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The Fokas method is used to study the initial-boundary value problem for the combined Schrödinger

and Gerdjikov–Ivanov equation on the half-line. Assuming that the solution u(x, t) exists, it can be

represented by the unique solution of a matrix Riemann–Hilbert problem formulated on the plane of the

complex spectral parameter ξ. The jump matrices are given on the basis of the spectral functions, which

are not independent, but are related by a global relation.
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1. Introduction

The Riemann–Hilbert approach is a powerful tool to solve integrable nonlinear evolution equations.

In 1851, the Riemann problem was first posed by Riemann. Then, Hilbert presented the famous 23 questions

at the International Mathematical Conference in Paris [1]. The 21st problem was the proof of the existence of

solutions of linear differential equations with order groups, commonly known as Riemann–Hilbert problem.

The core issue is to find an analytic function on the complex plane such that it has a particular jump on

a given curve. Subsequently, Fokas and others established a connection between the orthogonal multivariate

and the Riemann–Hilbert problems. A new transformation method named the Fokas method was proposed

to solve two-dimensional initial boundary value (IBV) problems. Many equations were discussed, such as

the nonlinear Schrödinger equation [2], [3], the sine-Gordon equation [4], the KdV equation [5], [6], and the

Gerdjikov–Ivanov equation [7]–[11]. The nonlinear Schrödinger equation takes the form

iut + uxx + |u|2u = 0, (1.1)

which is a second-order partial differential equation obtained by combining the concept of a matter wave

and the wave equation. The IBV problem for the nonlinear Schrödinger equation on the half-line was
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discussed in [12]–[21]. The derivative nonlinear Schrödinger equation on the half-line was studied in [22]–[25].

Furthermore, the IBV problem for the derivative nonlinear Schrödinger equation was considered in detail

in [26].

The Gerdjikov–Ivanov equation has the form

iut + uxx − iu2u∗x +
1

2
u3u∗2 = 0, (1.2)

which has been studied from the standpoints of different types of Liouville integrability [27], exact solu-

tions [28], rogue wave and breather solution [29], separation of variables and algebro-geometric solutions [30],

bifurcations and new exact traveling wave solutions [31], and higher-order rogue wave solutions [32].

In this paper, we discuss the combined nonlinear Schrödinger and Gerdjikov–Ivanov (NLS–GI) equation

by using the Riemann–Hilbert method. The system can be written as

ut = iuxx − 2i|u|2u+ u2u∗x +
i

2
|u|4u, (1.3)

where u(x, t) is a complex smooth envelop function, and t, x, and ∗ denote the respective temporal, spatial

variables, and complex conjugations. The Riemann–Hilbert method for the combined NLS–GI equation

and its n-soliton solutions have been discussed in [33]. In this paper, we aim to study the IBV problem for

the combined NLS–GI equation on the half-line via the Riemann–Hilbert approach. The solution of the

combined NLS–GI equation is obtained by analyzing the spectral function and jump matrices. We extend

the IBV problem to an infinite interval following the Fokas method.

This paper is organized as follows. In Sec. 2, we study the direct scattering problems of the combined

NLS–GI equation. In Sec. 3, the spectral functions are further investigated and the Riemann–Hilbert

problem of the combined NLS–GI equation is presented. In Sec. 4, a brief summary of this paper is given.

2. Spectral analysis for the NLS–GI equation

2.1. Transformed Lax pair. The Lax pair of Eq. (1.3) can be written as

φx = U1φ,

φt = U2φ,
(2.1)

where φ = φ(x, t; ξ) is a matrix function and

U1 =

⎛
⎜⎜⎝
i

(
κ+

1

2
uu∗

)
(1 + κ)u

u∗ −i
(
κ+

1

2
uu∗

)

⎞
⎟⎟⎠ ,

U2 =

(
A (1 + κ)(−2uκ+ iux)

−2u∗κ− iu∗x −A

)
,

A = −2iκ2 − iκuu∗ − 1

2
(uxu

∗ − uu∗x) +
i

4
u2u∗2 − iuu∗,

(2.2)

with κ being a constant parameter. We make a gauge transformation

φ̃ = Tφ, T =

(
1 0

0 1− iξ

)
, ξ �= −i, (2.3)
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where κ = ξ2. Then Eq. (2.1) can be written in the equivalent form

φ̃x = Ũ1φ,

φ̃t = Ũ2φ,
(2.4)

where

Ũ1 =

⎛
⎜⎜⎝
i

(
ξ2 +

1

2
uu∗

)
(1 + iξ)u

(1− iξ)u∗ −i
(
ξ2 +

1

2
uu∗

)

⎞
⎟⎟⎠ ,

Ũ2 =

(
B −2iuξ3 − 2uξ2 − uxξ + iux

2iu∗ξ3 − 2u∗ξ2 − u∗xξ − iu∗x −B

)
,

B = −2iξ4 − iuu∗ξ2 − 1

2
(uxu

∗ − uu∗x) +
i

4
u2u∗2 − iuu∗.

