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DIFFERENTIAL EQUATIONS FOR THE MAJORANA PARTICLE

IN 3 + 1 AND 1 + 1 DIMENSIONS

S. De Vincenzo∗

The relativistic wave equation considered to mathematically describe the Majorana particle is the Dirac

equation with a real Lorentz scalar potential plus the Majorana condition. Certainly, depending on the

representation that one uses, the resulting differential equation changes. It could be a real or a complex

system of coupled equations, or it could even be a single complex equation for a single component of the

entire wave function. Any of these equations or systems of equations could be referred to as a Majorana

equation or Majorana system of equations because it can be used to describe the Majorana particle.

For example, in the Weyl representation in 3 + 1 dimensions, we can have two nonequivalent explicitly

covariant complex first-order equations; in contrast, in 1 + 1 dimensions, we have a complex system of

coupled equations. In any case, whichever equation or system of equations is used, the wave function that

describes the Majorana particle in 3 + 1 or 1 + 1 dimensions is determined by four or two real quantities.

The aim of this paper is to study and discuss all these issues from an algebraic standpoint, highlighting

the similarities and differences that arise between these equations in the cases of 3+1 and 1+1 dimensions

in the Dirac, Weyl, and Majorana representations. In addition, we rederive and use results that follow

from a procedure already introduced by Case to obtain a two-component Majorana equation in 3 + 1

dimensions. We for the first time introduce a similar procedure in 1 + 1 dimensions and then use the

obtained results.

Keywords: relativistic quantum mechanics of a single particle, Dirac equation, equations for a Majorana

particle, Dirac representation, Weyl representation, Majorana representation

DOI: 10.1134/S0040577921120060

I would like to dedicate this paper to the memory of my beloved father Carmine De Vincenzo Di Fresca,

who passed away unexpectedly on March 16, 2018. That day something inside of me also died.

1. Introduction

In general, the relativistic wave equation considered to mathematically describe a first-quantized Majo-

rana particle (an electrically neutral fermion in 3+1 dimensions that is its own antiparticle, i.e., a 3D Majo-

rana particle) is the Dirac equation with a real Lorentz scalar potential together with the so-called Majorana

condition [1], [2]. This condition requires that the Dirac wave function be equal to its charge-conjugate

wave function, i.e., Ψ = ΨC. This way of characterizing the Majorana particle can be implemented in 3+ 1

∗Escuela de F́ısica, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela,

e-mail: salvatore.devincenzo@ucv.ve.

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya

i Matematicheskaya Fizika, Vol. 209, No. 3, pp. 475–501, December, 2021. Received June 30, 2021. Revised August 8,

2021. Accepted August 10, 2021.

1726 0040-5779/21/2093-1726 © 2021 Pleiades Publishing, Ltd.



and 1 + 1 dimensions, although in the latter case one would be describing the one-dimensional Majorana

particle (i.e., the 1D Majorana particle).

As might be expected, the resulting differential equation depends on the representation that one uses

when writing the Dirac equation and the Majorana condition, even without distinguishing between 3 + 1

and 1+1 dimensions. It could be a real or a complex system of coupled equations or even a single complex

equation for a single component of the entire wave function, whose solution, together with the relation that

emerges from the Majorana condition, would allow one to build the entire wave function [3]–[6].

Unexpectedly, the equation generally known in the literature as the Majorana equation is a relativistic

wave equation similar to the free Dirac equation,

iγ̂μ ∂μΨ− mc

�
1̂Ψ = 0,

(1̂ is the identity matrix, which is a 4×4 matrix in 3+1 dimensions and a 2×2 matrix in 1+1 dimensions),

but in addition to the Dirac wave function Ψ, the Majorana equation also includes the charge-conjugate

wave function ΨC. The equation in question is usually written as [7]

iγ̂μ ∂μΨ− mc

�
1̂ΨC = 0.

In writing the Majorana equation, it is important to remember that ΨC has the same transformation prop-

erties as Ψ under proper Lorentz transformations; hence, this equation is Lorentz covariant. Likewise, the

Majorana condition is Lorentz covariant [3]. The Majorana equation could describe hypothetical particles

that have been called Majoranons [7]. Clearly, the Majorana equation together with the Majorana condition

can also lead to equations for the Majorana particle [1]. We note in passing that the Majorana equation

can also admit a Lorentz scalar potential.

In general, when characterizing a Majorana particle with the help of complex four-component wave

functions (in 3 + 1 dimensions) or two-component wave functions (in 1 + 1 dimensions), these components

are not all independent because the Majorana condition must be satisfied. In the Majorana representation,

the Majorana condition becomes the reality condition for the wave function, i.e., Ψ = Ψ∗; therefore, we
can conclude that in 3 + 1 or 1 + 1 dimensions, the wave function that describes the Majorana particle

has four or two independent real components, and these real components can be accommodated just in

two or one independent complex components or component [3]. Then, to describe the Majorana particle in

3 + 1 or 1 + 1 dimensions, a four-component or two-component wave function is not absolutely necessary,

i.e., a four-component or two-component scheme or formalism is not absolutely necessary; the Majorana

particle can also be described by two-component or one-component wave functions, i.e., a two-component

or one-component scheme or formalism in 3 + 1 or 1 + 1 dimensions is sufficient.

Returning to the issue of the equations for the Majorana particle that emerge from the Dirac equation

and the Majorana condition when a representation is chosen, it is important to realize that in those cases

where a complex first-order equation for the upper or lower single component of the entire wave function

can be written (for example, in the Dirac representation), the respective lower or upper single component is

automatically determined by the Majorana condition (depending on the space–time dimension, this single

component can be a two-component or a one-component wave function). The entire wave function that

describes the Majorana particle can be immediately constructed from these two components (the upper

and the lower components). However, as explained above, the entire wave function is not absolutely needed

to describe the Majorana particle; in fact, although the upper or lower component and its respective lower

or upper component are not independent of each other, each of them satisfies its own equation, and either

of these two can be considered as modeling the Majorana particle.
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In 3 + 1 dimensions, there exists an equation for the upper component and another for the lower

component that stand out above the rest (in this case, these components are two-component wave functions);

these are the ones that arise when the Weyl representation is used. In fact, each of these equations can also

be written in an explicitly Lorentz-covariant form and can describe a specific type of a Majorana particle.

These equations have been named the two-component Majorana equations and tend to the usual Weyl

equations when the mass of the particle and the scalar potential go to zero [8], [9]. In 1+ 1 dimensions and

also in the Weyl representation, we have instead a complex system of coupled equations, i.e., in this case,

we cannot write a first-order equation for any of the components of the wave function.

On the other hand, in 3 + 1 and 1 + 1 dimensions and in the Majorana representation, we also have

a real system of coupled equations, and again, no first-order equation for any of the components of the

wave function exists. In this paper, besides clarifying how the Majorana particle is described (in first

quantization), we also attempt to show the different forms of the equations that can arise when describing

it, both in 3 + 1 and in 1 + 1 dimensions. We believe that a detailed discussion on these issues could be

useful and quite pertinent.

The article is organized as follows. In Sec. 2, we present the most basic results related to the relativistic

wave equation commonly used to describe a Majorana particle, namely, the Dirac equation with a real

Lorentz scalar potential. These results are presented for the cases of 3 + 1 and 1 + 1 dimensions.

In Sec. 3, we introduce the charge conjugation matrix in each of the representations that we consider.

We use only three representations: Dirac (or the standard representation), Weyl (or the chiral or spinor

representation), and Majorana. These are the most used ones in practice. In Sec. 3, the charge-conjugation

matrices are obtained from a good formula that relates the matrices of charge conjugation in any two

representations with the respective similarity matrix that changes the gamma matrices between these two

representations. However, we specifically use the fact that in the Majorana representation, the charge-

conjugation matrix is the identity matrix; thus, the charge-conjugation matrix in any representation is

a function of the similarity matrix that takes us from that representation to the Majorana representation.

Again, all these results are presented for the cases of 3 + 1 and 1 + 1 dimensions.

In Sec. 4, we first present the condition that defines the Majorana particle, i.e., the Majorana condition.

We then present the equations and systems of equations that follow from the Dirac equation with a real

Lorentz scalar potential and the restriction imposed by the Majorana condition. Again, we consider the

Dirac, Weyl, and Majorana representations, in both 3 + 1 and 1 + 1 dimensions. We also highlight the

similarities and differences that arise between these equations in a specific representation but in different

space–time dimensions. In this regard, we note that in the Weyl representation, there is a deeper and

unexpected difference between these equations. Likewise, we highlight in this section the procedure that

in certain cases leads us to writing the entire wave function from the solution of a single equation and the

Majorana condition. As an example, throughout Sec. 4, we also introduce various results related to the

boundary conditions that can be imposed on the respective wave function that describes the 1D Majorana

particle in a box. The results corresponding to the Weyl representation are introduced for the first time.

To complete our study, in Sec. 5 we first rederive in detail an algebraic procedure introduced some time

ago by Case to obtain one of the two two-component Majorana equations from the Dirac equation in 3 + 1

dimensions and the Majorana condition [8]. In fact, we also obtain the latter two equations after using the

Weyl representation in our results, as expected. Then we also use the Dirac and Majorana representations

in our results. In addition, we for the first time introduce an algebraic procedure somewhat analogous to

that of Case, but in 1+ 1 dimensions. Then we repeat the previous program by using the Weyl, Dirac, and

Majorana representations. Throughout Sec. 5, we rederive the most important results presented in Sec. 4.

Finally, in Sec. 6, we write our conclusions.

