Proposition 1, we prove

the proposition.

The following reflection coefficients are needed in the inverse problem in what follows:

ρ(λ) =
s21(λ)

s11(λ)
, ρ̃(λ) =

s12(λ)

s22(λ)
, λ ∈ Σ. (2.15)

2.3. Symmetry conditions.

Proposition 3. Jost solutions φ±(x, t, λ) satisfy two symmetry relations

φ±(x, t,−λ) = σ3φ±(x, t, λ)σ3,

φ∗
∓(−x, t,−λ∗) = Kφ±(x, t, λ)K−1,

where

K =

(
0 −ε

1 0

)
.

For individual columns,

φ±1(x, t,−λ) = σ3φ±1(x, t, λ), φ±2(x, t,−λ) = −σ3φ±2(x, t, λ), (2.16)

φ∗
∓1(−x, t,−λ∗) = K−1φ±2(x, t, λ), φ∗

∓2(−x, t,−λ∗) = Kφ±1(x, t, λ). (2.17)
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Proof. For the first symmetry relation, for all λ ∈ Σ, the matrices U(λ) and V (λ) satisfy the symmetry

U(−λ) = σ3U(λ)σ3, V (−λ) = σ3V (λ)σ3.

It is easy to see that φ±(x, t,−λ) and σ3φ±(x, t, λ)σ3 satisfy the same spectral problem and have the same

asymptotic form as φ±(x, t, λ) (we let φ̃± denote any of these function for convenience):

∂

∂x
(φ̃±(x, t, λ)) = U(−λ)φ̃±(x, t, λ),

∂

∂t
(φ̃±(x, t, λ)) = V (−λ)φ̃±(x, t, λ),

φ̃±(x, t, λ) → eθ(x,t,λ)σ3, x → ±∞, λ ∈ Σ.

(2.18)

Hence, we obtain the desired result by the uniqueness of Jost solutions. Similar arguments hold for the

second symmetry condition because

−U∗(−x, t,−λ∗) = KU(x, t, λ)K−1, V ∗(−x, t,−λ∗) = KV (x, t, λ)K−1.

Corollary 1. The scattering matrix S(λ) has two symmetries

S(λ) = σ3S(−λ)σ3, S∗(−λ∗) = KS−1(λ)K−1, (2.19)

or in component form,

s11(λ) = s11(−λ), s12(λ) = −s12(−λ),

s21(λ) = −s21(−λ), s22(λ) = s22(−λ),

s11(λ) = s∗11(−λ∗), s22(λ) = s∗22(−λ∗), s12(λ) = εs∗21(−λ∗).

(2.20)

Proof can be directly obtained from Proposition 3 and the scattering relation in (2.11).

2.4. Asymptotic behavior. As λ → ∞, the asymptotic behavior of the modified Jost solutions

μ±(x, t, λ) and the scattering matrix S(λ) can be derived from (2.7a) by the Wentzel–Kramers–Brillouin

expansion.

Proposition 4. The large-λ asymptotic form of the modified Jost solutions μ±(x, t, λ) is

μ±(x, t, λ) = eν±σ3 +
μ
[1]
± (x, t)

λ
+O(λ−2), λ → ∞, (2.21)

where the off-diagonal part of μ
[1]
± (x, t) is given by

μ
[1]
±o(x, t) =

1

2
Pσ3e

ν±σ3 , (2.22)

and

ν±(x, t) = −ε

2

∫ x

±∞
q(ξ, t)q∗(−ξ, t) dξ. (2.23)
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Proof. We suppose that the μ±(x, t, λ) have the following expansions as λ → ∞:

μ±(x, t, λ) = μ
[0]
± (x, t) +

μ
[1]
± (x, t)

λ
+

μ
[2]
± (x, t)

λ2
+O(λ−3), λ → ∞.

Substituting these relations in (2.7a), we find

(
μ
[0]
± +

μ
[1]
±
λ

+
μ
[2]
±
λ2

+ · · ·
)
x
+ λ2

[(
μ
[0]
± +

μ
[1]
±
λ

+
μ
[2]
±
λ2

+ · · ·
)
, σ3

]
= λP

(
μ
[0]
± +

μ
[1]
±
λ

+
μ
[2]
±
λ2

+ · · ·
)
.