(2.5)

Next, we define a matrix function ψ = ψ(x, t; ξ) as

φ̃ = ψei(ξ
2x−2ξ4t)σ3 . (2.6)

According to transformation (2.6), Lax pair (2.4) can be rewritten as

ψx − iξ2[σ3, ψ] = V1ψ,

ψt + 2iξ4[σ3, ψ] = V2ψ,
(2.7)

where

V1 =

⎛
⎜⎝

i

2
uu∗ (1 + iξ)u

(1− iξ)u∗ − i

2
uu∗

⎞
⎟⎠ , σ3 =

(
1 0

0 −1

)
, Q =

(
0 u

u∗ 0

)
,

V2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−iuu∗ξ2 − 1

2
(uxu

∗ − uu∗x)+ −2iuξ3 − 2uξ2 − uxξ + iux

+
i

4
u2u∗2 − iuu∗

2iu∗ξ3 − 2u∗ξ2 − u∗xξ − iu∗x iuu∗ξ2 +
1

2
(uxu

∗ − uu∗x)−
− i

4
u2u∗2 + iuu∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

(2.8)

Equation (2.7) can be written in the full derivative form

d(e−i(ξ2x−2ξ4t)σ̂3ψ(x, t; ξ)) =W, 0 < x <∞, 0 < t < T, (2.9)

with

W = e−i(ξ2x−2ξ4t)σ̂3(V1 dx+ V2 dt)ψ(x, t; ξ). (2.10)

We introduce a new function μ(x, t; ξ) such that

μ = I +O

(
1

ξ

)
, ξ → ∞. (2.11)

Then Eq. (2.9) becomes

d(e−i(ξ2x−2ξ4t)σ̂3μ(x, t; ξ)) =W, 0 < x <∞, 0 < t < T, (2.12)

where

W = e−i(ξ2x−2ξ4t)σ̂3 (V1 dx+ V2 dt)μ(x, t; ξ). (2.13)

Equation (2.12) can now be written as

μx − iξ2[σ3, μ] = V1μ,

μt + 2iξ4[σ3, μ] = V2μ.
(2.14)
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Fig. 1. Integration paths γ1 : (0, T ) → (x, t), γ2 : (0, 0) → (x, t), and γ3 : (∞, t) → (x, t).

2.2. Eigenfunctions and their relations. Following [34], we assume that u(x, t) is sufficiently

smooth in Υ = {0 < x < ∞, 0 < t < T, T > 0}. The solutions μj(x, t; ξ), j = 1, 2, 3 of Eq. (2.14) can be

constructed as

μj(x, t; ξ) = I +

∫ (x,t)

(xj,tj)

ei(ξ
2x−4ξ4t)σ̂3W (ζ, τ, ξ), 0 < x <∞, 0 < t < T, (2.15)

where (x1, t1) = (0, T ), (x2, t2) = (0, 0), and (x3, t3) = (∞, t), as can be seen in Fig. 1.

Because the integration of Eq. (2.15) is independent of the paths, the specific straight paths are chosen

in Fig. 1:

μ1(x, t; ξ) = I +

∫ x

0

eiξ
2(x−ζ)σ̂3(V1μ1)(ζ, t, ξ) dζ −

− eiξ
2xσ̂3

∫ T

t

e2iξ
4(τ−t)σ̂3(V2μ1)(0, τ, ξ) dτ,

μ2(x, t; ξ) = I +

∫ x

0

eiξ
2(x−ζ)σ̂3(V1μ2)(ζ, t, ξ) dζ +

+ eiξ
2xσ̂3

∫ t

0

e2iξ
4(τ−t)σ̂3(V2μ2)(0, τ, ξ) dτ,

μ3(x, t; ξ) = I−
∫ ∞

x

eiξ
2(x−ζ)σ̂3(V1μ3)(ζ, t, ξ) dζ.

(2.16)

The inequality on the contours can then be expressed as

(x1, t1) → (x, t) : 0 < ζ < x, t < τ < T,

(x2, t2) → (x, t) : 0 < ζ < x, 0 < τ < t,

(∞, t3) → (x, t) : 0 < x <∞.

(2.17)

The first column of the matrix in Eq. (2.15) involves e−2i[ξ2(x−ζ)−2ξ4(t−τ)]. By inequality (2.17),

the functions μj(x, t; ξ), j = 1, 2, 3, are bounded and analytic for ξ ∈ C, which is constrained as

μ
(1)
1 (x, t; ξ) : {Im ξ2 ≤ 0} ∩ {Im ξ4 ≤ 0},
μ
(1)
2 (x, t; ξ) : {Im ξ2 ≤ 0} ∩ {Im ξ4 ≥ 0},
μ
(1)
3 (x, t; ξ) : {Im ξ2 ≥ 0}.

(2.18)

Similarly, the second column of the matrix in Eq. (2.15) involves e2i[ξ
2(x−ζ)−2ξ4(t−τ)]; the regions of

the complex ξ can be written as

μ
(2)
1 (x, t; ξ) : {Im ξ2 ≥ 0} ∩ {Im ξ4 ≥ 0},
μ
(2)
2 (x, t; ξ) : {Im ξ2 ≥ 0} ∩ {Im ξ4 ≤ 0},
μ
(2)
3 (x, t; ξ) : {Im ξ2 ≤ 0}.

(2.19)
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As a result, we obtain

μ1(x, t; ξ) = (μD4
1 (x, t; ξ), μD1

1 (x, t; ξ)),

μ2(x, t; ξ) = (μD3

2 (x, t; ξ), μD2

2 (x, t; ξ)),

μ3(x, t; ξ) = (μD1∪D2
3 (x, t; ξ), μD3∪D4

3 (x, t; ξ)),

(2.20)

where μDi

j expresses that μj is bounded and analytic for ξ ∈ Di,

Di =

{
ω ∈ C|2lπ +

i− 1

4
π < Argω < 2lπ +

i

4
π

}
,

j = 1, 2, 3, i = 1, 2, 3, l = 0,±1,±2, . . . ,

and Argω means the argument of the complex ξ (see Fig. 2).

Fig. 2. The domains Di, i = 1, 2, 3, into which the complex ξ-plane decomposes.

We construct the Riemann–Hilbert problem to obtain the solution of the combined NLS–GI equation.