An extended version of this paper is available in preprint form [10].
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2. Basic results

The equation for a single Dirac particle in 3 + 1 dimensions, in a real-valued Lorentz scalar potential

VS = VS(x, y, z, t) = VS(r, t), [
iγ̂μ ∂μ − 1

�c
(VS +mc2)1̂4

]
Ψ = 0, (1)

is satisfied by the (generally) complex Dirac wave function of four components Ψ. The matrix 1̂4 is the

4-dimensional unit matrix. The matrices γ̂μ = (γ̂0, γ̂j) ≡ (β̂, β̂α̂j), with μ = 0, j and j = 1, 2, 3 are the

gamma matrices, and the matrices α̂j and β̂ are the Dirac matrices. The latter are Hermitian and satisfy

the relations {α̂j , β̂} ≡ α̂j β̂+ β̂α̂j = 0̂4 (0̂4 is the 4-dimensional zero matrix), {α̂j, α̂k} = 2δjk 1̂4 and β̂2 = 1̂4

(δjk is the Kronecker delta). Therefore, {γ̂μ, γ̂ν} = 2gμν 1̂4, where gμν = diag(1,−1,−1,−1) is the metric

tensor, and (γ̂μ)† = γ̂0γ̂μγ̂0 († denotes the Hermitian conjugate, or the adjoint, of a matrix and an operator,

as usual). The last two relations imply that the gamma matrices are unitary, but only γ̂0 is Hermitian,

while γ̂j, j = 1, 2, 3 is anti-Hermitian.

Multiplying Eq. (1) from the left by the operator iγ̂μ ∂μ+(1/�c)(VS+mc2)1̂4 leads to the second-order

equation [
1̂4 ∂

μ ∂μ +
1

�c
(∂μVS)iγ̂

μ +
(VS +mc2)2

�2c2
1̂4

]
Ψ = 0. (2)

We note that the term containing γ̂μ is not generally a diagonal matrix. In the free case (VS = const),

all the components satisfy the same equation, namely, the Klein–Fock–Gordon equation with the mass

mc2 + const.

The Dirac equation, written in its canonical form, is

(
i�1̂4

∂

∂t
− Ĥ

)
Ψ = 0, (3)

where the Hamiltonian operator Ĥ is

Ĥ = −i�c

(
α̂1

∂

∂x
+ α̂2

∂

∂y
+ α̂3

∂

∂z

)
+ (VS +mc2)β̂. (4)

Equation (3) is obtained from Eq. (1) by multiplying it by the matrix �cγ̂0 = �cβ̂ from the left, and using

the relations (γ̂0)2 = 1̂4 and γ̂0γ̂j = α̂j .

Likewise, Eq. (1) is also satisfied by the charge-conjugate wave function ΨC, but this yields

ŜC(−γ̂μ)∗(ŜC)
−1 = γ̂μ, ΨC ≡ ŜCΨ

∗, (5)

and ŜC is the charge-conjugation matrix (the asterisk ∗ represents the complex conjugate) [11], [12]. This

matrix is obviously determined up to a phase factor. As noted above, the matrices γ̂μ are unitary. More

specifically, this is because {γ̂0, γ̂j} = 0̂4 and (γ̂0)2 = −(γ̂j)2 = 1̂4 and because (γ̂0)† = γ̂0γ̂0γ̂0 and

(γ̂j)† = γ̂0γ̂j γ̂0. Likewise, the matrices (−γ̂μ)∗ are also unitary. In effect, gμν is real; thus, we can write

(−γ̂μ)∗(−γ̂ν)∗ + (−γ̂ν)∗(−γ̂μ)∗ = 2gμν 1̂4, and ((−γ̂μ)∗)† = (−γ̂0)∗(−γ̂μ)∗(−γ̂0)∗; therefore, ((−γ̂0)∗)† =

((−γ̂0)∗)−1 and ((−γ̂j)∗)† = ((−γ̂j)∗)−1. Thus, because the matrices γ̂μ and (−γ̂μ)∗ are linked via the

relation in the left-hand side of Eq. (5), the matrix ŜC can be chosen to be unitary (for more details on this

result, see, e.g., Ref. [13], p. 899). For example, in the Majorana representation, we have that ΨC = Ψ∗,
i.e., ŜC = 1̂4, and that γ̂μ = (−γ̂μ)∗ = i Im(γ̂μ) (by virtue of Eq. (5)), i.e., all entries of the gamma matrices

are purely imaginary. Also, we have iγ̂μ = (iγ̂μ)∗ = Re(iγ̂μ), and hence the operator acting on Ψ in Eq. (1)

is real. The last condition implies only that Eq. (1) could have real-valued solutions. In the same way,

Eq. (2) could also have real solutions.
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All the equations and relations that we have written so far in 3+1 dimensions and which are dependent

on Greek and Latin indices maintain their form in 1 + 1 dimensions. Certainly, these indices are now

restricted to μ, ν, . . . = 0, 1, and j, k, . . . = 1. The Dirac wave function Ψ then has only two components

and satisfies Eqs. (1)–(3), with 1̂4 → 1̂2 (1̂2 is the 2 × 2 identity matrix) and VS = VS(x, t). The gamma

matrices are just γ̂0 ≡ β̂ and γ̂1 ≡ β̂α̂, where the (Hermitian) Dirac matrices α̂ and β̂ satisfy the relations

{α̂, β̂} = 0̂2 (0̂2 is the 2-dimensional zero matrix), α̂2 = 1̂2 and β̂2 = 1̂2. Thus, {γ̂μ, γ̂ν} = 2gμν 1̂2,

where gμν = diag(1,−1), and (γ̂μ)† = γ̂0γ̂μγ̂0. As before, the two gamma matrices are unitary, but γ̂0 is

Hermitian, and γ̂1 is anti-Hermitian. Likewise, the Hamiltonian operator for Dirac equation (3) is simply

given by

Ĥ = −i�cα̂
∂

∂x
+ (VS +mc2)β̂. (6)

3. Charge conjugation in the Dirac, Weyl, and Majorana
representations

As is well known, in choosing a representation one is choosing a set of Dirac and gamma matrices

that satisfy the Clifford relations. As was demonstrated, for instance, in Ref. [6], if one has written the

charge-conjugation matrix in a representation, e.g., ŜC, then one can write it in any other representation,

say, Ŝ′
C, using the relation

Ŝ′
C = ŜŜC(Ŝ

∗)−1, (7)

where Ŝ is precisely the unitary similarity matrix that allows mapping the unitary gamma matrices between

these two representations: γ̂μ′ = Ŝγ̂μŜ−1. The result in Eq. (7) follows simply because the wave functions Ψ

and ΨC transform under Ŝ as Ψ′ = ŜΨ and Ψ′
C = ŜΨC, but in each representation we also have ΨC ≡ ŜCΨ

∗

and Ψ′
C ≡ Ŝ′

C(Ψ
′)∗. Obviously, if we change the phase factor of the matrix ŜC, the matrix Ŝ′

C obtained

from Eq. (7) changes by a factor that is also a phase. However, all the matrices involved in Eq. (7) are

always determined up to an arbitrary phase factor. If we specify the formula in Eq. (7) to the case where

ŜC is written in an arbitrary representation and Ŝ′
C is written in the Majorana representation, i.e., Ŝ′

C = 1̂4

in 3 + 1 dimensions, or Ŝ′
C = 1̂2 in 1 + 1 dimensions, then we obtain the result

ŜC = Ŝ†Ŝ∗, (8)

where Ŝ is the unitary matrix that takes us from that arbitrary representation to the Majorana represen-

tation. From Eq. (8), and because ŜC is a unitary matrix, we deduce that (ŜC)
−1 = (ŜC)

∗. This can also

be obtained just by requiring that (ΨC)C = Ψ.

Table 1

Representation α̂ β̂ ≡ γ̂0 β̂α̂ ≡ γ̂ γ̂5 ≡ iγ̂0γ̂1γ̂2γ̂3
̂SC = ̂S†

̂S∗

Dirac σ̂x ⊗ σ̂ σ̂z ⊗ 1̂2 iσ̂y ⊗ σ̂ σ̂x ⊗ 1̂2 −iσ̂y ⊗ σ̂y

Weyl σ̂z ⊗ σ̂ −σ̂x ⊗ 1̂2 iσ̂y ⊗ σ̂ σ̂z ⊗ 1̂2 −iσ̂y ⊗ σ̂y

Majorana

α̂1 = −σ̂x ⊗ σ̂x

α̂2 = σ̂z ⊗ 1̂2

α̂3 = −σ̂x ⊗ σ̂z

σ̂x ⊗ σ̂y

γ̂1 = i1̂2 ⊗ σ̂z

γ̂2 = −iσ̂y ⊗ σ̂y

γ̂3 = −i1̂2 ⊗ σ̂x

σ̂z ⊗ σ̂y 1̂2 ⊗ 1̂2

The results relating to the representations usually identified as Dirac, Weyl, and Majorana in 3 + 1

dimensions are given in Table 1. The table also shows the charge-conjugation matrix ŜC in each represen-

tation derived from Eq. (8), the respective matrices Ŝ being

Ŝ =
1√
2
(σ̂x ⊗ σ̂y + σ̂z ⊗ 1̂2), (9)
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which permits us to pass from the Dirac representation to the Majorana representation, and

Ŝ =
1

2
(σ̂x ⊗ σ̂y + σ̂z ⊗ σ̂y + σ̂z ⊗ 1̂2 − σ̂x ⊗ 1̂2), (10)

which permits us to pass from the Weyl representation to the Majorana representation. Obviously, the

matrix Ŝ = 1̂4 = 1̂2⊗1̂2 permits us to pass from the Majorana representation to the Majorana representation

itself. We note that in 3+ 1 dimensions, the charge-conjugation matrix in the Dirac representation is equal

to the charge-conjugation matrix in the Weyl representation (up to a phase factor). For completeness, the

matrix Ŝ that allows us to pass precisely from the Dirac representation to that of Weyl is also given here:

Ŝ =
1√
2
(1̂2 ⊗ 1̂2 + iσ̂y ⊗ 1̂2). (11)

This matrix links the matrices ŜC (in the Dirac representation) and Ŝ′
C (in the Weyl representation) also

via Eq. (7).

