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ON THE FIRST NEWTON LAW, THE EXISTENCE OF THE

REFERENCE SYSTEM CORRESPONDING TO THE REST,

AND THE GALILEI GROUP
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In the Russian scientific literature, the authors carefully avoided mentioning the fact that Ernst Mach’s

assertion of 1904 about the meaninglessness of the concepts of uniform motion and absolute time in and of

themselves has never been challenged in classical (not quantum) mechanics. Using hydrodynamics as an

example, V. I. Arnold showed that a system of coordinates in which some finite volume of the medium is

at rest exists almost always. We interpret this result as the existence of a system of coordinates in which

all particles are at rest (the rest frame).
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1. Introduction

Newton formulated his first law in Definition III of his fundamental book [1]: “Inherent force of matter

is the power of resisting by which every body, so far as it is able, perseveres in its state either of resting or

of moving uniformly straight forward” (the italics are mine, used to select the text that is called Newton’s

first law in modern physics).

A question arises immediately: whence is it known that there exists a reference frame in which this

state of rest is realized? Newton did not have to answer this question: he adhered to the concept of absolute

time and the absolute space. He formulated it below in Scholium (Newton’s italics here):

I. Absolute, true, and mathematical time, of itself, and from its own nature, flows equably without

relation to anything external, and by another name is called duration.

II. Absolute space, in its own nature, without relation to anything external, remains always similar and

immovable.

Modern classical mechanics has abandoned the concept of absolute time and absolute space, and univer-

sal symmetry properties are postulated as a fundamental property of the geometrical object of space–time:

covariance with respect to the Galilei group.

Nevertheless, the question of the existence of the rest frame remains. Until relatively recently, the

answers to it in the physical literature were confined to the ideological legacy of the epoch of the historical

materialism. For example, in the “Physical Encyclopedia” published in 1988, in the article “Inertial reference

frame,” we read: “The inertial reference frame is a reference frame where the law of inertia is valid: in the

case where the material point is not subjected to any forces (or the mutually balanced forces), it is in the

state of rest or uniform rectilinear motion. . . . The concept of the inertial reference frame is a scientific

abstraction. A real reference frame is always associated with some body.”
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A more intelligible approach, from our standpoint, was proposed by Fock in his monograph [2]:

“In different reference frames, the mathematical forms of the laws of nature is generally different. . . . There

are reference frames in which the laws of motion have an especially simple form and which (in a certain

sense) bear the closest correspondence to the nature. We mean inertial reference frames, in which the body

moves rectilinearly and uniformly in the absence of forces acting on it. (Here, the question arises as to how

to ensure that there are no forces acting on the body; we assume that there are no forces if all bodies that

can have any effect are sufficiently far from the chosen body.)”

And only in 2000, an Izhevsk publishing house ventured to publish (without any comments) the Mach

book [3], which is fundamental in this field (the text given below was published in 1904). Mach stated

(Mach’s italics): “We may not forget that all things are inseparably linked with one another and that we

with all our thoughts are only a part of the nature. We absolutely cannot measure, by means of the time,

the change in things. On the contrary, the time is an abstraction, at which we arrive using the change

in things, because we have no definite measure, since all of them are related to one another. We call the

motion uniform if equal increments of the path correspond to those of another motion that was chosen

for comparison (the Earth rotation). The motion can be uniform relative to another one. The problem

whether the motion in itself is uniform, has no meaning. We also cannot speak about the ‘absolute time’

(irrespective of any change). This absolute time cannot be measured by means of any motion and, therefore,

is of no practical, scientific importance, nobody can say that he knows something about such a time, this

concept is useless and ‘metaphysical’.”

In this paper, we demonstrate that Mach and his implicit followers were wrong: in 1971, Arnold

published monograph [4], where, using the hydrodynamics, he proved a theorem on rectification, which

guarantees the existence of the state of rest almost always.

2. Lagrangian and Eulerian descriptions

I suspect that the authors of textbooks and monographs did not fully realize how much the situation

related to the term “reference frame” is confused in the Russian literature. I take a certain risk to begin with

its heuristic definition proposed by Truesdell in his fundamental monograph [5]: “For purposes of classical

mechanics, the reference frame is represented in the form of the absolutely solid body supplied with a clock.”

Then Truesdell gave rigorous mathematical definitions of the measurement unit and the reference point of

time, of the absolutely solid body (in terms of “rigid motion”), of the freedom in choosing the coordinate

system on that body, of the naturalness of Cartesian coordinates on it, etc. It seems important to me

that in this case, there are fundamental restrictions on the algebra of observables “living” in the described

reference frames: addition is defined in this algebra only for quantities that have the same dimension and

only if they refer to the same reference frame.