First, the jumps matrices across the boundaries of the Di, i = 1, 2, 3, are uniquely determined by the two

2× 2 matrix-valued spectral functions s(ξ) and S(ξ) that satisfy

μ3(x, t; ξ) = μ2(x, t; ξ)e
i(ξ2x−2ξ4t)σ̂3s(ξ),

μ1(x, t; ξ) = μ2(x, t; ξ)e
i(ξ2x−2ξ4t)σ̂3S(ξ).

(2.21)

Taking (x, t) = (0, 0) in the first equation in (2.21), and setting (x, t) = (0, 0) and (x, t) = (0, T ) in the

second equation in (2.21), we have

s(ξ) = μ3(0, 0; ξ), S(ξ) = μ1(0, 0; ξ), S(ξ) = (e2iξ
4T σ̂3μ2(0, T ; ξ))

−1. (2.22)

It follows from Eqs. (2.21) and (2.22) that

μ1(x, t; ξ) = μ3(x, t; ξ)e
i(ξ2x−2ξ4t)σ̂3(s(ξ))−1S(ξ). (2.23)

Because μ1(0, T, ξ) = I, a global relation can be obtained from Eq. (2.23) at (x, t) = (0, T ):

S−1(ξ)s(ξ) = e2iξ
4T σ̂3μ3(0, T ; ξ).
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Therefore, the matrix functions μj(x, t;λ), j = 1, 2, 3, satisfy the linear integral equations

μ1(0, t; ξ) = I−
∫ T

t

e2iξ
4(τ−t)σ̂3(V2μ1)(0, τ, ξ) dτ,

μ2(0, t; ξ) = I +

∫ t

0

e2iξ
4(τ−t)σ̂3(V2μ2)(0, τ, ξ) dτ,

μ3(x, 0; ξ) = I−
∫ ∞

x

eiξ
2(x−ζ)σ̂3(V1μ3)(ζ, 0, ξ) dζ,

μ2(x, 0; ξ) = I +

∫ x

0

eiξ
2(x−ζ)σ̂3(V1μ2)(ζ, 0; ξ) dζ.

Then, taking x = 0 and t = 0 in Eq. (2.8), we obtain

V1(x, 0; ξ) =

⎛
⎜⎝

i

2
|u0|2 (1 + iξ)u0

(1− iξ)ū0 − i

2
|u0|2

⎞
⎟⎠ ,

V2(0, t; ξ) =

(
C −2iξ3g0 − 2ξ2g0 − ξg1 + ig1

2iξ3ḡ0 − 2ξ2ḡ0 − ξḡ1 − iḡ1 −C

)
,

(2.24)

where u0(x) = u(x, 0), g0(t) = u(0, t), g1(t) = ux(0, t), and

C = −iξ2|g0|2 − 1

2
(g1ḡ0 − g0ḡ1) +

i

4
|g0|4 − i|g0|2.

Because μj(x, t; ξ), j = 1, 2, 3, defined by Eq. (2.15) are 2× 2 matrices, their first and second columns

can be respectively written as μ
(1)
j (x, t; ξ) and μ

(2)
j (x, t; ξ). We set

μj(x, t; ξ) = (μ
(1)
j (x, t; ξ), μ

(2)
j (x, t; ξ)) =

(
μ11
j μ12

j

μ21
j μ22

j

)
, j = 1, 2, 3.

Proposition 1. The above matrices μj(x, t; ξ) have the following properties:

• detμ1(x, t; ξ) = detμ2(x, t; ξ) = detμ3(x, t; ξ) = 1;

• each component of μj(x, t; ξ), j = 1, 2, 3, is analytic;

• limξ→∞ μ
(1)
1 (x, t; ξ) = (1, 0)T, ξ ∈ D4, limξ→∞ μ

(2)
1 (x, t; ξ) = (0, 1)T, ξ ∈ D1;

• limξ→∞ μ
(1)
2 (x, t; ξ) = (1, 0)T, ξ ∈ D3, limξ→∞ μ

(2)
2 (x, t; ξ) = (0, 1)T, ξ ∈ D2;

• limξ→∞ μ
(1)
3 (x, t; ξ) = (1, 0)T, ξ ∈ D1 ∪D2, limξ→∞ μ

(2)
3 (x, t; ξ) = (0, 1)T, ξ ∈ D3 ∪D4.

Proposition 2. Relations (2.21) and (2.22) can be written as

s(ξ) = μ3(0, 0, ξ) = I−
∫ ∞

0

e−iξ2ζσ̂3(V1μ3)(ζ, 0; ξ) dζ,

S(ξ) =

(
e2iξ

4T σ̂3

(
I +

∫ T

0

e2iξ
4(τ−T )τσ̂3(V2μ2)(0, τ ; ξ) dτ

))−1

=

=

(
e2iξ

4T σ̂3 +

∫ T

0

e2iξ
4τσ̂3(V2μ2)(0, τ ; ξ) dτ

)−1

.