In reading Table 1, the following definitions should be considered: α̂ ≡ (α̂1, α̂2, α̂3), γ̂ ≡ (γ̂1, γ̂2, γ̂3),

and the usual Pauli matrices are σ̂ ≡ (σ̂x, σ̂y, σ̂z). Also, ⊗ denotes the Kronecker product of matrices

Â⊗ B̂ ≡

⎡
⎢⎢⎣
a11B̂ . . . a1nB̂
...

. . .
...

am1B̂ . . . amnB̂

⎤
⎥⎥⎦ (12)

which satisfies the following properties: 1) (Â ⊗ B̂)(Ĉ ⊗ D̂) = (ÂĈ ⊗ B̂D̂); 2) (Â ⊗ B̂)∗ = Â∗ ⊗ B̂∗;
and 3) (Â ⊗ B̂)† = Â† ⊗ B̂† (see, e.g., Ref. [14]). We note that we here have ŜC = −γ̂2 in both the Dirac

and Weyl representations. However, when considering these two representations, it is also common to write

ŜC = +γ̂2, and in particle physics, it is more common to set ŜC = +iγ̂2 and ŜC = −iγ̂2.

Table 2

Representation α̂ β̂ ≡ γ̂0 β̂α̂ ≡ γ̂1
̂Γ5 ≡ −iγ̂5 = γ̂0γ̂1

̂SC = ̂S†
̂S∗

Dirac σ̂x σ̂z iσ̂y σ̂x −iσ̂x

Weyl σ̂z σ̂x −iσ̂y σ̂z −iσ̂z

Majorana σ̂x σ̂y −iσ̂z σ̂x 1̂2

In the same way, the results relating to the representations commonly considered as the Dirac, Weyl,

and Majorana representations in 1 + 1 dimensions are given in Table 2. The table also shows the charge-

conjugation matrix ŜC in each representation calculated from Eq. (8). The respective matrices Ŝ are

Ŝ =
1√
2
(1̂2 + iσ̂x), (13)

which permits us to pass from the Dirac representation to the Majorana representation, and

Ŝ =
1

2
(i1̂2 + σ̂x + σ̂y + σ̂z), (14)

which permits us to pass from the Weyl representation to the Majorana representation. We note that in

1 + 1 dimensions, the charge-conjugation matrix in the Dirac representation is not equal to the charge-

conjugation matrix in the Weyl representation. For completeness, the matrix Ŝ, which allows us to pass

precisely from the Dirac representation to that of Weyl, is also given here:

Ŝ =
1√
2
(σ̂x + σ̂z). (15)

This matrix links the matrices ŜC (in the Dirac representation) and Ŝ′
C (in the Weyl representation) also

via Eq. (7).
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4. Equations for the Majorana single particle. I

The condition that defines a Majorana particle, called the Majorana condition, is given by

Ψ = ΨC = ŜC Ψ∗. (16)

It is important to note that the wave functions Ψ ≡ [top, bottom]T and ΨC ≡ [topC, bottomC]
T (where the

words “top” and “bottom” indicate the upper and lower components of the wave function) are similarly

transformed under proper Lorentz transformations (T represents the transpose of a matrix). Thus, the

upper components of these two wave functions, as well as the lower components, transform similarly.

Obviously, this is true in any representation and is unrelated to the Majorana condition. If in addition

the Majorana condition holds in Eq. (16), then the upper components of Ψ and ΨC, as well as their lower

components, are equal. In passing, the Majorana condition is sometimes written as Ψ = ωΨC, where ω is an

arbitrary unobservable phase factor, and it is still a Lorentz covariant condition [3], as expected. Below, we

present the equations or systems of equations for the Majorana particle in the Dirac, Weyl, and Majorana

representations in both 3 + 1 and 1 + 1 dimensions.

4.1. Dirac representation.

3+1 dimensions. We write the four-component Dirac wave function (or Dirac spinor) Ψ in the form

Ψ ≡
[

ϕ

χ

]
, (17)

where the upper two-component wave function can be written as ϕ ≡ [ϕ1 ϕ2]
T and the lower one as

χ ≡ [χ1 χ2]
T. In 3 + 1 dimensions, a two-component wave function such as Ψ is also called a bispinor.

The Dirac equation takes the form

i�
∂

∂t

[
ϕ

χ

]
= Ĥ

[
ϕ

χ

]
=

[
(VS +mc2)1̂2 −i�cσ̂ · ∇
−i�cσ̂ · ∇ −(VS +mc2)1̂2

][
ϕ

χ

]
. (18)

Majorana condition (16) for the Dirac wave function imposes the following relation among the components

of Ψ:

χ = σ̂yϕ
∗ ≡ χC (⇔ ϕ = −σ̂yχ

∗ ≡ ϕC). (19)

Substituting this χ in Eq. (18), we are left with an equation for the two-component wave function ϕ:

i�1̂2
∂

∂t
ϕ = −i�cσ̂ · ∇(σ̂yϕ

∗) + (VS +mc2)1̂2ϕ. (20)

Certainly, two equations arise from the last replacement: one is Eq. (20) and the other is an equation that

can also be obtained from Eq. (20) by making the substitutions ϕ → σ̂yϕ
∗, σ̂yϕ

∗ → ϕ, and VS +mc2 →
−(VS +mc2). It can be algebraically shown that the latter equation and Eq. (20) are equivalent.

Alternatively, if we substitute ϕ (from Eq. (19)) in Eq. (18), we obtain the following equation for the

two-component wave function χ:

i�1̂2
∂

∂t
χ = −i�cσ̂ · ∇(−σ̂yχ

∗)− (VS +mc2)1̂2χ. (21)

Again, by making the last replacement, two equations arise: one is Eq. (21), and the other is an equation

that can also be obtained from Eq. (21) by the replacements χ → −σ̂yχ
∗, −σ̂yχ

∗ → χ, and −(VS+mc2) →
VS + mc2. Again, it can be algebraically shown that the latter equation and Eq. (21) are absolutely

equivalent. Clearly, if we assume that the wave function that describes the Majorana particle has four

components, it is sufficient to solve at least one of the two last (decoupled) two-component equations,

namely, Eqs. (20) and (21). This is because ϕ and χ are algebraically related by Eq. (19). Thus, Eq. (20)

(or Eq. (21)) alone can be regarded as a two-component equation that models the 3D Majorana particle.
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1+1 dimensions. We write the two-component Dirac wave function Ψ in the form given in Eq. (17),

but in this case ϕ and χ are functions of a single component. The Dirac equation (Eq. (3)) with Hamilto-

nian (6) take the form

i�
∂

∂t

[
ϕ

χ

]
= Ĥ

[
ϕ

χ

]
=

⎡
⎢⎣VS +mc2 −i�c

∂

∂x

−i�c
∂

∂x
−(VS +mc2)

⎤
⎥⎦
[
ϕ

χ

]
. (22)

The Majorana condition (Eq. (16)) for the Dirac wave function imposes the following relation between the

two components of Ψ:

χ = −iϕ∗ ≡ χC (⇔ ϕ = −iχ∗ ≡ ϕC). (23)

Substituting χ from (23) in Eq. (22), we are left with an equation for the one-component wave function ϕ:

i�
∂

∂t
ϕ = −i�c

∂

∂x
(−iϕ∗) + (VS +mc2)ϕ (24)

(the other equation that results from the previous substitution in Eq. (22) is essentially the complex conju-

gate equation of Eq. (24)). In contrast to 3+1 dimensions, the equation for the lower component χ is equal

to the equation for the upper component (Eq. (24)) but with the replacement VS +mc2 → −(VS +mc2).

In any case, it is sufficient to solve at least one of these one-component equations because ϕ and χ are

algebraically linked via Eq. (23). Thus, for example, it can be said that Eq. (24) (or the equation for χ)

alone models the Majorana particle in 1 + 1 dimensions [6].

On the other hand, the only four boundary conditions that ϕ can support when the 1D Majorana

particle is inside an impenetrable box (we call them confining boundary conditions) were encountered in

Ref. [15]. Likewise, these conditions were found in Ref. [6], but it was shown there that these are just the

conditions that can arise mathematically from the general linear boundary condition used in the MIT bag

model for a hadronic structure in 1+ 1 dimensions (the latter four boundary conditions are also subject to

the Majorana condition). In relation to the MIT bag model, see, e.g., Ref. [6] and the references therein, and

also Ref. [16]. Specifically, for a box of size L with ends, for example, at x = 0 and x = L, the four confining

boundary conditions can be written in the form f(0, t) = g(L, t) = 0, where f and g are the functions Imϕ

and Reϕ. This is a nice result because the entire two-component Dirac wave function does not support

this type of boundary condition at the walls of the box [17]. In addition, two one-parameter families of

nonconfining boundary conditions were also found in Ref. [6]. It is even possible (by taking some convenient

limits) that these two families also include the four confining boundary conditions. Consequently, these

two families actually make up the most general set of boundary conditions for the 1D Majorana particle in

a box; see Eq. (93) in Ref. [6]. In detail, we write below, for the first time, these two families of boundary

conditions but in the Weyl representation.

Clearly, in the Dirac representation, the procedure for finding single equations for the Majorana particle

is similar in 3+ 1 and 1+ 1 dimensions. However, this representation is not so commonly used to write the

equation for the Majorana particle, be it in 3+ 1 or in 1+ 1 dimensions; rather, the Weyl representation is

used (at least in 3 + 1 dimensions).