In this scheme, the concepts of the reference frame and the coordinate system are different. It allows

easily and consistently formulating the achievements in theoretical physics such as the least action principle,

Noether’s theorem, mechanics with Dirac’s nonholonomic constraints, as well as giving meaning to the

concept of the energy of the Universe (see, e.g., Faddeev’s review [6] ).

The opposite standpoint goes back to Sedov [7]. He asserted the identity of the concepts of the reference

frame and the coordinate system at least twice, on pages 14 and 18 of the first volume of his monograph

“A Course in Continuum Mechanics.” There, Sedov introduces the concept of comoving coordinate system

(it is different at different instants of time): the coordinates of a point of space are defined as the Cartesian

coordinates at the initial instant of time xi(t0) = ξi of the particle that turned out to be at this point at the

instant t. In this case, the motion of medium particles is perceived as pure deformation without violating

the continuity; for example, the boundary of a moving region consists of the same particles, between which

only distances can change.
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Following Sedov, some of his students and followers take the concept of absolute time and easily declare

that the comoving coordinate system is a reference frame, and state that the medium particles are at rest

in this reference frame. It is worth noting that their textbooks and monographs have do not mention the

least action principle and Noether’s theorem.

A depressing example is given by the beginning of § 5 of the overall unique treatise [8], where arguments

in favor of the “comoving reference frame” are adduced in the framework of the Newtonian axiomatics; it is

apparent that the author read Newton’s writings poorly (if at all).

We pass to the kinematics of the continuum. It is necessary to define more precisely what underlies

the purely kinematic problem of the comparison between the Lagrangian and Eulerian descriptions of

hydrodynamics means and to refine the meaning of these contents.

We choose a hydrodynamic model (it does not matter which) and its evolution equations. In the

Lagrangian description, these equations represent the localized Newton’s second law in Cartesian coordi-

nates xi
ξi(t), i = 1, 2, 3, of particles labeled with the initial data xi(t0) = ξi of the Cauchy problem for that

law (these initial data are called Lagrangian coordinates, which is a misnomer in my opinion). Let U ∈ R
3

and T = [t0, t1] be the region and the time interval where the solution of the Cauchy problem exists and is

unique. The Lagrangian description amounts to specifying the coordinates xi
ξi(t) of particles in the region U

at any instant of time t ∈ T . The particle velocity in U × T is defined by the formula

vi(xi
ξi , t) =

∂xi
ξi(t)

∂t
≡ ẋi(xi

ξi , t). (1)

In the Eulerian description of this chosen hydrodynamic model, the evolution equation is the Euler equation

for the flow velocity vi(t) with the Cauchy data vi(t0) = ẋi(xi, t0). As a rule, this Cauchy problem has

a unique solution in the same region as the Cauchy problem of the Lagrangian description. Thus, the

Eulerian description amounts to specifying velocity field vi(t) in the region U at any instant of time t ∈ T .

The passage from the Lagrangian description to the Eulerian one is trivial and reduces to the definition

of particle velocity (1). The passage from the Eulerian description to the Lagrangian one is less trivial and

requires proofs of the existence and uniqueness of the solution of the system of ordinary differential equations

ẋi(xi
ξi , t) = vi(xi

ξi , t) with the initial condition xi(t0) = ξi. (2)

The solution of this problem is expounded in detail in classical monographs [9], [10]. However, only in

Arnold’s book [4], the theorem on rectification was also formulated and proved. It seems natural for the

autonomous analogue of system (2)

ẋi(xi, t) = vi(xi). (3)

Let xi be the solution of system of equations (3). Then for any sufficiently smooth vector field vi(xi, t),

there exists a nonsingular change of variables, a map Z : {xi} → {yi}, such that system of equations (3) is

equivalent to the system

ẏi(yi, t) = ei, (4)

where ei is a constant vector with the single nonzero component, for example, ei = {1, 0, 0}. In the physical

language, this means that the change of variables allows representing the stationary liquid flow as the

uniform motion of all particles in the same direction.

For nonautonomous system (2), Arnold proposed the trick to consider it in the space R
4 = R

3 × R

by adding the equation ṫ = 1 to system (3); then U still lies in R
3, and T is in R. The obtained

system of four equations turns out to be autonomous, the analogue of the map Z leaves time unchanged,

Z̃ : {xi, t} → {yi, t}, and the only nonzero component of the constant vector ẽ is the time component:
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ẽ = {0, 0, 0, 1}. In the physical language, this means that there exists a transformation of coordinates

in T × U such that in the new reference frame, all particles are at rest, and hence this is the rest frame.

It is hardly worthwhile to present the rigorous mathematical realization of this idea in this paper.

I refer the reader directly to the original source, Arnold’s book [4].