(2.25)
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Because s(ξ) and S(ξ) are 2× 2 matrix functions, we can set

s(ξ) =

(
a(ξ̄) b(ξ)

b(ξ̄) a(ξ)

)
, S(ξ) =

(
A(ξ̄) B(ξ)

B(ξ̄) A(ξ)

)
. (2.26)

The following formulas follow from Eqs. (2.22) and (2.25):

(
b(ξ)

a(ξ)

)
= μ

(2)
3 (0, 0; ξ) =

(
μ12
3 (0, 0; ξ)

μ22
3 (0, 0; ξ)

)
,

(
−e−4iξ4TB(ξ)

A(ξ̄)

)
= μ

(2)
2 (0, T ; ξ) =

(
μ12
2 (0, T ; ξ)

μ22
2 (0, T ; ξ)

)
;

a(−ξ) = a(ξ), b(−ξ) = −b(ξ),
A(−ξ) = A(ξ), B(−ξ) = −B(ξ);

det s(ξ) = detS(ξ) = 1;

a(ξ) = 1 +O

(
1

ξ

)
b(ξ) = O

(
1

ξ

)
, ξ → ∞, ξ ∈ D3 ∪D4,

A(ξ) = 1 +O

(
1

ξ

)
, B(ξ) = O

(
1

ξ

)
, ξ → ∞, ξ ∈ D1 ∪D3.

2.3. The jump conditions. The matrix M(x, t; ξ) is defined by

M+(x, t, ξ) =

(
μD3
2 (x, t, ξ),

μD3∪D4
3 (x, t, ξ)

a(ξ)

)
, ξ ∈ D3,

M−(x, t, ξ) =
(
μD1∪D2
3 (x, t, ξ)

α(ξ̄)
, μD2

2 (x, t, ξ)

)
, ξ ∈ D2,

M+(x, t, ξ) =

(
μD1∪D2
3 (x, t, ξ)

α(ξ)
, μD1

1 (x, t, ξ)

)
, ξ ∈ D1,

M−(x, t, ξ) =
(
μD4
1 (x, t, ξ),

μD3∪D4
3 (x, t, ξ)

α(ξ̄)

)
, ξ ∈ D4.

(2.27)

where the scalars o(ξ), α(ξ), β(ξ), and γ(ξ) are

o(ξ) = −ξ2x+ 2ξ4t,

α(ξ) = a(ξ̄)A(ξ) − b(ξ̄)B(ξ),

β(ξ) = a(ξ)B(ξ) − b(ξ)A(ξ),

γ(ξ) = a(ξ̄)β(ξ) + b(ξ)α(ξ).

(2.28)

It follows from these definitions that

detM(x, t; ξ) = 1, M(x, t; ξ) = I +O

(
1

ξ

)
, ξ → ∞. (2.29)
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Theorem 1. Let M(x, t; ξ) and μj(x, t, ξ), j = 1, 2, 3, be defined by Eq. (2.27) and Eq. (2.15), and

u(x, t) be a smooth function. Then M(x, t; ξ) satisfies the jump condition on D̄h ∩ D̄l, h, l = 1, 2, 3,

M+(x, t, ξ) =M−(x, t, ξ)J(x, t, ξ), ξ ∈ D̄h ∩ D̄l, h, l = 1, 2, 3, h �= l, (2.30)

where

J(x, t, ξ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

J1(x, t, ξ), Arg ξ = kπ + π/2,

J2(x, t, ξ), Arg ξ = kπ + 3π/4,

J3(x, t, ξ), Arg ξ = kπ,

J4(x, t, ξ), Arg ξ = kπ + π/4,

(2.31)

and

J1(x, t, ξ) =

⎛
⎜⎜⎝

1
b(ξ)

a(ξ)
e−2io(ξ)

− b(ξ̄)

a(ξ̄)
e2io(ξ)

1

a(ξ)a(ξ̄)

⎞
⎟⎟⎠ , J2(x, t, ξ) =

⎛
⎜⎜⎝

a(ξ)

ξ(ξ̄)
0

−γ(ξ̄)e2io(ξ) α(ξ̄)

a(ξ)

⎞
⎟⎟⎠ ,

J3(x, t, ξ) =

⎛
⎜⎜⎝

1

α(ξ)α(ξ̄)

β(ξ)

α(ξ̄)
e−2io(ξ)

−β(ξ̄)
α(ξ)

e2io(ξ) 1

⎞
⎟⎟⎠ , J4(x, t, ξ) =

⎛
⎜⎜⎝
a(ξ̄)

α(ξ)
γ(ξ)e−2io(ξ)

0
α(ξ)

a(ξ̄)

⎞
⎟⎟⎠ .

The proof of the theorem is similar to that given in Ref. [14]. We substitute Eqs. (2.26) in (2.21):

⎧⎨
⎩
a(ξ̄)μD3

2 + b(ξ̄)e2io(ξ)μD2
2 = μD1∪D2

3 ,

b(ξ)e−2io(ξ)μD3
2 + a(ξ)μD2

2 = μD3∪D4
3 ,

⎧⎨
⎩
A(ξ̄)μD3

2 +B(ξ̄)e2io(ξ)μD2
2 = μD4

1 ,

B(ξ)e−2io(ξ)μD3
2 +A(ξ)μD2

2 = μD1
1 ,

⎧⎨
⎩
α(ξ̄)μD1∪D2

3 + β(ξ̄)e2io(ξ)μD3∪D4
2 = μD4

1 ,

β(ξ)e−2io(ξ)μD1∪D2
3 + α(ξ)μD3∪D4

2 = μD1
1 .

(2.32)

By transforming Eqs. (2.32), we can write the jump matrices Ji(x, t;λ), i = 1, 2, 3, as

(
μD3
2 (x, t, ξ),

μD3∪D4
3 (x, t, ξ)

a(ξ)

)
=

(
μD1∪D2
3 (x, t, ξ)

a(ξ̄)
, μD2

2 (x, t, ξ)

)
J1(x, t; ξ),

(
μD3
2 (x, t, ξ),

μD3∪D4
3 (x, t, ξ)

a(ξ)

)
=

(
μD4
1 (x, t, ξ),

μD3∪D4
3 (x, t, ξ)

α(ξ̄)

)
J2(x, t; ξ),

(
μD1∪D2
3 (x, t, ξ)

α(ξ)
, μD1

1 (x, t, ξ)

)
=

(
μD4
1 (x, t, ξ),

μD3∪D4
3 (x, t, ξ)

α(ξ̄)

)
J3(x, t; ξ),

(
μD1∪D2
3 (x, t, ξ)

α(ξ)
, μD1

1 (x, t, ξ)

)
=

(
μD1∪D2
3 (x, t, ξ)

a(ξ̄)
, μD2

2 (x, t, ξ)

)
J4(x, t; ξ).