4.2. Weyl representation.

3 + 1 dimensions. We write the four-component Dirac wave function (or spinor) Ψ as

Ψ ≡
[
ϕ1

ϕ2

]
, (25)
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where the upper (lower) two-component wave function can be written as ϕ1 ≡ [ξ1 ξ2]
T (ϕ2 ≡ [ξ3 ξ4]

T).

Dirac equation (3) takes the form

i�
∂

∂t

[
ϕ1

ϕ2

]
= Ĥ

[
ϕ1

ϕ2

]
=

[
−i�cσ̂ · ∇ −(VS +mc2)1̂2

−(VS +mc2)1̂2 +i�cσ̂ · ∇

][
ϕ1

ϕ2

]
. (26)

Majorana condition (16) imposed on Ψ leads to the following relation among its components:

ϕ2 = σ̂yϕ
∗
1 ≡ (ϕ2)C (⇔ ϕ1 = −σ̂yϕ

∗
2 ≡ (ϕ1)C). (27)

Substituting this ϕ2 in Eq. (26), we are left with an equation for the two-component wave function ϕ1:

i�1̂2
∂

∂t
ϕ1 = −i�cσ̂ · ∇ϕ1 − (VS +mc2)σ̂yϕ

∗
1. (28)

Instead, if we substitute ϕ1 (from Eq. (27)) in Eq. (26), we obtain the following equation for the two-

component wave function ϕ2:

i�1̂2
∂

∂t
ϕ2 = +i�cσ̂ · ∇ϕ2 + (VS +mc2)σ̂yϕ

∗
2. (29)

Again, to obtain the wave function Ψ (25), it is sufficient to first solve Eq. (28) (Eq. (29)) to obtain ϕ1

(ϕ2) and then obtain ϕ2 (ϕ1) by using Majorana condition (27). We note that the substitution that gave

us Eq. (28) for ϕ1 also generates another equation, namely, Eq. (29) for σ̂yϕ
∗
1 (these two equations are alge-

braically equivalent). Likewise, the substitution that gave us Eq. (29) for ϕ2 also generates another equation,

namely, Eq. (28) for −σ̂yϕ
∗
2 (again, both equations are equivalent). Thus, the wave function ϕ1 = ϕ1(r, t)

satisfies Eq. (28), but unexpectedly, iσ̂yϕ
∗
1(−r, t) also satisfies Eq. (28) (if the relation VS(r, t) = VS(−r, t)

holds). Similarly, the wave function ϕ2 = ϕ2(r, t) satisfies Eq. (29), but −iσ̂yϕ
∗
2(−r, t) also satisfies Eq. (29)

(and again, the scalar potential must be an even function of r).

Setting mc2 = VS = 0 in Eq. (26), we obtain two (decoupled) equations

i�1̂2
∂

∂t
ϕ1 = −i�cσ̂ · ∇ϕ1, i�1̂2

∂

∂t
ϕ2 = +i�cσ̂ · ∇ϕ2, (30)

These are the well-known Weyl equations. For instance, the first of these two-component equations can be

assigned to the (right-handed, or right-helical) massless antineutrino, while the second can be assigned to

the (left-handed, or left-helical) massless neutrino (even though it is possible that only one of these two

equations is sufficient for the description of a massless fermion, in which case one is led to the so-called

Weyl theory [12], [18]). On the other hand, setting mc2 = VS = 0 in Eqs. (28) and (29), we obtain two

equations (in fact, the same equations as given in Eq. (30)), but this time, ϕ1 and ϕ2 are related by the

Majorana condition in Eq. (27). In fact, the four-component Majorana wave functions corresponding to

the two-component wave functions ϕ1 and ϕ2 are given by

Ψ =

[
ϕ1

σ̂yϕ
∗
1

]
(= ΨC), Ψ =

[
−σ̂yϕ

∗
2

ϕ2

]
(= ΨC). (31)

The four-component Weyl wave functions corresponding to the two-component wave functions ϕ1 and ϕ2

are given by

Ψ =

[
ϕ1

0

]
, Ψ =

[
0

ϕ2

]
. (32)

In 3 + 1 dimensions, the Weyl representation is definitely the most used. As we show in Sec. 5, two-

component equations (28) and (29) can also be written explicitly in covariant form, and each of them can

describe a 3D Majorana particle.
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1+1 dimensions. We write the two-component Dirac wave function Ψ in the form given in Eq. (25),

but in this case, ϕ1 and ϕ2 are wave functions of a single component. Dirac equation (3) takes the form

i�
∂

∂t

[
ϕ1

ϕ2

]
= Ĥ

[
ϕ1

ϕ2

]
=

⎡
⎢⎣−i�c

∂

∂x
VS +mc2

VS +mc2 +i�c
∂

∂x

⎤
⎥⎦
[
ϕ1

ϕ2

]
. (33)

Majorana condition (16) imposed upon Ψ gives the relations

ϕ1 = −iϕ∗
1 ≡ (ϕ1)C, ϕ2 = +iϕ∗

2 ≡ (ϕ2)C. (34)

Obviously, these relations do not allow us to write a one-component first-order equation for the Majorana

particle (and from Eq. (2), neither can a standard one-component second-order equation be written).

That is, unlike the case in 3 + 1 dimensions, the equation that describes the Majorana particle in 1 + 1

dimensions is a complex system of coupled equations, i.e., Eq. (33) with the restriction given in Eq. (34).

In this representation, we can also write the most general set of boundary conditions for the 1D

Majorana particle inside a box with ends at x = 0 and x = L. This set consists of two one-parameter

families of boundary conditions. In fact, using the results given in Eqs. (67) and (68) of Ref. [6] (written in

the Majorana representation) and the fact that the two-component wave functions in the Weyl and Majorana

representations satisfy the relation [φ1 φ2]
T = Ŝ[ϕ1 ϕ2]

T, where the matrix Ŝ is given in Eq. (14), we obtain

(with the variable t eliminated from in the boundary conditions here and hereafter)

[
ϕ1(L)

ϕ2(L)

]
=

⎡
⎢⎢⎣
− 1

m2
−i

m0

m2

−i
m0

m2

1

m2

⎤
⎥⎥⎦
[
ϕ1(0)

ϕ2(0)

]
, (35)

where (m0)
2 + (m2)

2 = 1, and

[
ϕ1(L)

ϕ2(L)

]
=

⎡
⎢⎢⎣

1

m1
−i

m3

m1

i
m3

m1

1

m1

⎤
⎥⎥⎦
[
ϕ1(0)

ϕ2(0)

]
, (36)

where (m1)
2 + (m3)

2 = 1. We note that the 2 × 2 matrix in (35) is equal to its own inverse and that the

inverse matrix of the 2×2 matrix in (36) is obtained from the latter by making the substitution m3 → −m3.

We obtain two boundary conditions for an impenetrable box (i.e., two confining boundary conditions) from

Eq. (35) and its inverse by letting m2 → 0:

ϕ1(L) = −iϕ2(L), ϕ1(0) = −iϕ2(0) (37)

with m0 = 1, and

ϕ1(L) = +iϕ2(L), ϕ1(0) = +iϕ2(0) (38)

with m0 = −1. Likewise, we obtain two other confining boundary conditions from Eq. (36) and its inverse

by letting m1 → 0:

ϕ1(L) = −iϕ2(L), ϕ1(0) = +iϕ2(0), (39)

with m3 = 1, and

ϕ1(L) = +iϕ2(L), ϕ1(0) = −iϕ2(0) (40)

with m3 = −1. We note that the wave function [ϕ1 ϕ2]
T can satisfy any of the boundary conditions

included in Eqs. (35) and (36), but then the wave function [−iϕ∗
1 + iϕ∗

2]
T also automatically satisfies this

boundary condition. This is due to the Majorana condition. Because in this case the Majorana condition

is a pair of independent relations, the boundary conditions are presented in terms of the two components

of the wave function.
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4.3. Majorana representation.

3 + 1 dimensions. The four-component Dirac wave function (or spinor) Ψ can be written as

Ψ ≡
[
φ1

φ2

]
, (41)

where the upper (lower) two-component wave function can be written as φ1 ≡ [ζ1 ζ2]
T (φ2 ≡ [ζ3 ζ4]

T).

The Dirac equation (Eq. (3)) takes the form

i�
∂

∂t

[
φ1

φ2

]
= Ĥ

[
φ1

φ2

]
=

=

⎡
⎣ −i�c1̂2

∂
∂y i�c

(
σ̂x

∂
∂x + σ̂z

∂
∂z

)
+ (VS +mc2)σ̂y

i�c
(
σ̂x

∂
∂x + σ̂z

∂
∂z

)
+ (VS +mc2)σ̂y i�c1̂2

∂
∂y

⎤
⎦
[
φ1

φ2

]
. (42)

Clearly, Eq. (42) is a real system of two coupled equations for the two-component wave functions φ1 and φ2.

Thus, we can obtain real-valued solutions of this equation, but complex-valued solutions can also be obtained

(although these do not describe a Majorana particle) [19]. Majorana condition (16) imposed on Ψ leads to

the relation

Ψ = Ψ∗ (⇔ φ1 = φ∗
1 ≡ (φ1)C, φ2 = φ∗

2 ≡ (φ2)C). (43)

That is, the Majorana condition imposed on the Dirac wave function in the Majorana representation implies

the realness of this wave function.

