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THE INITTAL-BOUNDARY VALUE FOR THE COMBINED
SCHRODINGER AND GERDJIKOV-IVANOV EQUATION
ON THE HALF-LINE VIA THE RIEMANN-HILBERT APPROACH
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The Fokas method is used to study the initial-boundary value problem for the combined Schrédinger
and Gerdjikov-Ivanov equation on the half-line. Assuming that the solution u(x,t) exists, it can be
represented by the unique solution of a matrix Riemann—Hilbert problem formulated on the plane of the
complex spectral parameter €. The jump matrices are given on the basis of the spectral functions, which

are not independent, but are related by a global relation.
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1. Introduction

The Riemann—Hilbert approach is a powerful tool to solve integrable nonlinear evolution equations.
In 1851, the Riemann problem was first posed by Riemann. Then, Hilbert presented the famous 23 questions
at the International Mathematical Conference in Paris [1]. The 21st problem was the proof of the existence of
solutions of linear differential equations with order groups, commonly known as Riemann—Hilbert problem.
The core issue is to find an analytic function on the complex plane such that it has a particular jump on
a given curve. Subsequently, Fokas and others established a connection between the orthogonal multivariate
and the Riemann—Hilbert problems. A new transformation method named the Fokas method was proposed
to solve two-dimensional initial boundary value (IBV) problems. Many equations were discussed, such as
the nonlinear Schrédinger equation [2], [3], the sine-Gordon equation [4], the KdV equation [5], [6], and the
Gerdjikov—-Ivanov equation [7]-[11]. The nonlinear Schrédinger equation takes the form

iU+ U + [ul?u =0, (1.1)

which is a second-order partial differential equation obtained by combining the concept of a matter wave
and the wave equation. The IBV problem for the nonlinear Schrédinger equation on the half-line was

*Department of Mathematics, Shanghai University, Shanghai, China,
e-mails: liyanahu@126.com, 773869387Qqq.com, rqwang@shu.edu.cn (corresponding author).
fSchool of Mathematics and Finance, Chuzhou University, Anhui, China.
The work is supported by the National Natural Science Foundation of China (Grant No. 11971297) and Natural
Science Foundation of Anhui Province (Grant No. 2108085QA09).

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya
i Matematicheskaya Flizika, Vol. 209, No. 2, pp. 258273, November, 2021. Received June 20, 2021. Revised June 20,
2021. Accepted July 22, 2021.

0040-5779/21/2092-1537 () 2021 Pleiades Publishing, Ltd. 1537



discussed in [12]—[21]. The derivative nonlinear Schrédinger equation on the half-line was studied in [22]-[25].
Furthermore, the IBV problem for the derivative nonlinear Schrodinger equation was considered in detail
in [26].

The Gerdjikov—Ivanov equation has the form

sy = 0, (1.2)

U+ Upy — iu2uz + 5

which has been studied from the standpoints of different types of Liouville integrability [27], exact solu-
tions [28], rogue wave and breather solution [29], separation of variables and algebro-geometric solutions [30],
bifurcations and new exact traveling wave solutions [31], and higher-order rogue wave solutions [32].

In this paper, we discuss the combined nonlinear Schrédinger and Gerdjikov—Ivanov (NLS-GI) equation
by using the Riemann—Hilbert method. The system can be written as

Up = TUgy — 20|u)®u 4+ u?u’ + ;|u|4u, (1.3)

where u(x,t) is a complex smooth envelop function, and ¢, z, and * denote the respective temporal, spatial
variables, and complex conjugations. The Riemann—Hilbert method for the combined NLS—GI equation
and its n-soliton solutions have been discussed in [33]. In this paper, we aim to study the IBV problem for
the combined NLS—GI equation on the half-line via the Riemann—Hilbert approach. The solution of the
combined NLS-GI equation is obtained by analyzing the spectral function and jump matrices. We extend
the IBV problem to an infinite interval following the Fokas method.

This paper is organized as follows. In Sec. 2, we study the direct scattering problems of the combined
NLS-GI equation. In Sec. 3, the spectral functions are further investigated and the Riemann—Hilbert
problem of the combined NLS—GI equation is presented. In Sec. 4, a brief summary of this paper is given.

