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THE GENERAL FIFTH-ORDER NONLINEAR SCHRÖDINGER

EQUATION WITH NONZERO BOUNDARY CONDITIONS: INVERSE

SCATTERING TRANSFORM AND MULTISOLITON SOLUTIONS

Xiu-Bin Wang∗ and Bo Han∗

We study the inverse scattering transform of the general fifth-order nonlinear Schrödinger (NLS) equation

with nonzero boundary conditions (NZBCs), which can be reduced to several integrable equations. First,

a matrix Riemann–Hilbert problem (RHP) for the fifth-order NLS equation with NZBCs at infinity is

systematically investigated. Moreover, the inverse problems are solved by studying a matrix RHP. We

construct the general solutions for reflectionless potentials. The trace formulas and theta conditions are

also presented. In particular, we analyze the simple-pole and double-pole solutions for the fifth-order NLS

equation with NZBCs. Finally, we discuss the dynamics of the obtained solutions in terms of their plots.

The results in this work should be helpful in explaining and enriching the nonlinear wave phenomena in

nonlinear fields.
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1. Introduction

The fundamental nonlinear Schrödinger (NLS) equation

iqt + qxx + 2|q|2q = 0 (1.1)

is famous as a key integrable model in the field of mathematical physics. There are many physical contexts

where the NLS equation arises. For instance, the NLS equation describes weakly nonlinear surface waves

in deep water. More importantly, the NLS equation models the soliton propagation in optical fibers where

only the group velocity dispersion and self-phase modulation effects are taken into account. However, for

ultrashort pulses in optical fibers, the effects of higher-order dispersion, self-steepening, and stimulated

Raman scattering should be considered. Besides, the higher-order dispersion terms and non-Kerr nonlin-

earity effects have found interesting applications in optics [1]–[3]. Thus, continued research of higher-order

NLS equations is inevitable and worthwhile. Due to these effects, the propagation of subpicosecond and

femtosecond pulses can be described by the general integrable four-parameter (α2, α3, α4, α5) fifth-order

NLS (GFONLS) equation [4]–[6]

iψt + α2K2(ψ)− iα3K3(ψ) + α4K4(ψ)− iα5K5(ψ) = 0, (1.2)
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where
K2 = ψxx + 2(|ψ|2 − ψ2

0)ψ,

K3 = ψxxx + 6|ψ|2ψx,

K4 = ψxxxx + 8|ψ|2ψxx + 6(|ψ|4 − ψ4
0)ψ + 4|ψx|2ψ + 6ψ∗ψ2

x + 2ψ2ψ∗
xx,

K5 = ψxxxxx + 10|ψ|2ψxxx + 10(ψ|ψx|2)x + 20ψ∗ψxψxx + 30|ψ|4ψx.

(1.3)

Recently, considerable attention has been given to the inverse scattering transform (IST) to study

integrable nonlinear wave equations with NZBCs using solutions of the related RHP. The approach has

been extended to the focusing and defocusing NLS equation, the focusing and defocusing Hirota equations,

the nonlocal modified KdV equation, the derivative NLS equation, and other equations [7]–[20]; many types

of nonlinear waves have been discussed. In this paper, motivated by the work of Ablowitz [8], we extend

the IST to study GFONLS equation (1.2) with the NZBCs at infinity

lim
x→∞ψ(x, t) = ψ±, (1.4)

where |ψ±| = ψ0 �= 0. Equation (1.2) includes numerous important nonlinear wave equations as its special

cases [21]–[32]. Here, we list some crucial cases.

Case 1. If α3 = α4 = α5 = 0, α2 = 1, Eq. (1.2) can be reduced to the fundamental NLS equation (1.1)

with NZBCs:

iψt + ψxx + 2(|ψ|2 − ψ2
0)ψ = 0. (1.5)

Case 2. If α4 = α5 = 0, Eq. (1.2) can be reduced to the Hirota equation with NZBCs [21]:

iψt + α2(ψxx + 2(|ψ|2 − ψ2
0))ψ + iα3(ψxxx + 6|ψ|2ψx) = 0. (1.6)

Case 3. If α3 = 1, α2 = α4 = α5 = 0, Eq. (1.2) can be reduced to the complex modified Korteweg–de

Vries (mKdV) equation [22], [23]

ψt + ψxxx + 6|ψ|2ψx = 0. (1.7)

To the best of our knowledge, although many mathematical physicist have studied the particular cases

of Eq. (1.2), the IST for Eq. (1.2) with NZBCs has not been reported. The GFONLS equation (1.2) is

completely integrable, its Lax pair is given by [6]

φx = Uφ, U = ikσ3 +Q,

φt = V φ, V = α2ΔNLS + α3ΔmKdV + α4ΔLPD + α5ΔFOQ + 3iα4σ3,
(1.8)

where the eigenfunction φ = φ(x, t, λ) is a 2× 2 matrix function, σ3 = diag{1,−1}, and the matrices Q, V0,

L, M , and N are

ΔNLS = −2kU + iσ3(Qx −Q2 − ψ2
0),

ΔmKdV = −2k(ΔNLS + iψ2
0σ3)− [Q,Qx]−Qxx + 2Q3,

ΔLPD = 2k[−(4ik3 + k2Q+ kV0) + L0] +M0, ΔFOQ = −2kΔLPD +N0,

(1.9)

with

Q =

(
0 ψ

−ψ∗ 0

)
, V0 =

1

2

(
−i|ψ|2 −ψx

ψ∗
x i|ψ|2

)
, N0 =

(
n1 −n∗

2

n2 −n1

)
,

L0 =

(
ψψ∗

x − ψ∗ψx i(ψxx + 2|ψ|2ψ)
i(ψ∗

xx + 2|ψ|2ψ∗) ψ∗ψx − ψψ∗
x

)
, M0 =

(
m1 −m∗

2

m2 −m1

)
,

m1 = −i[(ψψxx)
∗ − |ψx|2 + 3|ψ|4], m2 = ψ∗

xxx + 6|ψ|2ψ∗
x,

n1 = ψxxx(ψ − ψ∗)− ψxψ
∗
xxψ

∗
xψxx + 6|ψ|2(ψψ∗

x − ψ∗ψx),

n2 = i(ψ∗
xxxx + 2ψ∗2ψxx + 4|ψ2

xψ
∗|+ 6ψψ∗2

x + 8|ψ|2ψ∗
xx + 6|ψ|4ψ∗),

(1.10)

where ψ∗(x, t) is the complex conjugate of ψ(x, t) and k is a constant spectral parameter.

9



It is well known that the IST is a powerful method to construct soliton solutions [15], [33]–[49]. However,

the research described in this paper, within our knowledge, has not been reported before. The main purpose

of this paper is to use the IST to derive multisoliton solutions of GFONLS equation (1.2) with NZBCs (1.4).

In addition, some figures are presented to discuss the behavior of solitons of GFONLS equation (1.2).