(2.33)

The matrix M(x, t; ξ) is a sectionally meromorphic function. In terms of the zeros of a(ξ), α(ξ), and

their complex conjugates, the possible poles of M(x, t; ξ) can be obtained. Because a(ξ) and α(ξ) are even

functions, each of them has an even number of zeros.
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Statement 1. Let

• a(ξ) have 2h simple zeros {εj}2hj=1, 2h = 2h1 + 2h2, such that εj, j = 1, 2, . . . , 2h1, are located in D3

and ε̄j , j = 1, 2, . . . , 2h2, are located in D2.

• α(ξ) has 2H simple zeros {δj}2Hj=1, 2H = 2H1+2H2, such that δj , j = 1, 2, . . . , 2H1, are located in D1

and δ̄j , j = 1, 2, . . . , 2H2, are located in D4.

• The zeros of α(ξ) does not coincide with the zeros of a(ξ).

Proposition 3. Using Statement 1, we can calculate the residues of the function M(x, t; ξ). We set

M(x, t, ξ) = ([M(x, t; ξ)]1, [M(x, t; ξ)]2), ξ ∈ D3, ȧ(ξ) =
da

dξ
. (2.34)

We then have the residue conditions

Res{[M(x, t; ξ)]2, εj} =
e−2io(εj)b(εj)

ȧ(εj)
[M(x, t; εj)]1, j = 1, 2, . . . , 2h1,

Res{[M(x, t; ξ)]1, ε̄j} =
e2io(ε̄j)b(ε̄j)

ȧ(ε̄j)
[M(x, t; ε̄j)]2, j = 1, 2, . . . , 2h2,

Res{[M(x, t; ξ)]1, δj} =
e2io(δj)

α̇(δj)β(δj)
[M(x, t; δj)]2, j = 1, 2, . . . , 2H1,

Res{[M(x, t; ξ)]2, δ̄j} =
e−2io(δ̄j)

α̇(δ̄j)β(δ̄j)
[M(x, t; δ̄j)]1, j = 1, 2, . . . , 2H2.

2.4. The inverse problem. We fix the jump condition

M+(x, t; ξ)−M−(x, t; ξ) =M−J̃(x, t; ξ), (2.35)

where J̃(x, t; ξ) = J(x, t; ξ)− I. By using Lax pair (2.14), we obtain

ux(x, t) − iut(x, t) = 2(M(x, t; ξ))21 = 2 lim
ξ→∞

(ξM(x, t; ξ))21.

The inverse problem is to derive the potential u(x, t) from the spectral functions μj , j = 1, 2, 3, such that

u(x, t) = 2im(x, t). (2.36)

Then the inverse problem can be stated as follows:

1) calculate m(x, t) in terms of

m(x, t) = lim
ξ→∞

(ξμj(x, t; ξ))12

by the spectral functions μj , j = 1, 2, 3;

2) reconstruct u(x, t) by Eq. (2.36).
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3. The spectral functions and the Riemann–Hilbert problem

3.1. The spectral functions.

Definition 1 (the spectral functions a(ξ) and b(ξ)). Given a smooth function u0(x) = u(x, 0), we can

define a map

S : {u0(x)} → {a(ξ), b(ξ)},

with (
b(ξ)

a(ξ)

)
= μ

(2)
3 (x, 0; ξ) =

(
μ12
3 (x, 0; ξ)

μ22
3 (x, 0; ξ)

)
, Im ξ2 ≤ 0,

where μ3(x, 0; ξ) is a unique solution of the Volterra linear integral equation

μ3(x, 0; ξ) = I−
∫ ∞

x

eiξ
2(x−ζ)σ̂3(V1μ3)(ζ, 0; ξ) dζ,

and V1(x, 0; ξ) is determined by u(x, 0; ξ) in Eq. (2.24).

Proposition 4. The functions a(ξ) and b(ξ) have the following properties:

(i) they are analytic and bounded for Im ξ2 < 0;

(ii) a(ξ) = 1 +O(1/ξ), b(ξ) = O(1/ξ), ξ → ∞, Im ξ2 ≤ 0;

(iii) a(ξ)a(ξ̄)− b(ξ)b(ξ̄) = 1, ξ2 ∈ R;

(iv) a(−ξ) = a(ξ), b(−ξ) = −b(ξ), Im ξ2 ≤ 0.

Remark 1. The map

S : {u0(x)} → {a(ξ), b(ξ)}

is given by Definition 1. The inverse of S,

Q : {a(ξ), b(ξ)} → {u0(x)}

can be obtained from

u0(x) = 2im(x), m(x) = lim
ξ→∞

(ξM (x)(x, ξ))12, (3.1)

where M (x)(x, ξ) is a unique solution of the Riemann–Hilbert problem.

The function M (x)(x, ξ) has the following properties.

• M (x)(x, ξ) =

⎧⎨
⎩
M

(x)
− (x, ξ), Im ξ2 ≥ 0,

M
(x)
+ (x, ξ), Im ξ2 ≤ 0,

is a partly meromorphic function.