2. Spectral analysis for the NLS—GI equation

2.1. Transformed Lax pair. The Lax pair of Eq. (1.3) can be written as

e =U ’
¢ 19 (2.1)
¢t = U2¢a
where ¢ = ¢(x,t;€) is a matrix function and
) 1
i (n + uu*) 1+ k)u
2
Ul = 1 )
u* —1 </<a + 2uu*)
2.2
A (1 + k) (—2uk + iuy) (22)
U2 = . )
—2u*Kk — ul —-A
1 ,
A= —2ik* —ikuu® — Z(uwu* —uuy) + jluQu*2 — juu®,

with k being a constant parameter. We make a gauge transformation

. 1 0 .
¢ ="T¢, T:(o 1—15)’ & # —i, (2.3)
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where x = £2. Then Eq. (2.1) can be written in the equivalent form

(Z;w = Ul¢7

T (2.4)
¢t = U2¢7
where )
i<§2 + uu*) (14 iéu
= 2
U] = 1 9
(1 —di&)u* —i <§2 + 2uu*)
2.5
by — B —2iu€3 — 2u€? — u € + iug (2:5)
27\ 2iwr e — 2w —wre —iur -B ’
1 .
B = —2i¢* — juu*€? — 2(umu* —uuy) + iuQu*z —duu’®.
Next, we define a matrix function 1 = ¥(x,t; ) as
¢ = e’ w28 1), (2.6)
According to transformation (2.6), Lax pair (2.4) can be rewritten as
djw - i£2[037w] = Vvlwa (2 7)
wt + 2i€4[035 ¢] = ‘/2¢a
where )
i
wu® (14§ 1 0 0
Vl = 2 7 ) 03 = ( ) Q = * " )
1
—iuu*ﬁz.— 5 (ugu® —wul)+  —2iuf® — 2u? — u € + iu, (2.8)
+ Luur?
Vo = 4
2iu*E3 — 2urE? —uié —iul  iuutE? + 2(uwu* —uuk)—
— jluQu*2 + fuu”
Equation (2.7) can be written in the full derivative form
de e 0Ty (p 1)) =W, O<a<oo,0<t<T, (2.9)
with
W = e /& o205 (V] dy 4 Vo dt)o)(a, £ €). (2.10)
We introduce a new function p(x,t;€) such that
1
ILL:I—FO(é_), & — 0. (2.11)
Then Eq. (2.9) becomes
de o200 (0 1)) =W, O<az<oo,0<t<T, (2.12)
where
W = €225 (V] gy 4+ V5 dt) pu(x, £ €). (2.13)
Equation (2.12) can now be written as
L2
z — 1503, =Vip,
pe — €703, p] = Vip (2.14)

pr + 2i4 o3, p] = Vap.
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Fig. 1. Integration paths v1: (0,T) — (z,t), v2: (0,0) — (,t), and ~3: (c0,t) — (x,t).

2.2. Eigenfunctions and their relations. Following [34], we assume that u(z,t) is sufficiently
smooth in T = {0 < z < 00,0 < ¢t < T,T > 0}. The solutions p;(z,t¢), j = 1,2,3 of Eq. (2.14) can be
constructed as

(w,t) N
iz, t:6) = I+/ el(5217454t)"3W(§, T,8), O<x<oo,0<t<T, (2.15)

(‘Tj7tj)
where (z1,t1) = (0,T), (x2,t2) = (0,0), and (x3,t3) = (00, t), as can be seen in Fig. 1.

Because the integration of Eq. (2.15) is independent of the paths, the specific straight paths are chosen
in Fig. 1:

pn (z,t:€) =T+ / C 0 (Vipn)(C,t,€) dC —

0

T
_eig%ae’/ ¥ 7073 (1 11)(0, 7, ) d,
t

p2(z, ;) = H/O @O (V1) (¢, 1, €) dC + (2.16)

t
+ ei§2133 / 621{4(7_)&)83 (‘/2/142)(0’ 7 5) dr,
0

s, 456) = 1 / € @O0 (V1) (C, 1, €) dC.

x

The inequality on the contours can then be expressed as
(x1,t1) = (x,t):0< (<, t<T<T,
(z2,t2) = (x,8):0<( <z, 0< T <1, (2.17)
(00,t3) = (2,0 : 0 < z < o0.