The main results in this paper are stated in the following theorems.

Theorem 1.1. The reflectionless potential with simple poles for GFONLS equation (1.2) with

NZBCs (1.4) can be represented as

ψ(x, t) = ψ− + i

det

(
G v

wT 0

)

detG
, (1.11)

where w=(wj)2N×1, v=(vj)2N×1, G=(gsj)2N×2N , and y=(yn)2N×1 =G−1v with wj =A−[ξ̂j ]e2iθ(x,t,
̂ξj),

vj = −iq−/ξj , gsj = wj/(ξs − ξ̂j) + vsδsj , and yn = μ−11(x, t, ξ̂n).

Theorem 1.2. The reflectionless potential with double poles for GFONLS equation (1.2) with

NZBCs (1.4) can be written as

ψ(x, t) = ψ− + i

det

(
H v

wT 0

)

detH
, (1.12)

where

H = (H(sj))2×2, H(sj) = (h
(sj)
kn )2N×2N , h

(11)
kn = Ĉn(ξk)

(
Dn +

1

ξk − ξ̂n

)
− iψ−

ξk
δkn,

h
(12)
kn = Ĉn(ξk), h

(21)
kn =

Ĉn

ξk − ξ̂n
(ξk)

(
Dn +

2

ξk − ξ̂n

)
− iψ−

ξ2k
δkn,

h
(22)
kn =

Ĉn(ξk)

ξk − ξn
+
iψ−ψ2

0

ξ3k
δkn, w(1)

n = A−[ξ̂n]e2iθ(ξn)D̂n,

w(2)
n = A−[ξ̂n]e2iθ(ξn), v(1)n = −ψ−

ξn
, v(2)n = −ψ−

ξ2n
.

The outline of this paper is as follows. In Sec. 2, we analyze the direct scattering problem for the

GFONLS equation (1.2) with NZBCs (1.4) starting from its Lax pairs. In Sec. 3, we discuss the GFONLS

equation (1.2) with NZBCs (1.4) and obtain its simple-pole solution by solving an RHP with reflectionless

potentials. Similarly, in Sec. 4 we analyze the GFONLS equation (1.2) with NZBCs (1.4) and derive its

double-pole solutions by solving a matrix RHP. Finally, conclusions and a discussion are presented in Sec. 5.

2. Direct scattering problem

We first discuss the first expression in (1.8) as the scattering problem of Eq. (1.4). As x → ±∞,

the scattering problem yields

φx = U±φ, U± = lim
x→±∞U = ikσ3 +Q±, (2.1)

and

Q± = lim
x→±∞Q(x, t) =

(
0 ψ±

−ψ∗
± 0

)
. (2.2)
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Consequently, the standard matrix solutions of Eq. (2.1) are defined by

φfbg(x, t, k) =

⎧⎨
⎩E

f
±(k)eiθ(x,t,k)σ3 , k �= ±iψ0,

I + [x− 2(α2k + 3α3ψ
2
0 + 6α4iψ

3
0 + α5(−8ψ4

0 − 7ψ2
0))t]U±, k = ±iψ0,

(2.3)

where I is the 2× 2 unit matrix and

Ef
±(k) =

⎛
⎜⎝ 1

iψ±
k + λ

iψ∗
±

k + λ
1

⎞
⎟⎠ ,

θ(x, t, k) = λ(k){x + [α5(−16k4 + 8k2 − 6ψ2
0) +

+ α4(8k
3 − 4kψ2

0) + α3(4k
2 − 2ψ2

0)− 2α2k]t},

(2.4)

with

λ2 = k2 + ψ2
0 . (2.5)

To further study the analyticity of the Jost solutions of (1.8), we must consider the regions Imλ(k) > 0

(< 0) for the function θ(x, t, k) [9]. Taking ψ0 �= 0, i.e., assuming NZBCs, the function λ(k) satisfying (2.5)

on the complex plane is a doubly branched function of k with two branch points k �= ±iψ0 and the branch

cut given by the segment iψ0[−1, 1]. We take k ± iψ0 = r±eiθ±+2im±π (r± > 0, θ± ∈ [−π/2, 3π/2],
m± ∈ Z). Two single-valued analytic branches of the complex k-plane are expressed by sheet I, λI(k) =√
r+r−ei(θ++θ−)/2, and sheet II, λII(k) = −λI(k). We introduce a uniformization variable z given by the

conformal map z = k + λ, the inverse map being

k(z) =
1

2

(
z − ψ2

0

z

)
, λ(z) =

1

2

(
z +

ψ2
0

z

)
. (2.6)

In particular, if ψ0 = 0, the NZBCs reduce to zero boundary conditions.

We take A = iψ0[−1, 1] with C0 = {z ∈ C : |z| = ψ0}, and (see Fig. 1)

Df
+ = {z ∈ C : (|z|2 − ψ2

0) Im z > 0}, Df
− = {z ∈ C : (|z|2 − ψ2

0) Im z < 0}. (2.7)

The continuous spectrum of U± = limx→±∞ U is the set of all values of z satisfying λ(z) ∈ R, i.e.,

z ∈ Σf = R ∪ C0, which are the jump contours. As mentioned in [9], it follows from [U±, V±] = 0 that the

Jost solutions φ±(x, t, z) of both equations in (1.8) satisfy the boundary conditions

φ±(x, t, z) = Ef
±(z)e

iθ(x,t,z)σ3 +O(1), z ∈ Σf , x→ ±∞. (2.8)

In view of φx = U±φ + ΔQ±φ, ΔQ±(x, t) = Q(x, t) − Q± with Q± = limx→±∞Q, the modified Jost

solutions

μ±(x, t, z) = φ±(x, t, z)e−iθ(x,t,z)σ3 → Ef
±(z), x→ ±∞, (2.9)

take the final form

μ± =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ef
±(z)

{
I +

∫ x

±∞
eiλ(x−y)σ̂3 [(Ef

±(z))
−1ΔQ±(y, t)μ±(y, t, z)] dy

}
,

z �= ±iψ0, ψ − ψ± ∈ L1(R±),

Ef
±(z) +

∫ x

±∞
[I + (x− y)(Q± ∓ ψ0σ3)]ΔQ±(y, t)μ±(y, t, z) dy,

z = ±iψ0, (1 + |x|)(ψ − ψ±) ∈ L1(R±),

(2.10)

where eσ̂3A := eσ3Ae−σ3 .
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Fig. 1. The grey (white) region for Imλ > 0 and Imλ < 0 in different spectral planes of the Lax

pair with NZBCs. (a) the first sheet of the Riemann surface, showing the discrete spectrum; (b) the

complex z plane showing the discrete spectrum (zeros of s11(z) in the grey region and zeros of s22(z)

in the white region), and the orientation of the jump contours for the related RHP.