From the second-order terms in λ, we obtain

[μ
[0]
± , σ3] = 0,

which implies that μ
[0]
± (x, t) is a diagonal matrix. For convenience, we let aij(x, t) and bij(x, t) respectively

denote μ
[0]
± (x, t) and μ

[1]
± (x, t). Similarly to the foregoing, from the coefficients of the first-order terms in λ,

we obtain

a11(x, t) = −2

ε

b21(x, t)

q∗(−x, t)
, a22(x, t) = −2

b12(x, t)

q(x, t)
.

And terms of the zeroth order in λ yield

a11x(x, t) = q(x, t)b21(x, t), a22x(x, t) = −εq∗(−x, t)b12(x, t).

Hence, using boundary conditions (2.6), we deduce that

a11(x, t) = eν± , a22(x, t) = e−ν± ,

b12(x, t) = −q(x, t)

2
e−ν± , b21(x, t) = −εq∗(−x, t)

2
eν± .

We have thus established asymptotic behavior (2.21).

Proposition 5. The asymptotic behavior of the scattering matrix is

S(λ) = eνσ3 +O(λ−1), λ → ∞, (2.24)

where

ν = −ε

2

∫ +∞

−∞
q(x, t)q∗(x, t) dx. (2.25)

Proof. Substituting the asymptotic forms of the modified Jost solutions μ±(x, t, λ) given by (2.21) in

the Wronskian representations (2.14) of the scattering coefficients, we derive the asymptotic behavior for

the scattering matrix S(λ) by simple computation.

2.5. Discrete spectrum and residue conditions. For the NL-DNLS equation, the discrete spec-

trum for the scattering problem is the set of all values λ ∈ C\Σ such that eigenfunctions exist in L2(R).

We show that these values are the zeros of s11(λ) in D+ and the zeros of s22(λ) in D−.
We suppose that s11(λ) has a finite number N1 of simple zeros k1, . . . , kN1 , in D+ ∩ {λ ∈ C |

Reλ > 0, Imλ � 0}. That is, let s11(kn) = 0 and s′11(kn) �= 0, with kn ∈ D+, Re kn > 0 and Im kn � 0 for

n = 1, . . . , N1, where the prime denotes differentiation with respect to λ. Owing to the symmetries (2.20),

we have

s11(kn) = s11(−kn) = s∗11(k
∗
n) = s∗11(−k∗n) = 0.
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Similarly, if ζn is a simple zero of s22(λ), so are −ζn, ζ
∗
n, −ζ∗n, with ζn ∈ D−, Re ζn � 0, and Im ζn > 0

for n = 1, . . . , N2. That is,

s22(ζn) = s22(−ζn) = s∗22(ζ
∗
n) = s∗22(−ζ∗n) = 0.

Notably, the eigenvalues kn and ζn are not related, which is different from the case of the DNLS

equation. Thus, the discrete spectrum is the set

Λ = {±kn,±k∗n}N1
n=1 ∪ {±ζn,±ζ∗n}N2

n=1. (2.26)

Next, we focus on the residue conditions, which are needed for the inverse problem. Recalling the

Wronskian representation of s11(λ), the Jost solutions φ−1(x, t, λ) and φ+2(x, t, λ) with λ = kn must be

linearly dependent,

φ−1(x, t, kn) = bnφ+2(x, t, kn), (2.27)

where bn is nonzero and independent of x, t, and λ. Similar arguments hold for the scattering coeffi-

cient s22(λ), and hence

φ−2(x, t, ζn) = dnφ+1(x, t, ζn), (2.28)

where dn admits same properties as bn. We can rewrite (2.27) and (2.28) equivalently as

μ−1(x, t, kn) = bne
−2θ(x,t,kn)μ+2(x, t, kn), (2.29)

μ−2(x, t, ζn) = dne
2θ(x,t,ζn)μ+1(x, t, ζn). (2.30)

For the NL-DNLS equation, we show that the eigenvalues kn and ζn cannot lie on the coordinate axis

simultaneously. First, let the eigenvalues kn be real, i.e., kn = k∗n; it then follows from (2.29) and the first

equation in (2.17) that

ε|bn|2 = 1. (2.31)

Similarly, supposing that the scattering coefficient s22(λ) has an imaginary simple zero ζn = −ζ∗n, we can

show that

−ε|dn|2 = 1. (2.32)