The first column of the matrix in Eq. (2.15) involves e2i8%(@=0=26"t=7)] By inequality (2.17),
the functions p;(z,t;§), j = 1,2,3, are bounded and analytic for £ € C, which is constrained as

p (2, 4:€): {Im €2 < 0} N {Img* < 0},
ps (2, 45€): {Im €2 < 0} N {Im &* > 0}, (2.18)
ps (@, £:6): {Im g2 > 0},
Similarly, the second column of the matrix in Eq. (2.15) involves 621[52(9”_4)_254“_7)]; the regions of
the complex £ can be written as

P (2, 1€): {Tm &% > 0} N {Tm &* > 0},
ps (@, 156): {Im € > 0} 0 {Tme? < 0}, (2.19)
8 (@, 4:6): {Im €2 < 0},
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As a result, we obtain

ﬂl(xv t; 5) = (N{h ($, t; 5)7 Mf)l ($, t; 5))7
po(w, 6.6) = (1 (2,8 ), g™ (, 15 €)), (2.20)
ps(x, ;) = (ng 72 (2, 4:€), n* P (2, 1:€))

where ,uf ¢ expresses that y; is bounded and analytic for £ € D;,

1 )
D, = {wE(C|217T+ ! 4 < Argw < 2lw + iw},

j=1,2,3,i=1,2,3,1=0,+1,42,...,

and Argw means the argument of the complex £ (see Fig. 2).

D4 Dl

D1 D4

Dy D3

Fig. 2. The domains D;, i = 1,2, 3, into which the complex £-plane decomposes.

We construct the Riemann—Hilbert problem to obtain the solution of the combined NLS—GI equation.
First, the jumps matrices across the boundaries of the D;, i = 1,2, 3, are uniquely determined by the two
2 x 2 matrix-valued spectral functions s(§) and S(§) that satisfy

pa(, 65.€) = o, 15 €)e €26 DT 5(¢),

o e (2.21)
p (2, 1,€) = po(, 15 €)e’E T2 0T G (g).

Taking (z,t) = (0,0) in the first equation in (2.21), and setting (z,¢) = (0,0) and (z,t) = (0,7T) in the
second equation in (2.21), we have

$(€) = ua(0,0:8), S = m(0,0:8),  SE) = (¥ px(0,T56) 7. (2.22)
It follows from Egs. (2.21) and (2.22) that
i (2,156) = ps (e, ;€)' € 7207 (5(6) TS (€). (2:23)
Because 11(0,T,£) =1, a global relation can be obtained from Eq. (2.23) at (x,t) = (0,T):

STHE)s(E) = 2T 11(0, T5 €).

1541



Therefore, the matrix functions p;(x,t; A), j = 1,2, 3, satisfy the linear integral equations

T
j(0,656) =1 — / 2 T3 (111 )(0, 7 €)

t

t
12(0,£:6) =T+ / e 053 (V) (0,7, €) i,
0

s (,0:6) =T — / €% ==07 (1, 13)(C, 0, €) d,

x

pia(2,0;€) = I+ /0 ' e (#=00%s (1, 115) (¢, 05 €) dC.

Then, taking x = 0 and ¢t = 0 in Eq. (2.8), we obtain

‘/'1($707§) = 2
(2.24)

C —2i&%g0 — 26290 — g1 +ig
V5(0,t;€) =
2(0,5:8) <2i§390 —26%G0 — £G1 — i -C ’

where ug(z) = u(x,0), go(t) = u(0,t), g1(t) = u,(0,t), and

. 1
C = —i%|go|* —

_ _ ) .
5 (9190 = 9091) + 4Igol4 —|gol*.

Because p;(x,t;€), j = 1,2, 3, defined by Eq. (2.15) are 2 x 2 matrices, their first and second columns
can be respectively written as ugl)(x, t;€) and uf)(x, t;€). We set

i (2, 1:6) = (" (@, 4:€), 1 (w,8:€)) = (“J; “i) . =123
Ko My
Proposition 1. The above matrices u;(x,t;§) have the following properties:
o det pi(x, t;€) = det pa(x,t; &) = det pus(x, t;€) = 1;
e cach component of p;(x,t;€), j =1,2,3, is analytic;
o limg oo i (2,56) = (1,0)T, € € Du, limgsoo 17 (2, £;6) = (0,1)7, € € Dy;
o limg oo 5 (2,€) = (1,0)T, € € Ds, limgo0 1) (2, £;6) = (0,1)T, & € Do;

o lime oo ) (2, 8:€) = (1,0)T, € € Dy U Dy, limg oo p$? (2, £:€) = (0,1)T, € € Dy U Dy