3. Discussion

We recall that in classical mechanics, the symmetry properties of space–time are a fundamental pos-

tulate: the uniformity of time, the homogeneity and isotropy of space, and the equivalence of mutually

inertial reference frames. More precisely, the Galilean relativity principle is postulated in the form of the

covariance of dynamical variables and dynamical equations under Galilei group transformations

t ⇒ t′ = t+ τ, xi ⇒ x′i = xi + αi + εijkωjxk + νit, (5)

where τ , αi, ωj , and νi are constants, with ωj being small. The Galilean relativity principle does not

postulate the existence of a rest frame; as a matter of fact, it only introduces the concept of mutually

inertial reference frames.

So far so good, but the corollary of the Arnold rectification theorem formulated in the preceding

section shatters the basic principles, and it is worth discussing how “to live in the face of newly discovered

evidence.”

We have some experience in this case. In particular, the remarkable relation between Galilei group

transformations and conservations laws appears for the class of mechanical models whose dynamics is deter-

mined by the least action principle. Because Noether’s theorem is constructive, we can define energy as

a dynamical variable that is conserved for a closed system because of the uniformity of time, as a conse-

quence of the invariance under the first transformation in (5) with the parameter τ , and we can define the

momentum as a dynamic variable that is conserved for a closed system because of the homogeneity of space,

the covariance under the second transformation in (5) with the vector parameter αi, and so on. Because

the conservation laws for energy, momentum, and so on are confirmed experimentally with the available

accuracy, this fact can be regarded as experimental proof of the Galilean relativity principle (of the Poincaré

relativity principle replacing it in the relativistic domain).

Another property of the Galilei group transformations is their demonstrativeness: we can trace them

visually or they can be represented as a diagram.

Nothing of the kind appears to be the case for the rectification theorem. All experiments are conducted

in the laboratory reference frame accessible to us. In the Eulerian description, we assume that the velocity

field vi(xi, t) is known in the region U ×T . Then the rectified velocity field ui(yi, t) = {1, 1, 1} (we add the

unit shift from the Galilei group in the new coordinates) is related to the initial derived map Z̃−1
∗ :

ẋi = Ci
ju

j, Ci
j =

∂xi

∂yj
.

The nondegenerate matrix C can be represented in the form C = UKW , where U and W are unitary

matrices dependent on the coordinates, and K is a diagonal matrix of point-dependent scaling transfor-

mations. The sole obvious fact is that the transformation Z̃−1 applies to the Cartesian coordinates of the

region U ∈ R
3 and is not contained in the Galilei group. It is unclear how to extract the information about

the matrix C = UKW from experimental data. The existence of the transformation Z̃−1 is apparently not

at a property of space–time (such as the symmetry under the Galilei group), but is a mathematical conse-

quence of the fact that (in Arnold’s example) the relation between the Lagrangian and Eulerian descriptions

is determined by the system of ordinary differential equations with a sufficiently smooth right-hand side.
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To conclude, I am puzzled by how several generations of physicists failed to notice the assertion,

contained in § 139 of “Fluid Mechanics,” Volume 6 of the theoretical physics course [11], that the Galilean

relativity principle allows constructing the momentum flux density tensor of the liquid using its value in

a reference frame arbitrarily moving with respect to the selected one.

Acknowledgment. The author is grateful to R. V. Shamin for the fruitful discussions.

Conflicts of interest. The author declares no conflicts of interest.

REFERENCES

1. I. Newton, The Principia: Mathematical Principles of Natural Philosophy , Univ. of California, Berkeley, CA

(1999).

2. V. Fock, Theory of Space, Time and Gravitation, Pergamon Press, Oxford (1964).

3. E. Mach, The Science of Mechanics: a Critical and Historical Account of its Development , The Open Court

Publ., Chicago, London (1915).

4. V. I. Arnold, Ordinary Differential Equations, Springer, Berlin (1972).

5. C. A. Truesdell, A First Course in Rational Continuum Mechanics, Pure and Applied Mathematics, Vol. 71,

Academic Press, Boston, MA (1991).

6. L. D. Faddeev, “The energy problem in Einstein’s theory of gravitation,” Sov. Phys. Usp., 25, 130–142.

7. L. I. Sedov, A Course in Continuum Mechanics, Vol. 1, Wolters-Noordhoff, Groningen (1971).

8. M. E. Eglit (eds.), Continuum Mechanics Via Problems and Exercises, Vol. 1, 2, World Scientific Series on

Nonlinear Science. Ser. A, Vol. 19, World Sci., Singapore (1996).

9. I. G. Petrovskii, Lectures on the Theory of Ordinary Differential Equations, Nauka, Moscow (2009).

10. L. S. Pontryagin, Ordinary Differential Equations, Pergamon Press, London (1962).

11. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics, Pergamon Press,

Oxford (1987).

1656


	1 Introduction
	2 Lagrangian and Eulerian descriptions
	3 Discussion