1+1 dimensions. We write the two-component Dirac wave function Ψ in the form given in Eq. (41),

but in this case, φ1 and φ2 are functions of a single component. The Dirac equation (Eq. (3)) has the form

i�
∂

∂t

[
φ1

φ2

]
= Ĥ

[
φ1

φ2

]
=

[
0 −i�c ∂

∂x − i(VS +mc2)

−i�c ∂
∂x + i(VS +mc2) 0

] [
φ1

φ2

]
. (44)

Again, the Dirac equation in this representation is a real system of two coupled equations for the wave

functions φ1 and φ2. However, it is precisely the Majorana condition (16) imposed on Ψ that leads to the

realness condition for the wave function:

Ψ = Ψ∗ (⇔ φ1 = φ∗
1 ≡ (φ1)C, φ2 = φ∗

2 ≡ (φ2)C). (45)

Recently, distinct real-valued general solutions of the time-dependent Dirac equation in Eq. (44) (i.e., subject

to the constraint (45), for distinct scalar potentials and boundaries) were constructed [19]. Certainly, all

these solutions describe a 1D Majorana particle in its respective physical situation.

The most general set of boundary conditions for the 1D Majorana particle inside a box in the Majorana

representation was written in detail in Ref. [6]. This set consists of two real one-parameter families of

boundary conditions (see Eqs. (67) and (68) in [6]). The Majorana condition in the Majorana representation

leads very easily to the Majorana condition in any other representation. In fact, we know that wave functions

in the Dirac and Majorana representations are linked through the relation [φ1 φ2]
T = Ŝ[ϕ χ]T, where the

matrix Ŝ is given in Eq. (13); in addition, wave functions in the Weyl and Majorana representations are

linked through the relation [φ1 φ2]
T = Ŝ[ϕ1 ϕ2]

T, where the matrix Ŝ is given in Eq. (14). Thus, by

imposing the Majorana condition (Eq. (45)) on the last two relations, we obtain the Majorana condition in

the Dirac and Weyl representations, i.e., Eqs. (23) and (34) respectively. Certainly, this general discussion

is also valid in 3 + 1 dimensions.
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5. Equations for the Majorana single-particle. II

3 + 1 dimensions. We define, as Case did [8], the wave functions and matrices

Ψ± ≡ 1

2
(1̂4 ± γ̂5)Ψ (46)

and

γ̂μ
± ≡ 1

2
(1̂4 ± γ̂5)γ̂μ, (47)

where the matrix γ̂5 ≡ iγ̂0γ̂1γ̂2γ̂3 = −iα̂1α̂2α̂3 is Hermitian and satisfies the relations (γ̂5)2 = 1̂4, and

{γ̂5, γ̂μ} = 0̂4. In addition, γ̂5 satisfies the relation ŜC(−γ̂5)∗(ŜC)
−1 = γ̂5 (i.e., γ̂5, just as γ̂μ, satisfies

Eq. (5)), and [
1

2
(1̂4 ± γ̂5)

]2
=

1

2
(1̂4 ± γ̂5),

1

2
(1̂4 ± γ̂5)

1

2
(1̂4 ∓ γ̂5) = 0̂4. (48)

We note that the charge conjugates of the wave functions in (46) satisfy (Ψ±)C = (ΨC)∓. The matrix γ̂5 is

called the chirality matrix and its eigenstates are precisely Ψ+ (the right-chiral state), with eigenvalue +1,

and Ψ− (the left-chiral state), with eigenvalue −1 [3] (the last two results can easily be demonstrated by

multiplying Eq. (46) by γ̂5 from the left). However, we also note that (Ψ+)C is the eigenstate of γ̂5 with

eigenvalue −1 (i.e., it is a left-chiral state), and (Ψ−)C is the eigenstate of γ̂5 with eigenvalue +1 (i.e., it is

a right-chiral state). The matrices γ̂5 and the wave functions Ψ± in the three representations that we use

in this paper are shown in Tables 1 and 3.

Table 3

Representation Ψ+ Ψ−

Dirac
1

2

[

ϕ+ χ

ϕ+ χ

]

1

2

[

ϕ− χ

−ϕ+ χ

]

Weyl

[

ϕ1

0

] [

0

ϕ2

]

Majorana
1

2

[

(1̂2 + σ̂y)φ1

(1̂2 − σ̂y)φ2

]

1

2

[

(1̂2 − σ̂y)φ1

(1̂2 + σ̂y)φ2

]

First, multiplying Eq. (1) by (1̂4 + γ̂5)/2 from the left, we obtain the equation

iγ̂μ
+ ∂μΨ− − 1

�c
(VS +mc2)1̂4Ψ+ = 0. (49)

and similarly, multiplying Eq. (1) by (1̂4 − γ̂5)/2, we obtain the equation

iγ̂μ
− ∂μΨ+ − 1

�c
(VS +mc2)1̂4Ψ− = 0. (50)

Because Ψ = Ψ+ + Ψ− and γ̂μ = γ̂μ
+ + γ̂μ

−, it follows that Eqs. (49) and (50) are completely equivalent

to Dirac equation (1). Likewise, because Eq. (1) is also satisfied by the charge-conjugate wave function,

we also have two equations that are equivalent to the Dirac equation for ΨC. In effect, multiplying the

latter by (1̂4 + γ̂5)/2 and (1̂4 − γ̂5)/2, we respectively obtain

iγ̂μ
+ ∂μ(Ψ+)C − 1

�c
(VS +mc2)1̂4(Ψ−)C = 0,

iγ̂μ
−∂μ(Ψ−)C − 1

�c
(VS +mc2)1̂4(Ψ+)C = 0

(51)
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(we recall that (Ψ±)C = ŜCΨ
∗
±). We note that because (Ψ+)C = (ΨC)− and (Ψ−)C = (ΨC)+, the wave

functions Ψ+ and Ψ− as well as (ΨC)+ and (ΨC)− satisfy the same system of coupled equations, namely,

Eqs. (49) and (50) (or the system in Eq. (51), as expected.

In the case where mc2 = VS = 0, Eqs. (49) and (50) are decoupled, and we have

iγ̂μ
+ ∂μΨ− = 0 (⇒ iγ̂μ ∂μΨ− = 0),

iγ̂μ
− ∂μΨ+ = 0 (⇒ iγ̂μ ∂μΨ+ = 0).

In the Weyl representation, the last two four-component equations give the usual Weyl equations (30).

In the same way, if we set mc2 = VS = 0 in the system in Eq. (51), we obtain

iγ̂μ
+ ∂μ(Ψ+)C = 0 (⇒ iγ̂μ ∂μ(Ψ+)C = 0),

iγ̂μ
− ∂μ(Ψ−)C = 0 (⇒ iγ̂μ ∂μ(Ψ−)C = 0).

Certainly, in the Weyl representation, the last two equations also give the usual Weyl equations (30).

The Majorana condition in Eq. (16) takes the form

Ψ− = (Ψ+)C (⇔ Ψ+ = (Ψ−)C) (52)

(we recall that (ŜC)
−1 = (ŜC)

∗), i.e., Ψ− = (ΨC)− (⇔ Ψ+ = (ΨC)+). Substituting the wave function Ψ−
in Eq. (50), we obtain an equation for the four-component wave function Ψ+:

iΓ̂μ ∂μΨ+ − 1

�c
(VS +mc2)1̂4Ψ

∗
+ = 0, (53)

where

Γ̂μ ≡ (ŜC)
∗γ̂μ

−, (Γ̂μ)∗Γ̂ν + (Γ̂ν)∗Γ̂μ = −2gμν
1

2
(1̂4 + γ̂5) (54)

(the equation for Ψ+ that results after making the last substitution but in Eq. (49) is absolutely equivalent

to Eq. (53)).

Alternatively, substituting the wave function Ψ+ (52) in Eq. (49), we obtain an equation for the

four-component wave function Ψ−:

iΛ̂μ ∂μΨ− − 1

�c
(VS +mc2)1̂4Ψ

∗
− = 0, (55)

where

Λ̂μ ≡ (ŜC)
∗γ̂μ

+, (Λ̂μ)∗ Λ̂ν + (Λ̂ν)∗Λ̂μ = −2gμν
1

2
(1̂4 − γ̂5) (56)

(again, the equation for Ψ− that results after making the last substitution but into Eq. (50) is absolutely

equivalent to Eq. (55)). Naturally, by imposing Majorana condition (52) on the equations in (51), we again

obtain Eqs. (53) and (55).

On the other hand, setting mc2 = VS = 0 in Eq. (53) leads us to the relation iγ̂μ
− ∂μΨ+ = 0

(⇒ iγ̂μ ∂μΨ+ = 0), and as can be seen in Eq. (51), we also have iγ̂μ
− ∂μ(Ψ−)C = 0 (⇒ iγ̂μ ∂μ(Ψ−)C = 0), but

in this case we also have Ψ+ = (Ψ−)C (due to the Majorana condition). Similarly, setting mc2 = VS = 0

in Eq. (55) leads us to the relation iγ̂μ
+ ∂μΨ− = 0 (⇒ iγ̂μ ∂μΨ− = 0), but from Eq. (51) we also have

iγ̂μ
+ ∂μ(Ψ+)C = 0 (⇒ iγ̂μ ∂μ(Ψ+)C = 0), where Ψ− = (Ψ+)C (this is also due to the Majorana condition).

To obtain the four-component wave function that describes the Majorana particle, namely, Ψ =

Ψ+ +Ψ−, it is sufficient to solve the equation for Ψ+ (Eq. (53)), and then obtain Ψ− from this solu-

tion, and using the Majorana condition in (52). Alternatively, we could also solve the equation for Ψ− (55),
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and then, from this solution, and using the Majorana condition (52), obtain Ψ+. We note that in the former

case, Ψ = Ψ+ + (Ψ+)C, and therefore Ψ = ΨC (we recall that ((Ψ+)C)C = Ψ+); similarly, in the latter

case, Ψ = (Ψ−)C + Ψ−, and therefore Ψ = ΨC (with ((Ψ−)C)C = Ψ−), as expected. Clearly, the four-

component wave function Ψ depends only on the solution of Eq. (53) (or of Eq. (55)); thus, we can assume

that Eq. (53) (or Eq. (55)) alone models the 3D Majorana particle and in a form independent of the choice

of the representation.