Proposition 2. Relations (2.21) and (2.22) can be written as

8(6) = U3 (07 0) f) =1- /; e—i§2C33 (Vllu3)(<) 07 6) d<7
4 T 4 —1
S(f) — (621'5 TGs (I+/ 621'5 (r—T)753 (VQ,LLQ)(O,T;f) d7->) = (2.25)
4 TO 4_~ -1
= (62i§ Tos +/ 28T (Vo 119) (0, 73 €) dT) :
0
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Because s(§) and S(£) are 2 x 2 matrix functions, we can set

a(§) b(é) A(€) B(9)
s(é) = _ , S = _ .
© <b(§) a(f)) © <B(§) A(€)>

The following formulas follow from Egs. (2.22) and (2.25):

bE) _ @ e [#3°(0,05€)
<a(£)> =#a(0,0:8) = <u§2<o,o;f>> ’

a(—¢
A(=¢
det s(§) =det S(§) = 1;

a(g)=1+0(2) b(g):o(l), € 00, £€ DyU Dy,

A(f):1+0(2), B(f):O<2>, & =00, € Dy UDs.

2.3. The jump conditions. The matrix M (z,t; &) is defined by

D3UDy
M+(x7t7£): (/1‘2D3(x7t7€)7u3 a(é‘)r’t7§))’ €€D37
D1UDs
M_(,1,€) = (“3 (ﬁ’t’g),ué’%x,t,@), ¢ e D,
a(§)
D1UD>
My (z,t,8) = (ug a(g’t’g),ﬂf)l (a:,t,f)), ¢ e Dy,
D3sUDy
M_(z,t,£) = <uf’4(x,t,f), s (“’5)) ¢ €Dy
a(§)

where the scalars o(§), a(£), 8(£), and y(§) are

a(§) = a(§)A(E) — b(§)B(¢),
B(€) = a(§)B(§) — b(§)A(8),
(€)= a(§)B(€) + b(€)a(§)

It follows from these definitions that

1

det M (z,t;¢) =1, M(w,t;{)zl—i—O(g

), £ — 0.

(2.26)

(2.27)

(2.28)

(2.29)
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Theorem 1. Let M(x,t; &) and pj(x,t,€), j = 1,2,3, be defined by Eq. (2.27) and Eq. (2.15), and
u(x,t) be a smooth function. Then M (z,t;¢) satisfies the jump condition on Dy N Dy, h,1 =1,2,3,

M. (a,t,€) = M_(z,t,6)J(x,1,6), €€ DN Dy, hl=1,2,3 h+l, (2.30)
where
Ji(z,t,€), Argé =km 4+ w/2,
Tt €) = Jo(z,t,€), Argé =kn + 3n/4, (2.31)
J3(x t 5)7 Argg = kﬂ—a
Jy(z,t,8), Argé =km + /4,
and
1 bg) e—2i0(€) a(?) 0
a
Jl(x,t,f) = b(g) ‘ 1 R Jg(x,t,g) = 5(5) B ’
- 2i0(£) _ —7(5)6210(5) Oé(f)
a(§) a(§)a(§) a(§)
1 BE) —aio(e) a(€)
: c (g0
Blw e =| Qe el ;S e = | 2O
3(z,1,§) G 1 a(,1,€) . a(€)
(g a(§)

The proof of the theorem is similar to that given in Ref. [14]. We substitute Egs. (2.26) in (2.21):

a(€)uz”* +b(E)e* O g = g P2,
b(5)672i0(§)u§)3 + a(f) Dy _ NDSUD4

2 D3 210({) _ ,,Da
Ay (Lf) pyt = (2.32)
B(&)e 2@ ps + A& = pi’?,
a(QuE P2 + B(E)e?o®) s P = P
B(€)e~ 20O P12 1 a(Hpg* Pt = ppt.
By transforming Eqs. (2.32), we can write the jump matrices J;(x,t; ), i = 1,2, 3, as
DsUD D uD
D3 :u33 4($7t7§)) — ( ! 2('1: ) Do >J .
(@5 0 Y e 0) h )
D3UD, D3UD4
(/1‘2D3($7t7€) Ha (x’t7£)) = (M?4($7t7€)7 (,x ))J2($7t7€)7
*© a(¢) (2.33)
D3UD4 (ZII :