• M
(x)
+ (x, ξ) =M

(x)
− (x, ξ)J (x)(x, ξ), ξ2 ∈ R, and

J (x)(x, ξ) =

⎛
⎜⎜⎝

1
b(ξ)

a(ξ)
e−2iξ2x

− b(ξ̄)

a(ξ̄)
e2iξ

2x 1

a(ξ)a(ξ̄)

⎞
⎟⎟⎠ . (3.2)
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• M (x)(x, ξ) = I +O(1/ξ) as ξ → ∞.

• a(ξ) has 2h simple zeros {εj}2h1 , 2h = 2h1+2h2, such that εj , j = 1, 2, . . . , 2h1, are located in D3∪D4

and ε̄j , j = 1, 2, . . . , 2h2, are located in D1 ∪D2.

• The first column of M
(x)
− (x, ξ) has simple poles at ξ = ε̄j, j = 1, 2, . . . , 2h2. The second column

of M
(x)
+ (x, ξ) has simple poles at ξ = εj, j = 1, 2, . . . , 2h1. The corresponding residues are

Res{[M (x)(x, ξ)]1, ε̄j} =
e−2iε̄j

2xb(ε̄j)

ȧ(ε̄j)
[M (x)(x, ε̄j)]2, j = 1, 2, . . . , 2h2,

Res{[M (x)(x, ξ)]2, εj} =
e2iε

2
jxb(εj)

ȧ(εj)
[M (x)(x, εj)]1, j = 1, 2, . . . , 2h1.

(3.3)

Definition 2 (spectral functions A(ξ) and B(ξ)). Let g0(t) and g1(t) be smooth functions. We define

a map

S̄ : {g0(t), g1(t)} → {A(ξ), B(ξ)},

with (
B(ξ)

A(ξ)

)
= μ

(2)
1 (0, t, ξ) =

(
μ12
1 (0, t, ξ)

μ22
1 (0, t, ξ)

)
, Im ξ4 ≥ 0,

where μ1(0, t, ξ) is a unique solution of the Volterra linear integral equation

μ1(0, t, ξ) = I−
∫ T

t

e2iξ
4(τ−t)σ̂3(V2μ1)(0, τ, ξ) dτ,

and V2(0, T ; ξ) is determined by Eq. (2.24).

Proposition 5. The functions A(ξ) and B(ξ) have the following properties:

(i) they are analytic for Im ξ4 > 0 and bounded for Im ξ4 ≥ 0;

(ii) A(ξ) = 1 +O(1/ξ), B(ξ) = O(1/ξ), ξ → ∞, Im ξ4 ≥ 0;

(iii) A(ξ)A(ξ̄)−B(ξ)B(ξ̄) = 1, ξ4 ∈ R;

(iv) A(−ξ) = A(ξ), B(−ξ) = −B(ξ), Im ξ4 ≥ 0;

(v) Q̄ = S̄−1 : {A(ξ), B(ξ)} → {g0(t), g1(t)} Q̄ is given by

g0(t) = 2im
(1)
12 (t),

g1(t) = (4m
(1)
12 (t)− 2|g0(t)|2) + ig0(t)(4m

(1)
12 (t) + |g0(t)|2),

(3.4)

where M (t)(t, ξ) is a unique solution of the Riemann–Hilbert problem (see Remark 2).

Remark 2. We set

• M (t)(t, ξ) =

⎧⎨
⎩
M

(t)
− (t, ξ), Im ξ4 ≤ 0,

M
(t)
+ (t, ξ), Im ξ4 ≥ 0,

which is a sectionally meromorphic function.
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• M
(t)
+ (t, ξ) =M

(t)
− (t, ξ)J (t)(t, ξ), ξ4 ∈ R, and

J (t)(t, ξ) =

⎛
⎜⎜⎝

1

A(ξ)A(ξ̄)

B(ξ)

A(ξ̄)
e−4iξ4t

−B(ξ̄)

A(ξ)
e4iξ

4t 1

⎞
⎟⎟⎠ ; (3.5)

• M (t)(T, ξ) = I +O(1/ξ) as ξ → ∞;

• A(ξ) has 2l simple zeros {ηj}2l1 , 2l = 2l1 + 2l2, such that ηj , j = 1, 2, . . . , 2l1, are located in D1 ∪D3,

and η̄j , j = 2l1 + 1, 2l1 + 2, . . . , 2l, are located in D2 ∪D4;

• The first column of M
(t)
+ (t, ξ) has simple poles at ξ = ηj , j = 1, 2, . . . , 2l1. The second column

of M
(t)
− (t, ξ) has simple poles at ξ = η̄j , j = 1, 2, . . . , 2l2. The associated residues are

Res{[M (t)(t, ξ)]1, ηj} =
e4iη

4
j t

Ȧ(ηj)B(ηj)
[M (t)(t, ηj)]2, j = 1, 2, . . . , 2l1,

Res{[M (t)(t, ξ)]2, η̄j} =
e−4iη4

j t

Ȧ(η̄j)B(η̄j)
[M (t)(t, η̄j)]1, j = 1, 2, . . . , 2l2.

(3.6)

Definition 3 (spectral functions α(ξ) and β(ξ)). Given the spectral functions

α(ξ) = a(ξ̄)A(ξ) − b(ξ̄)B(ξ), β(ξ) = a(ξ)B(ξ)− b(ξ)A(ξ)

and a smooth function hT (x) = u(x, T ), we can construct a map

¯̄
S : {hT (x)} → {α(ξ), β(ξ)},

with (
β(ξ)

α(ξ)

)
= μ

(2)
1 (0, T ; ξ) =

(
μ12
1 (0, T ; ξ)

μ22
1 (0, T ; ξ)

)
, Im ξ2 ≥ 0,

where μ1(x, T ; ξ) is a unique solution of the Volterra linear integral equation

μ1(x, T ; ξ) = I +

∫ x

0

eiξ
2(x−ζ)σ̂3(V1μ1)(ζ, T ; ξ) dζ.