We return to the discussion of residue conditions. We now conclude that

Res
λ=kn

μ−1(x, t, λ)

s11(λ)
= Cnμ+2(x, t, kn), Cn(x) =

bn
s′11(kn)

e−2θ(x,kn). (2.33)

To obtain the remaining three points of the eigenvalue quartet in D+, we apply the symmetry properties

of the Jost solutions and scattering coefficient s11(λ), with the result

Res
λ=−kn

μ−1(x, t, λ)

s11(λ)
= −Cnσ3μ+2(x, t, kn),

Res
λ=k∗

n

μ−1(x, t, λ)

s11(λ)
= Cnσ3K

−1μ∗
+2(−x, t, kn),

Res
λ=−k∗

n

μ−1(x, t, λ)

s11(λ)
= −CnK

−1μ∗
+2(−x, t, kn), Cn =

1

[s′11(kn)]∗
.
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Similarly, we have

Res
λ=ζn

μ−2(x, t, λ)

s22(λ)
= Dnμ+1(x, t, ζn),

Res
λ=−ζn

μ−2(x, t, λ)

s22(λ)
= Dnσ3μ+1(x, t, ζn), Dn(x) =

dn
s′22(ζn)

e2θ(x,ζn),

Res
λ=ζ∗

n

μ−2(x, t, λ)

s22(λ)
= −Dnσ3Kμ∗

+1(−x, t, ζn),

Res
λ=−ζ∗

n

μ−2(x, t, λ)

s22(λ)
= −DnKμ∗

+1(−x, t, ζn), Dn =
1

[s′22(ζn)]∗
.

3. Inverse Problem

3.1. Riemann–Hilbert problem. As usual, we introduce the sectionally meromorphic matrices

N+(x, t, λ) =

(
μ−1(x, t, λ)

s11(λ)
, μ+2(x, t, λ)

)
,

N−(x, t, λ) =
(
μ+1(x, t, λ),

μ−2(x, t, λ)

s22(λ)

)
.

(3.1)

From scattering relations (2.11), we obtain the jump condition

N+(x, t, λ) = N−(x, t, λ)(I − J(x, t, λ)), λ ∈ Σ, (3.2)

where the jump matrix is

J(x, t, λ) = eθ(x,t,λ)σ3J0(λ)e
−θ(x,t,λ)σ3 =

(
ρ(λ)ρ̃(λ) ρ̃(λ)e2θ(x,t,λ)

−ρ(λ)e−2θ(x,t,λ) 0

)
. (3.3)

To complete the Riemann–Hilbert problem, normalization conditions must be established. Given the asymp-

totic behavior of the modified Jost functions μ±(x, t, λ) and scattering coefficients, it is easy to see that

N±(x, t, λ) = eν+σ3 +O(λ−1), λ → ∞. (3.4)

Equations (3.1)–(3.4) define a matrix Riemann–Hilbert problem.

To solve the Riemann–Hilbert problem, we need to subtract the asymptotic behavior and the pole

contributions. Hence, we rewrite the jump condition as

N+(x, t, λ) − eν+σ3 −Δ = N−(x, t, λ)− eν+σ3 −Δ−N−(x, t, λ)J(x, t, λ), λ ∈ Σ, (3.5)

where we introduce the pole part

Δ =

N1∑
n=1

(
Res kn N+

λ− kn
+

Res−kn
N+

λ+ kn
+

Res k∗
n
N+

λ− k∗n
+

Res−k∗
n
N+

λ+ k∗n

)
+

+

N2∑
n=1

(
Res ζn N−

λ− ζn
+

Res−ζn N−

λ+ ζn
+

Res ζ∗
n
N−

λ− ζ∗n
+

Res−ζ∗
n
N−

λ+ ζ∗n

)
. (3.6)

We introduce the projection operators

P±[f ](λ) =
1

2πi

∫
Σ

f(ζ)

ζ − (λ± i0)
dζ,

where the notation λ± i0 indicates that when λ ∈ Σ, the limit is taken from the left/right of it. Applying

the projection operators to (3.5) leads to

N(x, t, λ) = eν+σ3 +Δ− 1

2πi

∫
Σ

N−(x, t, ξ)J(x, t, ξ)
ξ − λ

dξ, λ ∈ C\Σ. (3.7)
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3.2. Reconstruction formula. Our last task is to reconstruct the potential for the NL-DNLS equa-

tion with ZBCs from the scattering data. We have

q(x, t) = −2eν+ lim
λ→∞

(λμ+)12(x, t, λ). (3.8)