(MBDNZZ)(S’LL’O,#?l(x,t,§)> = (ﬂl (x,t f) o(€) ))J3(x’t;€)’

The matrix M (z,t;&) is a sectionally meromorphic function. In terms of the zeros of a(§), a(£), and
their complex conjugates, the possible poles of M (z,t; &) can be obtained. Because a(§) and a(£) are even
functions, each of them has an even number of zeros.
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Statement 1. Let

e (&) have 2h simple zeros {¢; ?il, 2h = 2hy + 2hs, such that €;, j = 1,2,...,2hy, are located in Ds
and €;, j = 1,2,...,2hy, are located in D,.

e «(¢) has 2H simple zeros {5j}?£17 2H = 2H, +2H>, such that ¢;, j = 1,2,...,2H,, are located in D
and Sj, 7 =1,2,...,2H,, are located in Dy.

e The zeros of a(§) does not coincide with the zeros of a(§).

Proposition 3. Using Statement 1, we can calculate the residues of the function M (x,t;&). We set

da

M(z,t,&) = ([M(x,t;8)]1, [M(x,t;8)]2), &€ Ds,alg) = de (2.34)
We then have the residue conditions
—2i0(€;) h(¢..
Res{M(z 6Ozt = o DM tiel,  j=1,2...,2h,
ale;)
2i0(&)h(=.
Res{[M (z,t;€)]1,6} = © .7b(ej)[M(x,t;€j)]2, j=1,2,...,2hs,
a(é;)
Res((M(r, 00 = o (M 136, 12,20
es z,t8)]1,0;} = . x,t504)]2, j=1,2,..., )
PO G(5,)8() e '
Res{ [M(r, ), 5,3 = © o (M, t:) L2, 20
€S $,t; 2, 055 = _ $,t; i), j: gLy eeny 2.
&(6;)B(65)
2.4. The inverse problem. We fix the jump condition
M+($,t,§) - M_(Qf,t,f) = M_j(li,t,f), (235)

where J(z,t;€) = J(x,t;€) — I. By using Lax pair (2.14), we obtain
g (@, 1) — iug(x,t) = 2(M(z,t;§))21 = 2£1L1{30(€M($at;5))21'
The inverse problem is to derive the potential u(z,t) from the spectral functions p;, j = 1,2, 3, such that

u(z,t) = 2im(x,t). (2.36)
Then the inverse problem can be stated as follows:

1) calculate m(z,t) in terms of

m(iC, t) = lim (guj (CE, t; 5))12
E—o0
by the spectral functions p;, j =1, 2, 3;

2) reconstruct u(z,t) by Eq. (2.36).
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3. The spectral functions and the Riemann—Hilbert problem

3.1. The spectral functions.

Definition 1 (the spectral functions a(§) and b(§)). Given a smooth function ug(z) = u(x,0), we can

define a map

S: {uo(x)} — {a(§), (&)},

b)Y _ @ e [ 157,056 2
(a(&)) e <u§2<x,o;@>’ mesn

where psz(x,0;&) is a unique solution of the Volterra linear integral equation

with

ug(x,O;f):I—/ ei52(170a3(v1/i3)(47035)dCa

and Vi (z,0;€) is determined by wu(z,0;€) in Eq. (2.24).

Proposition 4. The functions a(¢) and b(€) have the following properties:
(i) they are analytic and bounded for Im €2 < 0;
(i) a(§) =1+ 0(1/€), b(&) = O(1/€), £ = o0, Im&? < 0;
(i) a(§)a(§) —b(E)b(E) =1, & € R;
(iv) a(=€) = a(§), (=€) = ~b(¢), Im&? < 0.

Remark 1. The map

St {uo(2)} = {a(§),b(&)}

is given by Definition 1. The inverse of S,

Q: {a(8),b(&)} = {uo(2)}

can be obtained from
uo() = 2im(a),  m(x) = lim (EM@ (2,€))12, (3.1)
—00
where M ®)(z,€) is a unique solution of the Riemann-Hilbert problem.
The function M®)(z, £) has the following properties.