Proposition 6. The functions α(ξ) and β(ξ) have the following properties:

(i) α(ξ) and β(ξ) are analytic for Im ξ2 > 0 and bounded for Im ξ2 ≥ 0;

(ii) α(ξ) = 1 +O(1/ξ), β(ξ) = O(1/ξ), ξ → ∞, Im ξ2 ≥ 0;

(iii) α(ξ)α(ξ̄)− β(ξ)β(ξ̄) = 1, ξ2 ∈ R;

(iv) α(−ξ) = α(ξ), β(−ξ) = −β(ξ), Im ξ2 ≥ 0;

(v) ¯̄
Q = ¯̄

S
−1

: {α(ξ), β(ξ)} → {hT (x)}, ¯̄
Q is given by

hT (x) = 2imT (x), mT (x) = lim
ξ→∞

(ξM (T )(x, ξ))12, (3.7)

where M (T )(x, ξ) is a unique solution of the Riemann–Hilbert problem (see Remark 3).
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Remark 3. We set

• M (t)(t, ξ) =

⎧⎨
⎩
M

(T )
− (x, ξ), Im ξ2 ≤ 0,

M
(T )
+ (x, ξ), Im ξ2 ≥ 0,

which is a partly meromorphic function.

• M
(T )
+ (x, ξ) =M

(T )
− (x, ξ)J (T )(x, ξ), ξ2 ∈ R, and

J (T )(x, ξ) =

⎛
⎜⎜⎝

1

α(ξ)α(ξ̄)

β(ξ)

α(ξ̄)
e2i(ξ

2x−2ξ4T )

−β(ξ̄)
α(ξ)

e−2i(ξ2x−2ξ4T ) 1

⎞
⎟⎟⎠ , ξ2 ∈ R; (3.8)

• M (T )(x, ξ) = I +O(1/ξ) as ξ → ∞.

• α(ξ) has 2H simple zeros {δj}2H1 , 2H = 2H1 + 2H2, such that δj , j = 1, 2, . . . , 2H1, are located in

D1 ∪D2 and δ̄j , j = 2H1 + 1, 2H1 + 2, . . . , 2H , are located in D3 ∪D4.

• The first column of M
(T )
+ (x, ξ) has simple poles at ξ = δj , j = 1, 2, . . . , 2H1. The second column

of M
(T )
− (x, ξ) has simple poles at ξ = δ̄j , j = 1, 2, . . . , 2H2. The associated residues are

Res{[M (T )(x, ξ)]1, δj} =
e−2i(δ2jx−2δ4j t)

α̇(δj)β(δj)
M (T )(x, δj)]2, j = 1, 2, . . . , 2H1,

Res{[M (T )(x, ξ)]2, δ̄j} =
e2i(δ

2
jx−4δ4j t)

α̇(δ̄j)β(δ̄j)
[M (T )(x, δ̄j)]1, j = 1, 2, . . . , 2H2.

(3.9)

3.2. The Riemann–Hilbert problem. The following theorem is the main result in this paper.

Theorem 2. Let u0(x) be a smooth function. We assume that the functions g0(t) and g1(t) are

acceptable with u0(t). We define the spectral functions s(ξ) and S(ξ) for which a(ξ), b(ξ), A(ξ), and B(ξ)

are determined by u0(x), g0(t), and g1(t) in Definitions 1 and 2. Then there is the global relation

S−1(ξ)s(ξ) = e2iξ
4T σ̂3μ3(0, t; ξ),

where s(ξ) = μ3(0, 0; ξ) and S(ξ) = (e2iξ
2T σ̂3μ2(0, T ; ξ))

−1 are given by Eq. (2.22). We suppose that the

possible zeros {εj}2hj=1 of a(ξ) and {δj}2Hj=1 of α(ξ) and M(x, t, ξ) are defined as solutions of the Riemann–

Hilbert problem.

• M(x, t; ξ) is partly meromorphic on the Riemann ξ-sphere of jumps across the contours on D̄l ∩ D̄m,

l,m = 1, 2, 3 (see Figure 2).

• M(x, t; ξ) satisfies the jump condition

M+(x, t; ξ) =M−(x, t; ξ)J(x, t; ξ), ξ ∈ D̄l ∩ D̄m, l,m = 1, 2, 3, l �= m; (3.10)

• M(x, t; ξ) = I +O(1/ξ) as ξ → ∞.

• The residue condition for M(x, t; ξ) is given by Proposition 3.

Then M(x, t; ξ) exists and is unique, and u(x, t) can be obtained from M(x, t; ξ) as

u(x, t) = 2im(x, t), m(x, t) = lim
ξ→∞

(ξM(x, t; ξ))12. (3.11)

Given the initial value u(x, 0) = u0(x) and boundary values u(0, t) = g0(t) and ux(0, t) = g1(t) that belong

to the Schwartz space, the function u(x, t) is a solution of the combined NLS–GI equation (1.3).
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4. Conclusions

In this paper, we have studied the IBV for the combined NLS–GI equation on the half-line by using

the Riemann–Hilbert approach. If the solution u(x, t) of the NLS–GI equation exists, then a solution

can be proved to exist for the Riemann–Hilbert problem formulated in the plane of the complex spectral

parameter ξ. Is it possible to construct Riemann–Hilbert problems and determine their solutions by the

same way for other integrable equations? Can other methods be used to find the solution of those problems?