We compare the element 1,2 in expression (3.7) with (3.8). The reconstruction formula for the potential is

then given by

q(x, t) = −2eν+
{ N2∑

n=1

[2Dnμ+11(x, t, ζn) + 2εDnμ
∗
+21(−x, t, ζn)] +

1

2πi

∫
Σ

[N−(ξ)J(ξ)]12 dξ
}
. (3.9)

To close the system, we need to obtain expressions for the eigenfunctions appearing in (3.9). They are

given by

μ+1(x, t, w) =

(
eν+

0

)
+

N1∑
n=1

[(
1

w − kn
− σ3

w + kn

)
Cnμ+2(x, t, kn) +

+

(
1

w − k∗n
− σ3

w + k∗n

)
Cnσ3K

−1μ∗
+2(−x, t, kn)

]
−

− 1

2πi

∫
Σ

(N−(ξ)J(ξ))1
ξ − λ

dξ, (3.10)

μ+2(x, t, w̃) =

(
0

e−ν+

)
+

N2∑
n=1

[(
1

w̃ − ζn
+

σ3

w̃ + ζn

)
Dnμ+1(x, t, ζn)−

−
(

1

w̃ − ζ∗n
+

σ3

w̃ + ζ∗n

)
Dnσ3Kμ∗

+1(−x, t, ζn)

]
−

− 1

2πi

∫
Σ

(N−(ξ)J(ξ))2
ξ − λ

dξ, (3.11)

where w = ±ζj ,±ζ∗j and w̃ = ±kj ,±k∗j .

3.3. Trace formula. We recall that s11(λ) is analytic in D+ and it has simple zeros at the points

{±kn,±k∗n}N1
n=1, while s22(λ) is analytic in D− with has simple zeros at the points {±ζn,±ζ∗n}N2

n=1. We set

β+(λ) = s11(λ)e
−ν

∏N2

j=1(λ− ζj)(λ + ζj)(λ− ζ∗j )(λ+ ζ∗j )∏N1

j=1(λ− kj)(λ+ kj)(λ − k∗j )(λ+ k∗j )
,

β−(λ) = s22(λ)e
ν

∏N1

j=1(λ− kj)(λ+ kj)(λ − k∗j )(λ+ k∗j )∏N2

j=1(λ− ζj)(λ + ζj)(λ− ζ∗j )(λ+ ζ∗j )
.

It follows that β±(λ) is analytic in D±, has no zeros, and β±(λ) → 1 as λ → ∞. Moreover, we have the

relation

β+(λ)β−(λ) =
1

1− ρ(λ)ρ̃(λ)
. (3.12)

Taking the logarithms and applying the Cauchy projectors to (3.12), we have

lnβ±(λ) = ∓ 1

2πi

∫
Σ

ln(1− ρ(ξ)ρ̃(ξ))

ξ − λ
dξ, λ ∈ D±. (3.13)
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Substituting β+(λ) in s11(λ), we obtain the trace formula in terms of the discrete spectrum and the reflection

coefficients,

s11(λ) = eν
∏N1

j=1(λ− kj)(λ+ kj)(λ− k∗j )(λ + k∗j )∏N2

j=1(λ− ζj)(λ + ζj)(λ − ζ∗j )(λ + ζ∗j )
exp

(
− 1

2πi

∫
Σ

ln(1− ρ(ξ)ρ̃(ξ))

ξ − λ
dξ

)
,

where λ ∈ D+. In the same way, substituting β−(λ) in s22(λ), we obtain

s22(λ) = e−ν

∏N2

j=1(λ− ζj)(λ+ ζj)(λ − ζ∗j )(λ + ζ∗j )∏N1

j=1(λ− kj)(λ + kj)(λ− k∗j )(λ + k∗j )
exp

(
1

2πi

∫
Σ

ln(1− ρ(ξ)ρ̃(ξ))

ξ − λ
dξ

)
,

where λ ∈ D−.

3.4. Reflectionless potential. For simplicity, we now restrict ourself to the important case where

the reflection coefficient ρ(λ) vanishes identically and N1 = N2 = N . From Volterra integral equation (2.9),

it then follows that μ±(x, t, 0) = I.

We note that formula (3.9) is implicit because it involves eν+ . We need to find its explicit form.