Let Σf
0 := Σf \ {±iψ0}, μ±(x, t, z) = (μ±,1, μ±,2) and φ±(x, t, z) = (φ±1, φ±2). Because expres-

sion (2.10) contains e±i(x−y), the following proposition follows from the properties of these functions in the

different domains and the definition (2.10) of μ±(x, t, z) as well as from relation (2.9) between μ±(x, t, z)
and φ(x, t, z) (also see [9]).

Proposition 2.1. If ψ − ψ± ∈ L1(R±), then the modified expressions μ±2(x, t, z) and the Jost func-

tions φ±2 given by (2.9) and (2.10) admit unique solutions in Σf
0 . In addition, μ+1(x, t, z), μ−2(x, t, z),

φ+1(x, t, z), and φ−2(x, t, z) can be continuously extended to Df
+ ∪ Σf

0 and analytically extended to Df
+,

while μ−1(x, t, z), μ+2(x, t, z), φ−1(x, t, z), and φ+2(x, t, z) can be continuously extended to Df
− ∪ Σf

0 and

analytically extended to Df
−.

Because trU(x, t, z) = trV (x, t, z) = 0, we have (detφ±)x = (detφ±)t = 0. Besides, from Liouville’s

formula, we can find

detφ± = lim
x→±∞μ± = detEf

±(z) = γf (z) = 1 +
ψ2
0

z2
�= 0, z �= ±iψ0 (2.11)

because both φ±(x, t, z) are primary matrix solutions of spectral problem (1.8). We thus find a constant

matrix S(z) such that

φ+(x, t, z) = φ−(x, t, z)S(z), z ∈ Σf
0 , (2.12)

where S(z) = (sij(z))2×2 are scattering coefficients. In accordance with (2.12), we have

s11(z) = γ−1
f (z)|φ+1(x, t, z), φ−2(x, t, z)|,

s12(z) = γ−1
f (z)|φ+1(x, t, z), φ+2(x, t, z)|,

s21(z) = γ+2
f (z)|φ+1(x, t, z), φ−2(x, t, z)|,

s22(z) = γ−1
f (z)|φ+1(x, t, z), φ+1(x, t, z)|,

(2.13)

and detS(z) = 1.
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Form Proposition 2.1, it is not difficult to see that the coefficients s11(z) and s22(z) in z ∈ Σf
0 can be

continuously extended to Df
+ ∪ Σf

0 and Df
− ∪ Σf

0 , and analytically extended to Df
+ and Df

−.
To discuss the matrix RHP in Sec. 3, we assume that s11(z)s22(z) �= 0 for z ∈ Σf , and S(z) is

continuous for z = iψ0. We can then obtain the so-called reflection coefficients

ρ(z) =
s21(z)

s11(z)
, ρ̂(z) =

s21(z)

s22(z)
, z ∈ Σf . (2.14)

3. Inverse scattering problem: simple pole

In this section, to construct the residue conditions and discrete spectrum, we introduce the symme-

tries of the scattering matrix S(k). From the results in [9], we have k(z) = k∗(z∗), k(z) = k(−ψ2
0/z),

λ(z) = λ̄(z∗), and λ(z) = −λ(−ψ2
0/z), and hence the symmetries of U , V , and θ are

U(x, t, z) = σ2U
∗(x, t, z∗)σ2, U(x, t, z) = U

(
x, t,−ψ

2
0

z

)
,

V (x, t, z) = σ2V (x, t, z∗)∗σ2, V (x, t, z) = V

(
x, t,−ψ

2
0

z

)
,

θ(x, t, z) = θ∗(x, t, z∗), θ(x, t, z) = −θ
(
x, t,−ψ

2
0

z

)
,

(3.1)

where σ2 =
(
0 −i
i 0

)
.

In view of these symmetries, Eqs. (1.8) and (2.9) yield

φ±(x, t, z) = σ2φ
∗
±(x, t, z

∗)σ2, φ±(x, t, z) =
i

z
φ±

(
x, t,−ψ

2
0

z

)
σ3Q±,

μ±(x, t, z) = σ2μ
∗
±(x, t, z

∗)σ2, μ±(x, t, z) =
i

z
μ±

(
x, t,−ψ

2
0

z

)
σ3Q±.

(3.2)

It follows from Eqs. (3.2) and (2.12) that

S(z) = σ2S
∗(z∗)σ2, S(z) = (σ3Q−)−1S

(
−ψ

2
0

z

)
σ3Q+, (3.3)

which leads to the symmetries between ρ(z) and ρ̂(z) in the form

ρ(z) = −ρ̂∗(z∗), ρ(z) =
q∗−
q−
ρ

(
−ψ

2
0

z

)
. (3.4)

The discrete spectrum is the set of all z ∈ C \Σf such that they admit eigenfunctions in L2(R). According

to [9], they satisfy s11(z) = 0 for z ∈ Df
+ and s22(z) = 0 for z ∈ Df

−, and hence the corresponding

eigenfunctions are in L2(R) in accordance with (2.13) and expression for φ± in (2.9).

In what follows, we require that s11(z) admit N simple zeros in

Df
+ ∩ {z ∈ C : |z| > ψ0, Im z > 0}

given by zn, n = 1, 2, . . . , N , i.e., s11(zn) = 0 and s′11(zn) �= 0, n = 1, 2, . . . , N . If s11(zn) = 0, we have

s22(z
∗
n) = s22(−ψ2

0/zn) = s11(−ψ2
0/z

∗
n) = 0. Thus, the discrete spectrum is the set

Zf =

{
zn,−ψ

2
0

z∗n
, z∗n,−

ψ2
0

zn

}N

n=1

, s11(zn) = 0,

zn ∈ Df
+ ∩ {z ∈ C : |z| > ψ0, Im z > 0}.

(3.5)
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Because s11(z0) = 0 and s′11(z0) �= 0 are taken for z0 ∈ Zf ∩Df
+, according to the first expression in (2.13),

the normalization constant b+(z0) is given by

φ+1(x, t, z0) = b+(z0)φ−2(x, t, z0). (3.6)

The residue condition for φ+1(x, t, z)/s11(z) in z0 ∈ Zf ∩Df
+ yields

Res
z=z∗

0

[
φ+1(x, t, z)

s11(z)

]
=
φ+1(x, t, z0)

s′11(z0)
=
b+(z0)

s′11(z0)
φ−2(x, t, z0). (3.7)

Similarly, from s22(z
∗
0) = 0 and s′22(z

∗
0) �= 0 for z∗0 ∈ Zf ∩Df

− and the second expression in (2.13), we also

see that the normalization constant b−(z∗0) is

φ−2(x, t, z
∗
0) = b−(z∗0)φ−1(x, t, z

∗
0). (3.8)

The residue condition φ+2(x, t, z)/s22(z) in z
∗
0 ∈ Zf ∩Df

− leads to

Res
z=z∗

0

[
φ+2(x, t, z)

s22(z)

]
=
φ+2(x, t, z

∗
0)

s′22(z
∗
0)

=
b−(z∗0)
s′22(z

∗
0)
φ−1(x, t, z

∗
0). (3.9)

For simplicity, we rewrite Eqs. (3.7) and (3.9) as

Res
z=z0

[
φ+1(x, t, z)

s11(z)

]
= A+[z0]φ−2(x, t, z0),

A+[z0] =
b+(z0)

s′11(z0)
, z0 ∈ Zf ∩Df

+,

Res
z=z∗

0

[
φ+1(x, t, z)

s11(z)

]
= A+[z

∗
0 ]φ−2(x, t, z

∗
0),

A+[z
∗
0 ] =

b+(z
∗
0)

s′11(z∗0)
, z∗0 ∈ Zf ∩Df

+.