M@ (2,¢), Tm&2 >0,

@ is a partly meromorphic function.
M (2,€), Tme2 <0,

i M(I)(aj,f) = {

o M (@.6) = MO (2,6)] ) (2,€), € € R, and

1 b(f) e—2i§2z
T (@ €) = . al€) (3.2)
’ N _b(f) egig% 1 '
a(€) a(€)a(§)
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o M@ (2,8) =T+ 0(1/€) as &€ — 0.

e a(¢) has 2h simple zeros {€;}3", 2h = 2hy +2hs, such that €;, j = 1,2,...,2hy, are located in D3 U Dy
and €;, j =1,2,...,2hy, are located in Dy U D».

e The first column of Mgm)(x,f) has simple poles at £ = €;, 7 = 1,2,...,2hs. The second column
of Mf)(a:, &) has simple poles at { =¢€j, j =1,2,...,2h;. The corresponding residues are

@ v CTIE) e |
RQS{[M (Jl,f)]l,ﬁj}: L [M (ZII,EJ')]Q, ] = 1,2,...,2h2,
a(€;)
i (3.3)
eZzejrb(ej) () .
(MY (z, €)1, j=1,2,...,2h,.

Res{(M® (. e} == )

Definition 2 (spectral functions A(£) and B(€)). Let go(t) and g¢1(¢) be smooth functions. We define
a map

St {g0(t). 1(8)} — {A(€), B(§)},

B(&) ) _ N%z(ovtag) 4
< ) - ,U*1 (O,t,f) - <N%2(07ta€)> ) Imf 2 07

with

where 111(0,¢,&) is a unique solution of the Volterra linear integral equation

T
p1(0,t,6) =1— / ¥ (T (V11)(0, 7, €) d,

t

and V2(0,T;€) is determined by Eq. (2.24).

Proposition 5. The functions A(¢) and B(¢) have the following properties:
(i) they are analytic for Im &4 > 0 and bounded for Im&* > 0;
(i) A(§) =1+0(1/€), B(§) = O(1/€), § — o0, Im¢&* > 0;
(iii) A(€)AE) —B(E)B(€) =1, &' € Ry
(iv) A(=§) = A(§), B(=§) = —B(§), Im¢&* > 0;
(v) Q=57":{A(&), B(&)} — {90(t), 91(t)} Q is given by

go(t) = 2im'D (),

(3.4)
g1(t) = (4mB (t) — 2|g0(t)[?) + igo(t)(4mly) (1) + |go (1)),

where MY (t,¢) is a unique solution of the Riemann—Hilbert problem (see Remark 2).

Remark 2. We set

MY (1), et <o,
o MW (t, &) = ® which is a sectionally meromorphic function.
M (t,€), Img&* >0,
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M (t,6) = MD(t,6)TD(t,€), €* € R, and

1 i B(?) o—dieht
rog - | 49O @ | (35)
. editt
A©) :

o MO(T,) =1+ 0(1/¢) as € — o

A(&) has 21 simple zeros {n;}3, 21 = 2I; + 2l5, such that n;, j = 1,2,...,2l;, are located in D1 U D3,
and 75, j =201 + 1,20, + 2,...,2[, are located in Dy U Dy;

The first column of Mf)(t,f) has simple poles at { = n;, j = 1,2,...,2l;. The second column
of MW (t,€) has simple poles at £ =17;, j = 1,2,...,2l5. The associated residues are

din}
Res((MO@ ) = © 0 MOEl =122
A(n;)B(n;) (3.6)
—dint :
Res((MO@ b} = © - MO@R =122
A(n;)B(1;)
Definition 3 (spectral functions «(§) and 8(£)). Given the spectral functions
a(§) = a(§)AE) —bE)B),  B(E) = a(§)B(€) — b(§)A(E)
and a smooth function hr(x) = u(x,T), we can construct a map
S: {hr(z)} = {a(6), ()},
with
BEOY _ @ 1.6y = (170 T58) me2 >0
<OZ(§)> 251 ( ’ 76) M%2(0,T7€) ) Hlf Z Y
where pi(x,T;€) is a unique solution of the Volterra linear integral equation
(e, T3€) = T+ / @07 (V1) (¢, T3 €) dC.
0
Proposition 6. The functions «(§) and 5(§) have the following properties:
(i) «(&) and B(€) are analytic for Im €2 > 0 and bounded for Im &2 > 0;
(i) a(§) =1+0(1/¢), B(§) = O(1/€), § = 00, Im&? > 0;
(i) a(§)a(é) —BE)BE) =1, & e R;
(iv) a(=¢) = a(§), B(=§) = —B(E), Im&? > 0;
() Q=8 {a(©). B©O)} = {hr(@)}, Qs given by
hr(z) = 2imr(z),  mp(z) = 51520 (EMD (z,6))12, (3.7)