For this, we substitute λ = 0 in (3.10) to obtain

eν+ = 1 + 2

N∑
n=1

[
1

kn
Cn(x)μ+12(x, t, kn) +

1

k∗n
Cnμ

∗
+22(−x, t, kn)

]
. (3.14)

Using reconstruction formula (3.9) with a reflectionless potential, we rewrite Eqs. (3.10) and (3.11) as

μ+11(x, t, ζj) = eν+ +
N∑

n=1

[
2kn

ζ2j − k2n
Cn(x)μ+12(x, t, kn) +

2k∗n
ζ2j − k∗2n

Cnμ
∗
+22(−x, t, kn)

]
,

μ∗
+21(−x, t, ζj) =

N∑
n=1

[
2ζ∗j

ζ∗2j − k∗2n
C∗

n(−x)μ∗
+22(−x, t, kn) +

2ζ∗j
ζ∗2j − k2n

εC∗
nμ+12(x, t, kn)

]

where j = 1, . . . , N , and

μ+12(x, t, kn) =

N∑
j=1

[
2kn

k2n − ζ2j
Dj(x)μ+11(x, t, ζj) +

2kn
k2n − ζ∗2j

εDjμ
∗
+21(−x, t, ζj)

]
,

μ∗
+22(−x, t, kn) = eν−+

N∑
j=1

[
2ζj

k∗2n − ζ2j
D∗

jμ+11(x, t, ζj)+
2ζ∗j

k∗2n − ζ∗2j
D∗

j (−x)μ∗
+21(−x, t, ζj)

]
,

where n = 1, . . . , N .

For the vanishing reflection coefficient, the trace formula becomes

s11(λ) = eν
N∏
j=1

(λ− kj)(λ+ kj)(λ − k∗j )(λ+ k∗j )
(λ − ζj)(λ + ζj)(λ− ζ∗j )(λ+ ζ∗j )

, λ ∈ D+, (3.15)

s22(λ) = e−ν
N∏
j=1

(λ− ζj)(λ+ ζj)(λ− ζ∗j )(λ+ ζ∗j )
(λ− kj)(λ+ kj)(λ − k∗j )(λ+ k∗j )

, λ ∈ D−. (3.16)

From the reconstruction formula given by (3.9), we then have the following proposition.
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Proposition 6. The explicit solution of the NL-DNLS equation with ZBCs can be written as

q(x, t) = 2
detG1

detG

detZ

detG
, Z =

(
0 YT

B G

)
, G = I+ F, (3.17)

where B = (B1, . . . , B4N+1)
T, YT = (Y1, . . . , Y4N+1) and G1 denotes the matrix G with the first column

replaced by the vector B. Elements of the matrices B, Y, and F are defined as

Bi =

⎧⎨
⎩1, i = 1,

0, i = 2, . . . , 4N + 1;
Yi =

⎧⎪⎪⎨
⎪⎪⎩
0, i = 1, . . . , 2N + 1,

2Di−2N−1(x), i = 2N + 2, . . . , 3N + 1,

2εDi−3N−1, i = 3N + 2, . . . , 4N + 1;

Fij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−eν− , i = N + 2, . . . , 2N + 1, j = 1,