Certainly, the above procedure to obtain Ψ is general, but in each representation, it has its own specific

features. In relation to this, we can now obtain different results. In the rest of this subsection, we fully use

Tables 3–5.

Table 4

Representation ̂Γ0
̂Γ1

̂Γ2
̂Γ3

Dirac
1

2

[

−σ̂y −σ̂y

−σ̂y −σ̂y

]

1

2

[

iσ̂z iσ̂z

iσ̂z iσ̂z

]

1

2

[

−1̂2 −1̂2

−1̂2 −1̂2

]

1

2

[

−iσ̂x −iσ̂x

−iσ̂x −iσ̂x

]

Weyl

[

−σ̂y 0̂2

0̂2 0̂2

] [

iσ̂z 0̂2

0̂2 0̂2

] [

−1̂2 0̂2

0̂2 0̂2

] [

−iσ̂x 0̂2

0̂2 0̂2

]

Majorana
1

2

[

0̂2 σ̂y − 1̂2

σ̂y + 1̂2 0̂2

]

1

2

[

iσ̂z + σ̂x 0̂2

0̂2 iσ̂z − σ̂x

]

1

2

[

0̂2 −σ̂y + 1̂2

σ̂y + 1̂2 0̂2

]

1

2

[

−iσ̂x + σ̂z 0̂2

0̂2 −iσ̂x − σ̂z

]

Table 5

Representation Λ̂0 Λ̂1 Λ̂2 Λ̂3

Dirac
1

2

[

σ̂y −σ̂y

−σ̂y σ̂y

]

1

2

[

iσ̂z −iσ̂z

−iσ̂z iσ̂z

]

1

2

[

−1̂2 1̂2

1̂2 −1̂2

]

1

2

[

−iσ̂x iσ̂x

iσ̂x −iσ̂x

]

Weyl

[

0̂2 0̂2

0̂2 σ̂y

] [

0̂2 0̂2

0̂2 iσ̂z

] [

0̂2 0̂2

0̂2 −1̂2

] [

0̂2 0̂2

0̂2 −iσ̂x

]

Majorana
1

2

[

0̂2 σ̂y+1̂2

σ̂y−1̂2 0̂2

]

1

2

[

iσ̂z−σ̂x 0̂2

0̂2 iσ̂z+σ̂x

]

1

2

[

0̂2 −σ̂y−1̂2

σ̂y−1̂2 0̂2

]

1

2

[

−iσ̂x−σ̂z 0̂2

0̂2 −iσ̂x+σ̂z

]

1. In the Weyl representation, the covariant four-component equation for Ψ+ = [ϕ1 0]T (53) leads to

the explicitly covariant two-component equation for the two-component wave function ϕ1

η̂μ ∂μϕ1 − 1

�c
(VS +mc2)1̂2ϕ

∗
1 = 0, (57)

where the matrices η̂0 = −iσ̂y, η̂
1 = −σ̂z , η̂

2 = −i1̂2, and η̂3 = σ̂x satisfy the relation

(η̂μ)∗η̂ν + (η̂ν)∗η̂μ = −2gμν 1̂2 (58)

(this last relation arises from Eq. (54)). After multiplying Eq. (57) by−σ̂y, this equation takes an alternative

form,

iσ̂μ ∂μϕ1 +
1

�c
(VS +mc2)σ̂yϕ

∗
1 = 0, (59)
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where σ̂0 = 1̂2, σ̂1 = σ̂x, σ̂2 = σ̂y, and σ̂3 = σ̂z (or, as it is commonly written, σ̂μ = (1̂2,+σ̂)) [8].

Equation (59) is precisely Eq. (28), as expected. Now, if we use Majorana condition (52), we can obtain

Ψ− = [0 ϕ2]
T from Ψ+ = [ϕ1 0]T, and the result is Ψ− = [0 σ̂yϕ

∗
1]

T (which is in agreement with the

result in Eq. (27)). Finally, we can write the four-component wave function for the Majorana particle,

namely, Ψ = Ψ+ + Ψ− = [ϕ1 σ̂yϕ
∗
1]

T. It is clear that this four-component solution is dependent only on

the two-component complex wave function ϕ1, which is a solution of Eq. (59), i.e., here, we have only four

independent real quantities. Because we have γ̂5Ψ+ = (+1)Ψ+, Eq. (59) is referred to as the right-chiral

two-component Majorana equation.

Similarly, the covariant four-component equation for Ψ− = [0 ϕ2]
T (55) leads to the explicitly covariant

two-component equation for the two-component wave function ϕ2

ξ̂μ ∂μϕ2 − 1

�c
(VS +mc2)1̂2ϕ

∗
2 = 0, (60)

where the matrices ξ̂0 = −η̂0 and ξ̂j = η̂j , j = 1, 2, 3, also satisfy Eq. (58) (in this case, the last relation

arises from Eq. (56)). Multiplying Eq. (60) by σ̂y, this equation takes the alternative form

iˆ̄σμ ∂μϕ2 − 1

�c
(VS +mc2)σ̂yϕ

∗
2 = 0, (61)

where ˆ̄σ0 = σ̂0, ˆ̄σ1 = −σ̂1, ˆ̄σ2 = −σ̂2, and ˆ̄σ3 = −σ̂3 (i.e., ˆ̄σμ = (1̂2,−σ̂)). Equation (61) is precisely

Eq. (29), as expected. Again, if we use Majorana condition (52), we can obtain Ψ+ = [ϕ1 0]T from

Ψ− = [0 ϕ2]
T, and the result is Ψ+ = [−σ̂yϕ

∗
2 0]T (which is in agreement with the result in Eq. (27)).

Thus, we can write the four-component wave function for the Majorana particle, namely, Ψ = Ψ+ +Ψ− =

[−σ̂yϕ
∗
2 ϕ2]

T. The last four-component solution depends only on the two-component complex wave function

ϕ2, which is a solution of Eq. (61), i.e., here, we have only four independent real quantities, as expected

for a Majorana particle. Because we have γ̂5Ψ− = (−1)Ψ−, Eq. (61) is referred to as the left-chiral

two-component Majorana equation.

In summary, Eq. (59) alone can be regarded as a Majorana equation for the Majorana particle, even

for a particular type of the Majorana particle. Likewise, Eq. (61) alone can also be regarded as a Majorana

equation for the Majorana particle, even for a Majorana particle different from the previous one (for example,

with a different mass). Thus, Eqs. (59) and (61), although similar, are nonequivalent two-component

equations. Specifically, this is because ϕ1 and ϕ2 transform in two precise and different ways under Lorentz

boosts, i.e., they transform according to two inequivalent representations of the Lorentz group [9]. Certainly,

Eqs. (59) and (61) tend to the pair of Weyl equations when mc2 = VS = 0 (Eq. (30)). Equations (59)

and (61) comprise the so-called two-component theory of Majorana particles [8].

Again, in the Weyl representation that we consider in this paper (γ̂0 = β̂ = −σ̂x ⊗ 1̂2,

γ̂ = β̂α̂ = +iσ̂y ⊗ σ̂ and γ̂5 = +σ̂z ⊗ 1̂2), we used ŜC = −γ̂2 = −iσ̂y ⊗ σ̂y, but this is only because

we decided to derive this result from Eq. (8) (with Ŝ given by Eq. (10)). We could, for example, write

ŜC = −iγ̂2 = +σ̂y ⊗ σ̂y. In the latter case, the equations for ϕ1 and ϕ2 are simply Eqs. (59) and (61) with

the replacement σ̂y → +iσ̂y:

iσ̂μ ∂μϕ1 +
1

�c
(VS +mc2)iσ̂yϕ

∗
1 = 0 (62)

and

iˆ̄σμ ∂μϕ2 − 1

�c
(VS +mc2)iσ̂yϕ

∗
2 = 0. (63)

Equation (62) is appropriately named the right-chiral two-component Majorana equation, and Eq. (63) is

named the left-chiral two-component Majorana equation (see [9], [10]). Incidentally, by linearizing the stan-

dard relativistic energy–momentum relation, and without recourse to the Dirac equation, a good derivation

of Eq. (62), with VS = 0, was obtained in Ref. [20]. In Ref. [10], we compare the pair of equations (62), (63)

with other pairs usually presented in the literature, in particular, with those presented in Refs. [3], [21], [22].
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Unsurprisingly, Eqs. (62), (63) for ϕ1, ϕ2 can be written jointly in the form

iγ̂μ ∂μΨ− 1

�c
(VS +mc2)1̂4ΨC = 0, (64)

where Ψ = [ϕ1 ϕ2]
T and ΨC ≡ ŜCΨ

∗ with ŜC = −iγ̂2 = +σ̂y ⊗ σ̂y . Specifically, Eq. (64) is the (four-

component) Majorana equation with a scalar potential (see the discussion on this equation in the introduc-

tion). However, if this equation is considered to describe a Majorana particle with a four-component wave

function, Ψ = [ϕ1 ϕ2]
T, it should be remembered that due to the Majorana condition, Ψ = ΨC, ϕ1 and ϕ2

are not independent two-component wave functions. Therefore, in this case, it would be sufficient to solve

just one of the two two-component Majorana equations, and then, with the relation between ϕ1 and ϕ2,

we could reconstruct the entire wave function Ψ. However, if Eq. (64) is considered to describe a Majo-

ranon [7], [23], then the two two-component Majorana equations must be solved, the solutions of which

are simply the top and bottom components of the wave function Ψ in Eq. (64). This result is somewhat

unexpected.