(3.10)

It follows from (3.10) that

A+[z0] = −A∗
−[z

∗
0 ], A+[z0] =

z20
ψ2−

A−

[
−ψ

2
0

z0

]
, z0 ∈ Zf ∩Df

+, (3.11)

in terms of symmetries (3.2) and (3.3), which leads directly to

A+[zn] = −A∗
−[z

∗
n] =

z2n
ψ2−

A−

[
−ψ

2
0

zn

]
= − z2n

ψ2−
A∗

+

[
−ψ

2
0

z∗n

]
, zn ∈ Zf ∩Df

+. (3.12)

We rewrite the relation φ+(x, t, z) = φ−(x, t, z)S(z) as

φ+1(x, t, z)

s11(z)
= φ−1(x, t, z) + ρ(z)φ−2(x, t, z),

φ+2(x, t, z)

s22(z)
= ρ̂(z)φ−1(x, t, z) + φ−2(x, t, z),

(3.13)
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whence [
φ−1(x, t, z),

φ+2(x, t, z)

s22(z)

]
=

[
φ+1(x, t, z)

s11(z)
, φ−2(x, t, z)

]
[I − J0(x, t, λ)], (3.14)

with

J0 =

(
0 −ρ̂(z)
ρ(z) ρ(z)ρ̂(z)

)
. (3.15)

Similarly to [9], the asymptotics for the modified Jost solutions and scattering data satisfy

μ±(x, t, z) =

⎧⎪⎪⎨
⎪⎪⎩
I +O

(
1

z

)
, z → ∞,

i

z
σ3Q± +O(1), z → 0,

S(z) =

⎧⎪⎪⎨
⎪⎪⎩
I +O

(
1

z

)
, z → ∞,

ψ+

ψ−
I +O(z), z → 0.

(3.16)

Given the modified Jost functions, we introduce the sectionally meromorphic matrix

M(x, t, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M+(x, t, z) =

(
μ+1(x, t, z)

s11(z)
, μ−2(x, t, z)

)
=

=

(
φ+1(x, t, z)

s11(z)
, φ−2(x, t, z)

)
e−iθ(x,t,z)σ3 , z ∈ Df

+,

M−(x, t, z) =
(
μ−1(x, t, z),

μ+2(x, t, z)

s22

)
=

=

(
φ−1(x, t, z),

φ+2(x, t, z)

s22

)
e−iθ(x,t,z)σ3 , z ∈ Df

−.

(3.17)

Summarizing the above results, we have the following proposition.

Proposition 3.1. The matrix function M(x, t, z) has the following matrix RHP.

• Analyticity: M(x, t, z) is analytic in (Df
+ ∪Df

−) \ Zf ;

• Jump condition: M−(x, t, z) =M+(x, t, z)(I − J(x, t, z)), z ∈ Σf with J(x, t, z) = eiθ(x,t,z)σ̂3J0;

• Asymptotic behavior: M±(x, t, z) = I + (1/z) for z → ∞. In addition, M± = (i/z)σ3Q− + O(1)

for z → 0.

To conveniently deal with the above RHP (i.e., in Proposition 3.1), we set

ξn =

⎧⎪⎨
⎪⎩
zn, n = 1, 2, . . . , N,

− ψ2
0

z∗n−N

, n = N + 1, N + 2, . . . , 2N,
(3.18)

and ξ̂n = −ψ2
0/ξn. Then Zf = {ξn, ξ̂n}2Nn=1 with ξn ∈ Df

+ and ξ̂n ∈ Df
−. Subtracting the simple pole

contributions and the asymptotics, i.e.,

Msp(x, t, z) = I +
i

z
σ3Q− +

2N∑
n=1

[
Resz=ξn M

+(x, t, z)

z − ξn
+

Resz=ξ̂n
M−(x, t, z)

z − ξ̂n

]
, (3.19)

from both sides of the above jump condition M− =M+(I − J) leads to

M−(x, t, z)−Msp(x, t, z) =M+(x, t, z)−Msp(x, t, z)−M+(x, t, z)J(x, t, z). (3.20)
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Here, M±(x, t, z) → Msp(x, t, z) are analytic in Df
±. Furthermore, the asymptotics are both O(1/z)

as z → ∞ and O(1) as z → 0, and J(x, t, z) is O(1/z) as z → ∞ and O(z) as z → 0. Thus, the Cauchy

projectors

P±[f ](z) =
1

2πi

∫
Σf

f(ζ)

ζ − (z ± i0)
dζ (3.21)

(where z ± i0 is the limit taken from the left/right of z) and Plemelj’s formulas used to solve (3.20) give

M(x, t, z) =Msp(x, t, z) +
1

2πi

∫
Σf

M+(x, t, ζ)J(x, t, ζ)

ζ − z
dζ, z ∈ C \ Σf , (3.22)

where
∫
Σf represents the integral along the oriented contours shown in Fig. 1.

We see from (3.17) that only its first (second) column has a simple pole at z = ξn (z = ξ̂n). Therefore,

by using (2.9) and (3.10), we can express the residue part in (3.19) as

Resz=ξn M
+(x, t, z)

z − ξn
+

Resz=ξ̂n
M−(x, t, z)

z − ξ̂n
=

=

(
A+[ξn]e

−2iθ(x,t,ξn)

z − ξn
μ−2(x, t, ξn),

A−[ξ̂n]e2iθ(x,t,ξ̂n)

z − ξ̂n
μ−1(x, t, ξ̂n)

)
. (3.23)

For z = ξs, s = 1, 2, . . . , 2N , it follows from the second column of M(x, t, z) given by (3.22) and (3.23)

that

μ−2(x, t, ξs) =

⎛
⎝ iψ−

ξs
1

⎞
⎠+

2N∑
n=1

A−[ξ̂n]e2iθ(x,t,ξ̂n)

ξs − ξ̂n
μ−1(x, t, ξ̂n) +

+
1

2πi

∫
Σf

(M+J)2(x, t, ζ)

ζ − ξs
dζ, s = 1, 2, . . . , 2N. (3.24)

From (3.2), we find

μ−2(x, t, ξs) =
iψ−
ξs

μ−1(x, t, ξ̂s), s = 1, 2, . . . , 2N. (3.25)

Substituting (3.25) in (3.2), we have

2N∑
n=1

(
A−[ξ̂n]e2iθ(x,t,ξ̂n)

ξs − ξ̂n
− iψ−

ξs
δsn

)
μ−1(x, t, ξ̂n) +

⎛
⎝ iψ−

ξs
1

⎞
⎠+

+
1

2πi

∫
Σf

(M+J)2(x, t, ζ)

ζ − ξs
dζ = 0, s = 1, 2, . . . , 2N, (3.26)

where

δsn =

⎧⎨
⎩1, s = n,

0, s �= n.