−1, i = 2N + 2, . . . , 3N + 1, j = 1,

− 2

kj−1
Cj−1(x), i = 1, j = 2, . . . , N + 1,

− 2

k∗j−N−1

Cj−N−1, i = 1, j = N + 2, . . . , 2N + 1,

− 2ki−1

k2i−1 − ζ2j−2N−1

Dj−2N−1(x),

i = 2, . . . , N + 1, j = 2N + 2, . . . , 3N + 1,

− 2ki−1

k2i−1 − ζ∗2j−3N−1

εDj−3N−1,

i = 2, . . . , N + 1, j = 3N + 2, . . . , 4N + 1,

− 2ζj−2N−1

k∗2i−N−1 − ζ2j−2N−1

D∗
j−2N−1,

i = N + 2, . . . , 2N + 1, j = 2N + 2, . . . , 3N + 1,

− 2ζ∗j−3N−1

k∗2i−N−1 − ζ∗2j−3N−1

D∗
j−3N−1(−x),

i = N + 2, . . . , 2N + 1, j = 3N + 2, . . . , 4N + 1,

− 2kj−1

ζ2i−2N−1 − k2j−1

Cj−1(x),

i = 2N + 2, . . . , 3N + 1, j = 2, . . . , N + 1,

− 2k∗j−N−1

ζ2i−2N−1 − k∗2j−N−1

Cj−N−1,

i = 2N + 2, . . . , 3N + 1, j = N + 2, . . . , 2N + 1,

− 2ζ∗i−3N−1

ζ∗2i−3N−1 − k2j−1

εC∗
j−1,

i = 3N + 2, . . . , 4N + 1, j = 2, . . . , N + 1,

− 2ζ∗i−3N−1

ζ∗2i−3N−1 − k∗2j−N−1

C∗
j−N−1(−x),

i = 3N + 2, . . . , 4N + 1, j = N + 2, . . . , 2N + 1,

0 otherwise.
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4. Examples

We will give examples of soliton solutions with some special fixed parameters in two cases and present

them graphically.

Case 1: ε = 1. In this case, in accordance with Eq. (2.31), we first take kn = k∗n for the discrete

spectrum. Trace formula (3.15) then becomes

1 = eν
N∏

n=1

−k2n
|ζn|4 ,

which is a contradiction. Hence, there is no solution for NL-DNLS equation (1.2).

We next take kn �= k∗n. At N = 1, the explicit solution is extremely complicated, and we give a two-

bright-soliton solution of the NL-DNLS equation (1.2) with ZBCs for the parameters b1 = e1+i, d1 = e1+i,

k1 = eπi/6, ζ1 = eπi/3. So q(x, t) = Q1(x,t)
Q2(x,t)

, where

Q1(x, t) = {[3 cosh(2x− 2i)e−4
√
3t+2 + (−

√
3 + i)e−8

√
3t+4 +

+ e−4
√
3t+2 sin(2

√
3x)− i−

√
3 ]×

× [(−3i−√
3 )e−6

√
3t+2it+3(ei−x−√

3ix + ie−i+x+
√
3ix) +

+ (3i−√
3 )e−2

√
3t+2it+1(ei−x+

√
3ix − ie−i+x−√

3ix)]},

Q2(x, t) = [− 3 cosh(2x− 2i)e−4
√
3t+2 + (

√
3 + i)e−8

√
3t+4 +

+ e−4
√
3t+2 sin(2

√
3x)− i+

√
3 ]2.

The two-bright-soliton solution is illustrated in Fig. 1.

Case 2: ε = −1. On the one hand, we can take ζn = −ζ∗n. Trace formula (3.15) then yields

1 = eν
N∏

n=1

|kn|4
|ζn|2 ,

which is valid. But the derived solution is not a soliton solution because of the appearance of the singular-

ities.

On the other hand, if ζn �= −ζ∗n, the two-soliton solution of NL-DNLS (1.2) with ZBCs is made of

two breathers. Choosing the parameters b1 = 1, d1 = 1, k1 = eπi/6, and ζ1 = eπi/3, we then have

q(x, t) = Q3(x,t)
Q4(x,t)

with

Q3(x, t) = −2i
√
3{[e−4

√
3t(−2i sinh(2

√
3ix)− 6 cosh(2x)) +

+ 2(i+
√
3 ) + 2e−8

√
3t(

√
3− i)]×

× [(
√
3− i)e2it−6

√
3t(e−x−i

√
3x − iex+i

√
3x) +

+ (
√
3 + i)e2it−2

√
3t(e−x+i

√
3x + iex−i

√
3x)]},

Q4(x, t) = [e−4
√
3t(−2i sinh(2

√
3ix) + 6 cosh(2x)) + 2(i−

√
3 )− 2e−8

√
3t(i+

√
3 )]2.

The two-breather soliton solution is illustrated in Fig. 2.
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Fig. 1. A two-bright-soliton solution for the NL-DNLS equation (1.2) with N = 1, ε = 1, b1 = e1+i,

d1 = e1+i, k1 = eπi/6, and ζ1 = eπi/3: (a) the three-dimensional profile, (b) wave propagation along x

for t = 0, 1, 2.

Fig. 2. A two-breather soliton solution of the NL-DNLS equation with N = 1, ε = −1, b1 = 1,

d1 = 1, k1 = eπi/6, and ζ1 = eπi/3: (a) the three-dimensional profile, (b) wave propagation along x

for t = 0, 1, 2.
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