We hope to address these issues in the future.
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10. X. Lü, W.-X. Ma, J. Yu, F. Lin, and C. M. Khalique, “Envelope bright- and dark-soliton solutions for the

Gerdjikov–Ivanov model,” Nonlinear Dyn., 82, 1211–1220 (2015).

11. M. J. Ablowitz and A. S. Fokas, Complex Variables: Introduction and Applications, Cambridge Univ. Press,

Cambridge (2003).

12. A. S. Fokas, “A unified transform method for solving linear and certain nonlinear PDEs,” Proc. Roy Soc. London

Ser. A, 453, 1411–1443 (1997).

13. A. S. Fokas, “Integrable nonlinear evolution equations on the half-line,” Commun. Math. Phys., 230, 1–39

(2002).

14. A. S. Fokas, A. R. Its, and L.-Y. Sung, “The nonlinear Schrödinger equation on the half-line,” Nonlinearity , 18,

1771–1822 (2005).

15. J. Lenells and A. S. Fokas, “Boundary-value problems for the stationary axisymmetric Einstein equations:

a rotating disc,” Nonlinearity , 24, 177–206 (2011).

16. A. S. Fokas, “An initial-boundary value problem for the nonlinear Schrödinger equation,” Phys. D , 35, 167–185

(1989).

17. X. G. Geng, H. Liu, and J. Y. Zhu, “Initial-boundary value problems for the coupled nonlinear Schrödinger

equation on the half-line,” Stud. Appl. Math., 135, 310–346 (2015).

18. J. Xu, “Initial-boundary value problem for the two-component nonlinear Schrödinger equation on the half-line,”

J. Nonlinear Math. Phys., 23, 167–189 (2016).

19. B. B. Hu, T. C. Xia, N. Zhang, and J. B. Wang, “Initial-boundary value problems for the coupled higher-order

nonlinear Schrödinger equations on the half-line,” Internat. J. Nonlinear Sci. Numer. Simul., 19, 83–92 (2018).

1550



20. B. B. Hu and T. C. Xia, “A Fokas approach to the coupled modified nonlinear Schrödinger equation on the

half-line,” Math. Methods Appl. Sci., 41, 5112–5123 (2018).

21. J. Holmer, “The initial-boundary-value problem for the 1D nonlinear Schrödinger equation on the half-line,”

Differ. Integral Equ., 18, 647–668 (2005).

22. J. Lenells, “The derivative nonlinear Schrödinger equation on the half-line,” Phys. D , 237, 3008–3019 (2008).

23. X.-J. Chen, J. Yang, and W. K. Lam, “N-soliton solution for the derivative nonlinear Schrödinger equation with

nonvanishing boundary conditions,” J. Phys. A: Math. Gen., 39, 3263–3274 (2006), arXiv: nlin/0602044.

24. L. Xiao, S. Gideon, and S. Catherine, “Focusing singularity in a derivative nonlinear Schrödinger equation,”

Phys. D , 262, 48–58 (2013).

25. M. Hayashi and T. Ozawa, “Well-posedness for a generalized derivative nonlinear Schrödinger equation,” J.

Differ. Equ., 261, 5424–5445 (2016), arXiv: 1601.04167.

26. J. Xu and E. G. Fan, “A Riemann–Hilbert approach to the initial-boundary problem for derivative nonlinear

Schrödinger equation,” Acta Math. Sci., 34, 973–994 (2014).

27. E. Fan, “Bi-Hamiltonian structure and Liouville integrability for a Gerdjikov–Ivanov equation hierarchy,” Chi-

nese Phys. Lett., 18, 1–3 (2001).

28. X.-Z. Li, X.-Y. Li, L.-Y. Zhao, and J.-L. Zhang, “Exact solutions of Gerdjikov–Ivanov equation,” Acta. Phys.

Sin. (Chinese), 57, 2031–2034 (2008).

29. S. Xu and J. He, “The rogue wave and breather solution of the Gerdjikov–Ivanov equation,” J. Math. Phys.,

53, 063507, 17 pp. (2012).

30. H. H. Dai and E. G. Fan, “Variable separation and algebro-geometric solutions of the GerdFractals,”, 22, 93–101

(2004).

31. B. He and Q. Meng, “Bifurcations and new exact travelling wave solutions for the Gerdjikov–Ivanov equation,”

Commun. Nonlinear. Sci. Numer. Simul., 15, 1783–1790 (2010).

32. L. J. Guo, Y. S. Zhang, S. W. Xu, Z. W. Wu, and J. S. He, “The higher order rogue wave solutions of the

Gerdjikov–Ivanov equation,” Phys. Scr., 89, 035501, 11 pp. (2014).

33. H. Nie, L. P. Lu, and X. G. Geng, “Riemann–Hilbert approach for the combined nonlinear Schrodinger and

Gerdjikov–Ivanov equation and its N-soliton solutions,” Modern Phys. Lett. B , 32, 1850088, 9 pp. (2018).

34. A. S. Fokas, “Two-dimensional linear partial differential equations in a convex polygon,” Proc. Roy Soc. London

Ser. A, 457, 371–393 (2001).

1551

http://arxiv.org/abs/nlin/0602044
http://arxiv.org/abs/1601.04167

	1 Introduction
	2 Spectral analysis for the NLS–GI equation
	2.1 Transformed Lax pair
	2.2 Eigenfunctions and their relations
	2.3 The jump conditions
	2.4 The inverse problem

	3 The spectral functions and the Riemann–Hilbert problem
	3.1 The spectral functions
	3.2 The Riemann–Hilbert problem

	4 Conclusions