System (3.26) includes 2N equations for 2N unknowns μ−1(x, t, ξ̂n), whence the solutions for μ−1(x, t, ξ̂s)

allows finding μ−2(x, t, ξs) from (3.26). As a consequence, substituting μ−1(x, t, ξ̂s) and μ−2(x, t, ξs) in (3.23)

and then substituting (3.23) in (3.22), we express M(x, t, z) in terms of the scattering data.
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In view of (3.23) and (3.22), the asymptotic behavior of M(x, t, z) is

M(x, t, z) = I +
M (1)(x, t)

z
+O

(
1

z2

)
, z → ∞, (3.27)

where

M (1)(x, t) = iσ3Q+
2N∑
n=1

[A+[ξn]e
−2iθ(x,t,ξn), A−[ξ̂n]e2iθ(x,t,ξ̂n)μ−1(x, t, ξ̂n)]−

− 1

2πi

∫
Σf

M+(x, t, ζ)J(x, t, ζ) dζ, (3.28)

with μ−1(x, t, ξ̂s) and μ−2(x, t, ξ̂s) given by (3.25) and (3.26).

From (3.17), we find that M(x, t, z)eiθ(x,t,z)σ3 satisfies (1.8). Substituting M(x, t, z)eiθ(x,t,z)σ3 given

by (3.27) in the x-part of Lax pair (1.8) and taking the coefficients of z0, we arrive at the statement of

following proposition for ψ(x, t).

Proposition 3.2. The potential with simple poles of the GFONLS equation (1.2) with NZBCs (1.4)

has the form

ψ(x, t) = ψ− − i

2N∑
n=1

A−[ξ̂n]e2iθ(x,t,ξ̂n)μ−11(x, t, ξ̂n) +
1

2π

∫
Σf

(M+J)12(x, t, ζ) dζ, (3.29)

where ξn = zn, ξn+N = −ψ2
0/z

∗
n−N , n = 1, 2, . . . , N , ξ̂n = −ψ2

0/ξn, and μ−11(x, t, ξ̂n) are determined by

the system of equations

2N∑
n=1

(
A−[ξ̂n]e2iθ(x,t,ξ̂n)

ξs − ξ̂n
− iψ−

ξs
δsn

)
μ−11(x, t, ξ̂n) +

iψ−
ξs

+

+
1

2πi

∫
Σf

(M+J)12(x, t, ζ)

ζ − ξs
dζ = 0, s = 1, 2, . . . , 2N, (3.30)

which can be obtained from (3.26).

We note that s11(z) and s22(z) are respectively analytic in Df
+ and Df

−, and the discrete-spectrum

points ξn and ξ̂n are respective simple zeros of s11(z) and s22(z). Following [9], we write the trace formulas

for the GFONLS equation (1.2) with NZBCs as

s11(z) = es(z)s0(z) for z ∈ Df
+,

s22(z) =
e−s(z)

s0(z)
for z ∈ Df

−,
(3.31)

where

s(z) = − 1

2πi

∫
Σf

ln[1 + ρ(ζ)ρ∗(ζ∗)]
ζ − z

dζ, s0(z) =

N∏
n=1

(z − zn)(z + ψ2
0/z

∗
n)

(z − z∗n)(z + ψ2
0/zn)

. (3.32)

We refer the reader to [9] for a detailed derivation.

Taking the limit z → 0 of s11(z) in (3.32) and (3.16), we obtain the theta condition

arg

(
ψ+

ψ−

)
= 4

N∑
n=1

arg zn +

∫
Σf

ln[1 + ρ(ζ)ρ∗(ζ∗)]
2πζ

dζ, z → 0. (3.33)
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In particular, in the case of a reflectionless potential, i.e., ρ(z) = ρ̂(z) = 0, we have J = (0)2×2. As a result,

Eqs. (3.30) become

2N∑
n=1

(
A−[ξ̂n]e2iθ(x,t,ξ̂n)

ξs − ξ̂n
− iψ−

ξs
δsn

)
μ−11(x, t, ξ̂n) =

iψ−
ξs

, s = 1, 2, . . . , 2N, (3.34)

which can be solved for μ−11(x, t, ξ̂n) by using Cramer’s rule. Summarizing the above analysis, we see that

Theorem 1.1 holds for the potential ψ(x, t) in the case of a simple pole.

In the case of a reflectionless potential, ρ(z) = ρ̂(z) = 0, the trace formulas and the theta condition

become

s11 =
N∏

n=1

(z − zn)(z + ψ2
0/z

∗
n)

(z − z∗n)(z + ψ2
0/zn)

for z ∈ Df
+,

s22 =

N∏
n=1

(z − z∗n)(z + ψ2
0/zn)

(z − zn)(z + ψ2
0/z

∗
n)

for z ∈ Df
−,

(3.35)

and

arg

(
ψ+

ψ−

)
= arg(ψ+)− arg(ψ−) = 4

N∑
n=1

arg(zn). (3.36)

Case I. For N = 1 and z1 = 1.5i in Theorem 1.1, Eq. (3.36) shows that the asymptotic phase difference

is 2π. As can be seen from Fig. 2, the solution can represent the Kuznetzov–Ma (KM) breather that is

spatially localized and temporally breathing. From Figs. 2a–c, we see that as ψ− becomes smaller, the

periodic behavior of the breather wave only appears in its top part, and the maximal amplitude under

the background gradually decreases. In particular, as seen in Fig. 2d, as ψ− → 0, the breather wave of

the GFONLS equation (1.2) with NZBCs yields a bright soliton of the GFONLS equation (1.2) with zero

boundary conditions.

Fig. 2. Breathers as solutions (1.11) with the parameters N = 1, z1 = 1.5i, α3 = α4 = α5 = 0.01,

A+[z1] = 1 with (a) ψ− = 1, (b) ψ− = 0.6, and (c) ψ− = 0.3; (d) a bright-soliton solution with ψ− → 0.
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Case II. ForN = 1 and z1 = aeπ/4 in Theorem 1.1, the asymptotic phase difference is π. The GFONLS

equation (1.2) with NZBCs has nonstationary solitons. The plot in Fig. 3 is for nonstationary solitons for

the GFONLS equation (1.2) with NZBCs; the solitons are localized both in time and space and thus reveal

the usual Akhmediev breather wave features.