2. In the Dirac representation, the covariant four-component equation for Ψ+ (Eq. (53)) leads to the

covariant two-component Eq. (57) with the replacement ϕ1 → ϕ+ χ. Likewise, the Majorana condition in

Eq. (52) leads to Eq. (27) with the latter replacement plus ϕ2 → −ϕ + χ, namely, −ϕ + χ = σ̂y(ϕ + χ)∗

(Eq. (19)). We recall that the four-component wave functions in the Dirac and Weyl representations are

related as [ϕ1 ϕ2]
T = Ŝ[ϕ χ]T, where the matrix Ŝ is given in Eq. (11). Thus, from Eq. (53), we obtain the

two-component wave function ϕ+ χ, from which we can construct Ψ+, and using the Majorana condition,

we obtain −ϕ+χ, from which we can construct Ψ− (see Table 3). Finally, the four-component wave function

for the Majorana particle Ψ = Ψ+ + Ψ− = [ϕ χ]T can be written immediately. Similarly, the covariant

four-component equation for Ψ− (Eq. (55)) leads to Eq. (60) with the replacement ϕ2 → −ϕ + χ. Thus,

from Eq. (55), we obtain the two-component wave function −ϕ+ χ, from which we can construct Ψ−, and
using the Majorana condition we obtain ϕ+χ, from which we can construct Ψ+ (see Table 3). Finally, the

four-component wave function for the Majorana particle can be written immediately.

Alternatively, adding and subtracting the former equations that result from Eqs. (53) and (55) and

once again using (conveniently) the Majorana condition given in Eq. (19), we obtain an equation for the

two-component wave function ϕ,

η̂0 ∂0ϕ+

3∑
k=1

η̂k ∂k(σ̂yϕ
∗) +

1

�c
(VS +mc2)σ̂y ϕ = 0 (65)

and another equation for the two-component wave function χ,

ξ̂0 ∂0χ+

3∑
k=1

ξ̂k ∂k(σ̂yχ
∗) +

1

�c
(VS +mc2)σ̂y χ = 0. (66)

Certainly, Eq. (65) leads to Eq. (20), and Eq. (66) leads to Eq. (21). Likewise, from the solution of

Eq. (65) or Eq. (66), and properly using Majorana condition (19) in each case, we can obtain the respective

four-component wave function Ψ = [ϕ χ]T.

3. In the Majorana representation, the covariant four-component equation for Ψ+ (53) is precisely

Eq. (50), and the covariant four-component equation for Ψ− (55) is precisely Eq. (49); additionally, the

latter equation is the complex conjugate of the former equation. This is shown by the following results.
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We recall that in this representation, ŜC = 1̂4; therefore, Γ̂
μ = γ̂μ

−, Λ̂
μ = γ̂μ

+, and, from the Majorana

condition in Eq. (52), we have Ψ− = Ψ∗
+ (and therefore Ψ = Ψ+ + Ψ− = Ψ∗, as expected). In this

representation, we also have γ̂μ = −(γ̂μ)∗ and γ̂5 = −(γ̂5)∗, and therefore γ̂μ
− = −(γ̂μ

+)
∗. Thus, in the

Majorana representation, the equation for the Majorana particle is essentially Eq. (50), where γ̂μ
− = −(γ̂μ

+)
∗

and Ψ− = Ψ∗
+ (in fact, substituting the last relations in the complex conjugate equation of Eq. (50), we

obtain Eq. (49)). Specifically, Eq. (50) leads to Eq. (57) with the replacement ϕ1 → (1̂2+σ̂y)φ1−(1̂2−σ̂y)φ2.

We recall that the four-component wave functions in the Majorana and Weyl representations are related

by [ϕ1 ϕ2]
T = Ŝ−1[φ1 φ2]

T, where the matrix Ŝ is given in Eq. (10) (additionally, ϕ1 and ϕ2 are related

by Eq. (27), i.e., the Majorana condition, which implies that φ1 and φ2 are real-valued wave functions, as

expected). Finally, the equation obtained here and its complex conjugate can be written in the form given

in Eq. (42).

1 + 1 dimensions. We introduce the wave functions and matrices

Ψ± ≡ 1

2
(1̂2 ± Γ̂5)Ψ, γ̂μ

± ≡ 1

2
(1̂2 ± Γ̂5)γ̂μ, (67)

where the matrix Γ̂5 ≡ −iγ̂5 is Hermitian because γ̂5 ≡ iγ̂0γ̂1 = iα̂ is anti-Hermitian, and satisfies the

relations (Γ̂5)2 = 1̂2 and {Γ̂5, γ̂μ} = 0̂2. In addition, Γ̂5 satisfies the relation ŜC(Γ̂
5)∗(ŜC)

−1 = Γ̂5 (which is

different from the analogous relation satisfied by γ̂5 in 3 + 1 dimensions), and

[
1

2
(1̂2 ± Γ̂5)

]2
=

1

2
(1̂2 ± Γ̂5),

1

2
(1̂2 ± Γ̂5)

1

2
(1̂2 ∓ Γ̂5) = 0̂2. (68)

We note that in 1 + 1 dimensions, Γ̂5 = α̂ acts similarly to the standard fifth gamma matrix in 3 + 1

dimensions, i.e., as the chirality matrix [24], [25]. However, in this case, the charge conjugates of the wave

functions in (67) satisfy (Ψ±)C = (ΨC)±. Thus, although it is true that Γ̂5Ψ± = (±1)Ψ±, we now have

Γ̂5(Ψ±)C = (±1)(Ψ±)C, i.e., Ψ± and (Ψ±)C are eigenstates of Γ̂5 with eigenvalues ±1. The matrices Γ̂5

and the wave functions Ψ± in each of the three representations that we use in this paper are shown in

Table 2 and Table 6.

Table 6

Representation Ψ+ Ψ− γ̂0
+(= −γ̂1

+) γ̂0
−(= γ̂1

−)

Dirac
1

2

⎡

⎣

ϕ+ χ

ϕ+ χ

⎤

⎦

1

2

⎡

⎣

ϕ− χ

−ϕ+ χ

⎤

⎦

1

2

⎡

⎣

1 −1

1 −1

⎤

⎦

1

2

⎡

⎣

1 1

−1 −1

⎤

⎦

Weyl

⎡

⎣

ϕ1

0

⎤

⎦

⎡

⎣

0

ϕ2

⎤

⎦

⎡

⎣

0 1

0 0

⎤

⎦

⎡

⎣

0 0

1 0

⎤

⎦

Majorana
1

2

⎡

⎣

φ1 + φ2

φ1 + φ2

⎤

⎦

1

2

⎡

⎣

φ1 − φ2

−φ1 + φ2

⎤

⎦

i

2

⎡

⎣

1 −1

1 −1

⎤

⎦

i

2

⎡

⎣

−1 −1

1 1

⎤

⎦

1. We note that multiplying the Dirac equation in Eq. (1) (but particularized to the case of 1 + 1

dimensions) by (1̂2 + Γ̂5)/2 from the left, we obtain the equation

iγ̂μ
+ ∂μΨ− − 1

�c
(VS +mc2)1̂2Ψ+ = 0. (69)
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and similarly, multiplying Eq. (1) by (1̂2 − Γ̂5)/2, we obtain the equation

iγ̂μ
− ∂μΨ+ − 1

�c
(VS +mc2)1̂2Ψ− = 0. (70)

The latter pair of equations is completely equivalent to the Dirac equation and similar to the pair of Eqs. (49)

and (50) in 3+1 dimensions. However, only in the present case do the gamma matrices in Eqs. (67) and (68)

satisfy the relations

γ̂μ
±γ̂

ν
∓ + γ̂ν

±γ̂
μ
∓ = 2gμν

1

2
(1̂2 ± Γ̂5), {γ̂μ

+, γ̂
ν
+} = {γ̂μ

−, γ̂
ν
−} = 0̂2. (71)

The charge-conjugate wave function also satisfies the Dirac equation; thus, we also have two equations

equivalent to the last equation. Specifically, by multiplying the Dirac equation for ΨC by (1̂2 + Γ̂5)/2 and

(1̂2 − Γ̂5)/2, we respectively obtain

iγ̂μ
+ ∂μ(Ψ−)C − 1

�c
(VS +mc2)1̂2(Ψ+)C = 0,

iγ̂μ
− ∂μ(Ψ+)C − 1

�c
(VS +mc2)1̂2(Ψ−)C = 0.

(72)

(we recall that (Ψ±)C = ŜCΨ
∗±). We note that just as Ψ− and Ψ+ satisfy Eqs. (69) and (70), so (ΨC)−

and (ΨC)+ also satisfy them (this is because (Ψ±)C = (ΨC)±). In the case mc2 = VS = 0, we obtain

iγ̂μ
+ ∂μΨ− = iγ̂μ

+ ∂μ(Ψ−)C = 0 (⇒ iγ̂μ ∂μΨ− = iγ̂μ ∂μ(Ψ−)C = 0),

iγ̂μ
− ∂μΨ+ = iγ̂μ

− ∂μ(Ψ+)C = 0 (⇒ iγ̂μ ∂μΨ+ = iγ̂μ ∂μ(Ψ+)C = 0).

The Majorana condition imposed on the two-component wave function Ψ gives the relations

Ψ+ = (Ψ+)C, Ψ− = (Ψ−)C, (73)

i.e., Ψ+ = (ΨC)+ and Ψ− = (ΨC)−. Thus, in contrast to 3+1 dimensions, Ψ+ and Ψ− satisfy the Majorana

condition. Clearly, the equation that describes a Majorana particle in 1 + 1 dimensions is the pair of

Eqs. (69), (70) (with matrix relations (71)) and the pair of relations, or restrictions, in (73)) (the Majorana

condition). Naturally, by imposing the latter condition on the equations in (72), we again obtain Eqs. (69)

and (70).