where M(T)(x, €) is a unique solution of the Riemann-Hilbert problem (see Remark 3).
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Remark 3. We set
M (z,6), Ime* <0,

o M) =
(t; 5) MJ(rT) (ﬁ, 5)’ Im 52 2 0,

which is a partly meromorphic function.

o M (2,6) = M (2,6) T M) (2,¢), € €R, and

1 B ﬂ(éi) e20(8%x—2¢'T)
J(T)(gcjg) — 704(5)0‘(5) a(§) , 52 €R; (3.8)
_ B —siera—2etr) 1

a(§)
o MM (2,6) =T+ 0(1/€) as € — oo.
e (&) has 2H simple zeros {8;}3", 2H = 2H; + 2Hs, such that §;, j = 1,2,...,2H, are located in
D1 U DQ and Sj, _] = 2H1 + 1, 2H1 + 2, .. .,2H, are located in D3 U D4.
e The first column of MJ(rT) (x,€) has simple poles at £ = 0;, j = 1,2,...,2H;. The second column
of M (z,€) has simple poles at &€ = §;, j = 1,2,...,2Hs. The associated residues are
e 2i(572—2671)

&(6;)B(d;)

e2i(670—4871)

Res{[M D) (z,6))1,0;} = MD (2, 6))]2, 7=1,2,...,2H;,

(3.9)

Res{[M ) (z,€)]2,0;} = MDD (z,5))1, j=1,2,...,2Ho.

&(07)8(85)
3.2. The Riemann—Hilbert problem. The following theorem is the main result in this paper.

Theorem 2. Let ug(x) be a smooth function. We assume that the functions go(t) and g1(t) are
acceptable with ug(t). We define the spectral functions s(§) and S(&) for which a(§), b(€), A(€), and B(§)
are determined by uo(x), go(t), and ¢1(t) in Definitions 1 and 2. Then there is the global relation

§7H€)s(6) = €T30, 1:6),

where s(§) = ps3(0,0;€) and S(§) = (e2i52T&3u2(0,T;§))’1 are given by Eq. (2.22). We suppose that the
possible zeros {¢; 321 of a(§) and {J; ?fl of a(€) and M (x,t,§) are defined as solutions of the Riemann—

Hilbert problem.

o M(x,t;€) is partly meromorphic on the Riemann &-sphere of jumps across the contours on Dy N D,y,,
I,m=1,2,3 (see Figure 2).

o M(x,t;¢) satisfies the jump condition

M+($,t,€):M_(ﬂf,t,g)z]({l?,t,f), §€Dlﬂf)m,l,m=1,2,3,l7§m, (310)

o M(z,t;§) =1+0(1/§) as & — 0.
e The residue condition for M (z,t; &) is given by Proposition 3.

Then M (x,t; &) exists and is unique, and u(x,t) can be obtained from M (x,t;€) as

u(z,t) = 2im(x,t), m(x,t) (EM(x,t;€))12. (3.11)

= lim

£—o0
Given the initial value u(x,0) = ug(x) and boundary values u(0,t) = go(t) and u,(0,t) = g1(¢) that belong
to the Schwartz space, the function u(x,t) is a solution of the combined NLS-GI equation (1.3).
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4.

Conclusions

In this paper, we have studied the IBV for the combined NLS—GI equation on the half-line by using

the Riemann-Hilbert approach. If the solution u(z,t) of the NLS-GI equation exists, then a solution

can be proved to exist for the Riemann—-Hilbert problem formulated in the plane of the complex spectral

parameter £. Is it possible to construct Riemann—Hilbert problems and determine their solutions by the

same way for other integrable equations? Can other methods be used to find the solution of those problems?

We hope to address these issues in the future.

Conflicts of interest. The authors declare no conflicts of interest.
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