Fig. 3. Breathers as solutions (1.11) with the parameters N = 1, A+[z1] = 1, α3 = α4 = α5 = 0.01,

ψ− = 1, and (a) z1 = eiπ/4, (b) z1 = 0.8eiπ/4.

Case III. For N = 2 in Theorem 1.1, we have interactions of breather–breather solutions of the

GFONLS equation (1.2) with NZBCs. As we can see from Fig. 4, the interaction is strong. In particular,

as ψ− → 0, we have strongly interacting bright–bright solitons of the GFONLS equation (1.2) with zero

boundary conditions. However, as shown Fig. 5, if we take two appropriate eigenvalues, then the breather–

breather solutions of the GFONLS equation (1.2) with NZBCs interact weakly. Likewise, as ψ− → 0,

we have weak interactions of the simple-pole bright–bright solitons of the GFONLS equation (1.2) with

zero boundary conditions (see Figs. 5a–5d).

Case IV. One interesting example of the breather–breather waves is shown in Fig. 6a, where the two

breather waves have different modulation frequencies. In particular, for z1 = z2, they become a first-order

Akhmediev breather (see Fig. 6b). In Fig. 6c, for z1 = −z2 = 0.1 = 1.5i, we can see interaction of simple-pole

breather–breather solutions of the GFONLS equation (1.2) with NZBCs.

Case V. For N = 2 in Theorem 1.1, we give another interesting example of breather–breather waves.

In Fig. 7, the result is a simply periodic solution. Specifically, as ψ− → 0, we have simple-pole bright–bright

solitons of the GFONLS equation (1.2) with NZBCs. To our surprise, the bright–bright soliton is also

a simply periodic solution (see Fig. 7d).

4. The GFONLS equation with NZBCs: double poles

In what follows, we suppose that the discrete-spectrum points Zf are double zeros of the scattering

coefficients s11(z) and s22(z), (s11(z0) = s′11(z0) �= 0 for all z0 ∈ Zf ∩ Df
+), and s22(z0) = s′22(z0) = 0,

s′′22(z0) �= 0 for all z0 ∈ Zf ∩ Df
−. For convenience, we recall a simple proposition from [10]: if f(z) and

g(z) are analytic in some complex domain Ω, and z0 ∈ Ω is a double zero of g(z) and f(z0) �= 0, then the

function f(z)/g(z) has a double pole at z = z0, and the coefficient P−2[f/g] of (z − z0)
−2 and its residue

Res[f/g] in the Laurent series are given by

P−2
z=z0

[
f

g

]
=

2f(z0)

g′′(z0)
, Res

z=z0

[
f

g

]
= 2

(
f ′(z0)
g′′(z0)

− f(z0g
′′′(z0))

3[g′′(z0)]2

)
. (4.1)

According to [10], for s11(z0) = s′11(z0) = 0, s′11(z0) �= 0 for all z0 ∈ Zf ∩ Df
+. Equation (3.6) still hold.

The first equation in (2.13) then yields

s11(z)γf (z) = |φ+1(x, t, z), φ−2(x, t, z)|, (4.2)
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Fig. 4. Breathers as solution (1.11) with the parameters N = 2, z1 = 0.2 + 2i, z2 = 1+ i, α3 = α4 =

α5 = 0.01, A+[z1] = A+[z2] = 1: (a) breather–breather solutions with ψ− = 1; (b) breather–breather

solutions with ψ− = 0.6; (c) breather–breather solutions with ψ− = 0.3; (d) bright–bright solitons

with ψ− → 0.

Fig. 5. Breathers as solution (1.11) with the parameters N = 2, z1 = 0.1 + 1.5i, z2 = −0.1 + 1.5i,

α2 = 1, α3 = α4 = α5 = 0.01, A+[z1] = A+[z2] = 1: (a) breather–breather solutions with ψ− = 1;

(b) breather–breather solutions with ψ− = 0.6; (c) breather–breather solutions with ψ− = 0.3;

(d) bright–bright solitons with ψ− → 0.
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Fig. 6. Breathers as solution (1.11) with parameters N = 2, α2 = 1, α3 = 0.01, α4 = α5 = 0.001,

A+[z1] = A+[z2] = 1: (a) breather–breather solutions with z1 = 0.5i, z2 = 1.5i; (b) breather solutions

with z1 = 1.5i, z2 = 1.5i; (c) breather–breather solutions with z1 = 0.1 + 1.5i, z2 = −0.1− 1.5i.

Fig. 7. Breathers as solution (1.11) with the parameters N = 2, z1 = 1/65+1.05i, z2 = −1/65 + 1.05i,

α2 = 1, α3 = α4 = α5 = 0.01, A+[z1] = A+[z2] = 1: (a) breather–breather solutions with ψ− = 1;

(b) breather–breather solutions with ψ− = 0.6; (c) breather–breather solutions with ψ− = 0.3;

(d) bright–bright solitons with ψ− → 0.
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where the first-order partial derivative with respect to z is

[s11(z)γf (z)]
′ = |φ′+1(x, t, z), φ−2(x, t, z)|+ |φ+1(x, t, z), φ

′
−2(x, t, z)|. (4.3)

Taking z = z0 ∈ Zf ∩Df
+ in (4.3) and using s11(z0) = s′11(z0) = 0 and (3.6) leads to

|φ′+1(x, t, z0)− b+(z0)φ
′
−2(x, t, z0), φ−2(x, t, z0)| = 0, (4.4)

which indicates that there is another constant c+(z0) such that

φ′+1(x, t, z0) = c+(z0)φ−2(x, t, z0) + b+(z0)φ
′
−2(x, t, z0). (4.5)

From (3.8), (4.1), and (4.5), we find

P−2
z=z0

[
φ+(x, t, z)

s11(z)

]
=

2φ+1(x, t, z0)

s′′11(z0)
=

2b+(z0)

s′′11(z0)
φ−2(x, t, z0) =

= A+[z0]φ−2(x, t, z0),

Res
z=z0

[
φ+1(x, t, z)

s11(z)

]
=

2φ′+1(x, t, z0)

s′′11(z0)
− 2φ+1(x, t, z0)s

′′′
11(z0)

3(s′′11(z0))2
=

= A+[z0][φ
′
−2(x, t, z0) +B+[z0]φ−2(x, t, z0)].