On the other hand, setting mc2 = VS = 0 in Eq. (69) leads to the relation iγ̂μ
+ ∂μΨ− = 0

(⇒ iγ̂μ ∂μΨ− = 0), and as can be seen in Eq. (72), we also have iγ̂μ
+ ∂μ(Ψ−)C = 0 (⇒ iγ̂μ ∂μ(Ψ−)C = 0);

in this case also, we have Ψ− = (Ψ−)C (due to the Majorana condition). Similarly, setting mc2 = VS = 0

in Eq. (70) leads to the relation iγ̂μ
− ∂μΨ+ = 0 (⇒ iγ̂μ ∂μΨ+ = 0), but from Eq. (72) we also have

iγ̂μ
− ∂μ(Ψ+)C = 0 (⇒ iγ̂μ ∂μ(Ψ+)C = 0), where Ψ+ = (Ψ+)C (because of the Majorana condition).

Thus, to obtain the two-component wave function that describes the 1D Majorana particle,

Ψ = Ψ+ +Ψ−, we must solve the system of equations formed by Eqs. (69) and (70), but Ψ+ and Ψ− must

satisfy the relations in Eq. (73), i.e., the Majorana condition. We note that Ψ = Ψ++Ψ− = (Ψ+)C+(Ψ−)C,
and therefore Ψ = ΨC, as expected.

We can prove the following results. We use Table 6 here.

1. In the Weyl representation, covariant equation (69) for the two-component wave functions

Ψ+ = [ϕ1 0]T and Ψ− = [0 ϕ2]
T leads only to an equation for the one-component wave functions ϕ1

and ϕ2:

i�
∂

∂t
ϕ2 = +i�c

∂

∂x
ϕ2 + (VS +mc2)ϕ1. (74)
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Similarly, covariant equation (70) leads to

i�
∂

∂t
ϕ1 = −i�c

∂

∂x
ϕ1 + (VS +mc2)ϕ2. (75)

This pair of equations comprises a complex system of coupled equations; it is just Eq. (33), as expected.

Likewise, the Majorana condition in Eq. (73) leads to the pair of relations in Eq. (34), also as expected.

Thus, we do not have a first-order equation for a single component of the wave function in the Weyl

representation. Clearly, the four real degrees of freedom present in the solutions of Eqs. (74) and (75)

reduce to only two due to the two relations that emerge from the Majorana condition.

Incidentally, in 1 + 1 dimensions, ϕ1 and ϕ2 also transform in two different ways under a Lorentz

boost. In effect, we write the Lorentz boost along the x-axis in the form [ct′ x′]T = e−ωσ̂x [ct x]T (i.e.,

xμ′ = Λμ
νx

ν), where, as usual, tanhω = v/c ≡ β and coshω = (1 − β2)−1/2 ≡ γ, with the speed v′ of
the (inertial) reference frame with respect to the unprimed (inertial) reference frame being v. Then, under

this Lorentz boost, the wave function transforms as Ψ′(x′, t′) = Ŝ(Λ)Ψ(x, t), where Ŝ(Λ) = e−ω̂Γ5/2 with

Λμ
ν γ̂

ν = Ŝ−1(Λ)γ̂μŜ(Λ). Then, just in the Weyl representation, the matrix Ŝ(Λ) is diagonal, and we obtain

the results

ϕ′
1(x

′, t′) =
[
cosh

ω

2
− sinh

ω

2

]
ϕ1(x, t), ϕ′

2(x
′, t′) =

[
cosh

ω

2
+ sinh

ω

2

]
ϕ2(x, t). (76)

Thus, we have two different kinds of one-component wave functions in 1 + 1 dimensions. Certainly, not

only ϕ1 and ϕ2 satisfy the relations in (76) but so also do (ϕ1)C and (ϕ2)C. This is because Ψ and ΨC

transform similarly under Lorentz boosts (i.e., Ψ′
C(x

′, t′) = Ŝ(Λ)ΨC(x, t)). Interestingly, in the case where

mc2 = VS = 0, the wave functions with definite chirality, Ψ+ and Ψ−, each satisfy the one-dimensional Dirac

equation and their own Majorana conditions. Also, in the Weyl representation, the nonzero component of

each of these two chiral wave functions satisfies the Weyl equation (see Eqs. (74) and (75)). Thus, we could

call the particles described by Ψ+ and Ψ− Weyl–Majorana particles [26].

2. In the Dirac representation, Eq. (69) leads to Eq. (74), and Eq. (70) leads to Eq. (75) with the

replacements ϕ1 → ϕ+χ and ϕ2 → ϕ−χ. Likewise, Majorana condition (73) leads precisely to the pair of

relations in Eq. (34) with the last replacements, namely, ϕ+χ = −i(ϕ+χ)∗ and ϕ−χ = +i(ϕ−χ)∗ (these

two relations imply the result given in Eq. (23)). We recall that the two-component wave functions in the

Dirac and Weyl representations are related as [ϕ1 ϕ2]
T = Ŝ[ϕ χ]T, where the matrix Ŝ is given in Eq. (15).

Certainly, adding and subtracting the two equations obtained here and conveniently using the Majorana

condition again, we obtain an equation for the component ϕ of the wave function, namely, Eq. (24), and an

equation for the component χ of the wave function, namely, the same Eq. (24) but with the replacements

ϕ → χ and VS +mc2 → −(VS +mc2). As explained before, it is sufficient to solve only one of these two

equations because the remaining component can be obtained from the Majorana condition. Thus, only

two real quantities, or real degrees of freedom, are sufficient to fully describe the Majorana particle.

3. In the Majorana representation, Eq. (69) leads to Eq. (74), and Eq. (70) leads to Eq. (75) with the

replacements ϕ1 → (1 − i)(φ1 + φ2) and ϕ2 → (1 + i)(φ1 − φ2). We recall that the two-component wave

functions in the Majorana and Weyl representations are related by [ϕ1 ϕ2]
T = Ŝ−1[φ1 φ2]

T, where the

matrix Ŝ is given in Eq. (14). In this representation, ŜC = 1̂2; therefore, Majorana representation (73) is

simply Ψ+ = Ψ∗
+ and Ψ− = Ψ∗−, i.e., the last condition immediately yields the pair of relations φ1 + φ2 =

φ∗
1 + φ∗

2 and φ1 − φ2 = φ∗
1 − φ∗

2 (which implies the result in Eq. (43), i.e., the entire two-component

wave function must be real). Finally, adding and subtracting the two equations obtained here (but before

multiplying the equation that arises from Eq. (74) by i(1 − i) and multiplying the one that emerges from

Eq. (75) by i(1+ i)), we obtain a real system of coupled equations, namely, the system in Eq. (44). Because

the solutions of this system are real-valued, the wave function has two real degrees of freedom, as expected.
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6. Conclusions

Distinct differential equations can be used to describe a Majorana particle in 3+1 and 1+1 dimensions.

We can have a complex single equation for a single component of the Dirac wave function, as in the Dirac

and Weyl representations in 3+1 dimensions (in these cases, the single component itself is a two-component

wave function), and in the Dirac representation in 1 + 1 dimensions (in this case, the single component

itself is a one-component wave function). In the Weyl representation in 3 + 1 dimensions, we can have two

complex single equations, each being invariant under its own type of Lorentz transformation (or Lorentz

boost); these two two-component covariant equations are therefore nonequivalent equations, and each of

them can describe a specific type of 3D Majorana particle. Certainly, because of the Majorana condition,

the solutions of these two equations are not independent of each other, that is, in the concrete description

of the Majorana particle, two plus two (complex) components are not absolutely necessary (the solution

of only one of the two two-component Majorana equations is what is needed to fully describe each type of

the Majorana particle). Unexpectedly, in the Weyl representation in 1 + 1 dimensions, we have a complex

system of coupled equations, i.e., no first-order equation for any of the components of the wave function

can be written. On the other hand, we can also have a real system of coupled equations, as it is in the

Majorana representation in 3 + 1 and 1 + 1 dimensions.

All these equations and systems of equations emerge from the Dirac equation and the Majorana condi-

tion when a representation is chosen. Certainly, both the Dirac equation and the Majorana condition look

different written in their component forms when different representations are used. In any case, whichever

equation or system of equations is used to describe the Majorana particle, the wave function that describes

it in 3 + 1 or 1 + 1 dimensions is determined by four or two real quantities (real components, real and

imaginary parts of complex components, or just real or just imaginary parts of complex components), i.e.,

only four or two real quantities are sufficient.

Likewise, in 3 + 1 dimensions, the algebraic procedure introduced by Case (and reexamined by us)

allows writing two covariant equations of four components for the Majorana particle, in a form independent

of the choice of a particular representation for the matrices Γ̂μ and Λ̂μ (see Eqs. (53) and (55)). Each

of these equations provides one of the two covariant two-component Majorana equations that arise when

choosing the Weyl representation. In contrast, in 1+1 dimensions, the algebraic procedure introduced by us

leads to only a covariant system of coupled first-order equations of two components, and these components

have their complex degrees of freedom restricted by two conditions that arise from the Majorana condition.

This system of equations immediately yields a complex system of coupled first-order equations for one

component that emerges when using the Weyl representation, with the restriction given by the Majorana

condition. However, in the Dirac representation, the same system of equations, together with the Majorana

condition, can lead to two one-component equations (each for a single component of the two-component

wave function).

It is hoped that our results can be useful in studying the distinct differential equations that can arise

when describing the Majorana particle in 1+1 and 3+1 dimensions. As we have seen, the results obtained

in these two space–time dimensions are not completely analogous. It is to be expected that these results also

exhibit important differences from results in 2+ 1 dimensions. However, in the latter case other difficulties

can also arise. Definitely, these issues should be treated in another publication.
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