(4.6)

Similarly, for s22(z
∗
0) = s′22(z

∗
0) = 0 and s′′22(z

∗
0) �= 0 for all z∗0 ∈ Zf ∩Df

−, Eq. (3.8) holds. It follows from

the second equation in (2.13) and formula (3.8) that

φ′+2(x, t, z
∗
0) = c−(z∗0)φ−1(x, t, z

∗
0) + b−(z∗0)φ

′
−1(x, t, z

∗
0) (4.7)

for c−(z∗0).
From (3.8), (4.1), and (4.7), we obtain

P−2
z=z∗

0

[
φ+2(x, t, z)

s22(z)

]
=

2φ+2(x, t, z
∗
0)

s′′22(z
∗
0)

=
2b−(z∗0)
s′′22(z

∗
0)
φ−1(x, t, z

∗
0) = A−[z∗0 ]φ−1(x, t, z

∗
0),

Res
z=z∗

0

[
φ+2(x, t, z)

s22(z)

]
= A−[z∗0 ][φ

′
−1(x, t, z

∗
0) +B−[z∗0 ]φ−1(x, t, z

∗
0)].

(4.8)

We therefore have

A+[z0] =
2b+[z0]

s′′11(z0)
, B+[z0] =

c+[z0]

b+[z0]
− s′′′11(z0)

3s′′11(z0)
, z0 ∈ Zf ∩Df

+,

A+[z
∗
0 ] =

2b+[z
∗
0 ]

s′′11(z∗0)
, B+[z

∗
0 ] =

c+[z
∗
0 ]

b+[z∗0 ]
− s′′′11(z

∗
0)

3s′′11(z∗0)
, z∗0 ∈ Zf ∩Df

−,
(4.9)

whence we obtain the relations

A+[z0] = −A∗
−[z

∗
0 ] =

z40ψ
∗
−

ψ4
0ψ−

A−

[
−ψ

2
0

z0

]
,

B+[z0] = B∗
−[z

∗
0 ] =

ψ2
0

z20
B−

[
−ψ

2
0

z0

]
+

2

z0
, z0 ∈ Zf ∩Df

+,

(4.10)
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which in turn lead to

A+[zn] = −A∗
−[z

∗
n] = − z4nψ

∗
−

ψ4
0ψ−

A+

[
−ψ

2
0

z∗n

]
, zn ∈ Zf ∩Df

+,

B+[zn] = B∗
−[z

∗
n] =

ψ2
0

z2n
B∗

+

[
−ψ

2
0

z∗n

]
+

2

zn
, z∗n ∈ Zf ∩Df

−.
(4.11)

As a result, we have

P−2
z=ξn

M+
1 (x, t, z) = P−2

[
μ+1(x, t, z)

s11(z)

]
= A[ξn]e

−2iθ(x,t,ξn)μ−2(x, t, ξn),

P−2

z=ξ̂n

M−
2 (x, t, z) = P−2

[
μ+2(x, t, z)

s22(z)

]
= A[ξ̂n]e

2iθ(x,t,ξ̂n)μ−1(x, t, ξn),

Res
z=ξn

M+
1 (x, t, z) = Res

z=ξn

[
μ+1(x, t, z)

s11(z)

]
=

= A[ξn]e
−2iθ(x,t,ξn){μ′

−2(x, t, ξn) + [B[ξn]− 2iθ′(x, t, ξn)]μ−2(x, t, ξn)},

Res
z=ξ̂n

M−
2 (x, t, z) = Res

z=ξ̂n

[
μ+2(x, t, z)

s22(z)

]
=

= A[ξ̂n]e
2iθ(x,t,ξ̂n){μ′

−1(x, t, ξ̂n) + [B[ξ̂n] + 2iθ′(x, t, ξ̂n)]μ−1(x, t, ξ̂n)}.

(4.12)

The RHP in Proposition 3.1 still holds in the case of double poles. To solve this RHP, we have to

subtract the asymptotic values as z → ∞ and z → 0 and the singularity contributions:

Mdp(x, t, z) = I +
i

z
σ3Q− +

2N∑
n=1

Mn
dp,

Mn
dp =

P−2|z=ξn
M+

(z − ξn)2
+
P−2|z=ξ̂n

M−

(z − ξ̂n)2
+

Resz=ξn M
+

z − ξn
+

Resz=ξ̂n
M+

z − ξ̂n
.

(4.13)

From the jump condition M− =M+(I − J), we then obtain

M−(x, t, z)−Mdp(x, t, z) =M+(x, t, z)−Mdp(x, t, z)−M+(x, t, z)J, (4.14)

where M±(x, t, z)−Mdp(x, t, z) are analytic in Df
±. Besides, their asymptotics are both O(1/z) as z → ∞

and O(1) as z → 0, and J(x, t, z) is O(1/z) as z → ∞ and O(z) as z → 0. As a result, the Cauchy projectors

and Plemelj’s formulas can be used to solve (4.14), with the result

M(x, t, z) =Mdp(x, t, z) +
1

2πi

∫
Σf

M+(x, t, ζ)J(x, t, ζ)

ζ − z
dζ, z ∈ C \ Σf , (4.15)

where
∫
Σf stands for the integral along the oriented contours shown in Fig. 1b.

Now, using (4.12), we can rewrite the parts corresponding to P−2( · ) and Res( · ) in (4.15) as

Mn
dp =

(
Cn(z)

[
μ′
−2(ξn) +

(
Dn +

1

z − ξn

)
μ−2(ξn)

]
,

Ĉn(z)

[
μ′
−1(ξ̂n) +

(
Dn +

1

z − ξ̂n

)
μ−2(ξ̂n)

])
,

(4.16)
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where

Cn(z) =
A+[ξn]

z − ξn
e−2iθ(ξn), Dn = B+[ξn]− 2iθ′(ξn), (4.17)

Ĉn(z) =
A−[ξ̂n]

z − ξ̂n
e2iθ(ξ̂n), D̂n = B−(ξ̂n) + 2iθ′(ξ̂n). (4.18)

We next find μ′
−2(ξn), μ−2(ξn), μ

′
−1(ξn), and μ−1(ξn) in (4.16) for z = ξs, s = 1, 2, . . . , 2N . From the

second column of M(x, t, λ) in (4.15) and (4.16), we obtain

μ−2(z) =

⎛
⎝ iψ−

z
1

⎞
⎠+

2N∑
n=1

Ĉn(z)

[
μ′
−1(ξ̂n) +

(
D̂n +

1

z − ξ̂n

)
μ−1(ξ̂n)

]
+

+
1

2πi

∫
Σf

(M+J)2(ζ)

ζ − z
dζ, (4.19)

whose first-order derivative with respect to z is given by

μ′
−2(z) =

⎛
⎝− iψ−

z2

1

⎞
⎠−

2N∑
n=1

Ĉn(z)

z − ξ̂n

[
μ′
−1(ξ̂n) +

(
D̂n +

1

z − ξ̂n

)
μ−1(ξ̂n)

]
+

+
1

2πi

∫
Σf

(M+J)2(ζ)

(ζ − z)2
dζ. (4.20)

Furthermore, it follows from (3.1) that

μ′
−2(z) = − iψ−

z2
μ−

(−ψ2
0

z

)
+
iψ2

0

z

ψ−
z2
μ′
−1

(
−ψ

2
0

z

)
. (4.21)

Substituting (4.21) in (4.26) and (4.27), we then have

2N∑
n=1

Ĉn(ξs)μ
′
−1(ξ̂n) +

[
Ĉn(ξk)

(
D̂n +

1

ξs − ξ̂n

)
− iψ−

ξs
δsn

]
μ−1(ξ̂n) =

= −
⎛
⎝ iq−ξs

1

⎞
⎠− 1

2πi

∫
Σf

(M+J)2(ζ)

ζ − ξk
dζ,

2N∑
n=1

(
Ĉn(ξs)

ξs − ξ̂n
+
iψ2

0ψ−
ξ3sδsn

)
μ′
−1(ξ̂n) +

[
Ĉn(ξs)

ξs − ξ̂n

(
D̂n +

2

ξs − ξ̂n

)
− iψ−

ξ2s
δsn

]
μ−1(ξ̂n) =

=

⎛
⎝−ψ−

ξ2s
0

⎞
⎠+

∫
Σf

(M+J)2(ζ)

2πi(ζ − ξk)2
dζ,

(4.22)

whence we find μ−(x, t, ξ̂n) and μ′
−1(x, t, ξ̂n), n = 1, 2, . . . , 2N , and hence also find μ−2(x, t, ξn) and

μ′−2(x, t, ξn), n = 1, 2, . . . , 2N , from (4.21). Substituting these in (4.24) and then substituting (4.24)

in (4.15) gives M(x, t, z) in terms of the scattering data.

We see from (4.15) and (4.24) that the asymptotic form of M(x, t, z) is still given by (3.27). But we

must replace M (1)(x, t) with

M (1)(x, t) = iσ3Q− − 1

2πi

∫
Σf

(M+J)(ζ) dζ +

+

2N∑
n=1

[A+[ξn]e
−2iθ(ξn)(μ′

−2(ξn) +Dnμ−2(ξn)),

A−[ξ̂n]e2iθ(ξ̂n)(μ′
−2(ξ̂n) + D̂nμ−1(ξ̂n))]. (4.23)
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Summarizing the above results, we arrive at the following proposition for the potential u(x, t) in the

case of double poles.

Proposition 4.1. The potential with double poles of the GFONLS equation (1.2) with NZBCs is

expressed by

ψ(x, t) = ψ− − i

2N∑
n=1

A−[ξ̂n]e2iθ(ξn)(μ′
−11(ξ̂n) +

+ D̂nμ−11(ξ̂n)) +
1

2π

∫
Σ′
(M+J)12(ζ) dζ, (4.24)

where

Ĉn(z) =
A[ξ̂n]

z − ξn
e2iθ(ξ̂n), D̂n = B[ξ̂n] + 2iθ′(ξn),

and μ−11(ξ̂n) and μ
′−11(ξ̂n) are given by (4.22).

Similarly to the case of simple poles, the trace formulas in the case of double poles are

s11(z) = es(z)s0(z) for z ∈ Df
+,

s22(z) =
e−s(z)

s0(z)
for z ∈ Df

−,
(4.25)

where

s(z) = − 1

2πi

∫
Σf

ln[1 + ρ(ζ)ρ∗(ζ∗)]
ζ − z

dζ, s0(z) =

N∏
n=1

(z − zn)
2(z + ψ2

0/z
∗
n)

2

(z − z∗n)2(z + ψ2
0/zn)

2
. (4.26)

From the limit z → 0 of s11(z) in (4.25), the following theta condition can be obtained:

arg

(
ψ+

ψ−

)
= 8

N∑
n=1

arg(zn) +

∫
Σf

ln[1 + ρ(ζ)ρ∗(ζ∗)]
ζ − z

dζ. (4.27)

In particular, in the reflectionless case ρ(z) = ρ̂(z) = 0, Theorem 1.2 holds.

Thus, the trace formulas and the theta condition become

s11(z) =

N∏
n=1

(z − zn)
2(z + ψ2

0/z
∗
n)

2

(z − z∗n)2(z + ψ2
0/zn)

2
, z ∈ Df

+, (4.28)

s22(z) =
N∏

n=1

(z − z∗n)
2(z + ψ2

0/zn)
2

(z − zn)2(z + ψ2
0/z

∗
n)

2
, z ∈ Df

−, (4.29)

and

arg

(
ψ+

ψ−

)
= arg(ψ+)− arg(ψ−) = 8

N∑
n=1

arg(zn). (4.30)

The double-pole breather–breather solutions of the GFONLS equation (1.2) with NZBCs are shown

in Figs. 8–10, which are useful for understanding the propagation properties of nonlinear waves. More

importantly, as ψ− → 0, we have double-pole bright–bright soliton solutions of the GFONLS equation (1.2)

(see Figs. 9d and 10d).
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Fig. 8. Breather waves as solution (4.21) with the parameters N = 1, ψ− = 1, α2 = 1, α3 =

α4 = α5 = 0.01, A+[z1] = B+[z1] = 1, and (a,d) z1 = −0.08 + 1.5i; (b,e) z1 = −0.08 + 1.5i;

(c,f) z1 = −0.06 + 1.5i.
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Fig. 9. Breather waves as solution (4.21) with the parameters N = 1, z1 = 1.5i, α2 = 1, α3 = α4 =

α5 = 0.01, A+[z1] = B+[z1] = 1: (a) breather–breather solutions with ψ− = 1; (b) breather–breather

solutions with ψ− = 0.5; (c) breather–breather solutions with ψ− = 0.3; (d) bright–bright solitons

with ψ− → 0.

Fig. 10. Contour plots corresponding to Figs. 9a–9d.
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5. Conclusion and discussion

In this paper, we systematically investigated the GFONLS equation (1.2) with NZBCs, which reduces

to some classical integrable equations including the NLS equation with NZBCs (1.5), mKdV equation (1.7),

and Hirota equation with NZBCs (1.6). We have discussed the IST and soliton solutions of the GFONLS

equation (1.2) with NZBCs. Its simple- and double-pole solutions were found by solving a matrix RHP with

reflectionless potentials. Some representative solitons were constructed. Moreover, to better understand

the solutions, in Figs. 2–9 we show breather-wave, bright-soliton, breather–breather wave, and bright–bright

solitons, plotted with appropriate parameters chosen. The GFONLS equation (1.2) studied in this paper

is much more general because it involves four real constant α2, α3, α4, and α5. The celebrated NLS

equation (1.5) with NZBCs, an important model in fiber optics, is its special case. Another important

reduction of (1.2) is the complex mKdV equation (1.7). Multisoliton solutions of the NLS equation (1.5)

with NZBCs, mKdV equation (1.7), and Hirota equation (1.6) with NZBCs can be derived by reducing the

multisoliton solutions of (1.2). We think that the proposed effective method can be helpful in understanding

the diversity and integrability of nonlinear wave equations, and can be useful in studying other models in

mathematical physics.
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