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RELATIVISTIC LINEAR OSCILLATOR UNDER THE ACTION

OF A CONSTANT EXTERNAL FORCE. WAVE FUNCTIONS

AND DYNAMICAL SYMMETRY GROUP
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An exactly solvable relativistic model of a linear oscillator is considered in detail in the presence of a con-

stant external force in both the momentum representation and the relativistic configuration representation.

It is found that in contrast to the nonrelativistic case, depending on the magnitude of the force, both dis-

crete and continuous energy spectra are possible. It is shown that in the case of a discrete spectrum, the

wave functions in the momentum representation are expressed in terms of the Laguerre polynomials, and in

the relativistic configuration representation, in terms of the Meixner–Pollaczek polynomials. Integral and

differential–difference formulas are found connecting the Laguerre and Meixner–Pollaczek polynomials.

A dynamical symmetry group is constructed.
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1. Introduction

The harmonic oscillator model played a fundamental role in the emergence and development of nonrel-

ativistic quantum mechanics. This is one of the few exactly solvable quantum mechanical problems. The

harmonic oscillator potential is important for applications in nonrelativistic quantum mechanics. It finds

wide application in atomic and molecular physics, statistical mechanics, quantum chemistry, nuclear the-

ory, quantum electrodynamics, hadronic physics, etc. (see, e.g., [1]–[3]). The emergence of quark models for

describing the properties and structures of hadrons has increased the interest of physicists in the harmonic

potential. The development of quark models led to the need to construct relativistic wave functions of com-

posite particles and, in particular, relativistic models of a harmonic oscillator. The wave function contains

all the information about a quantum system. Knowledge of the relativistic wave functions, for example,

allows calculating the form factors of elastic scattering, the probability and width of meson decays, and the

structure functions of hadrons.

The problem of generalizing the quantum nonrelativistic harmonic oscillator to the relativistic case has

been discussed for a long time in the literature, but there is still no unambiguous definition of a relativistic

harmonic oscillator. In other words, in contrast to the theory of the nonrelativistic harmonic oscillator, the

theory of the relativistic harmonic oscillator is still far from completion.

This problem is usually formulated within the framework of various approaches using equations such

as Klein–Gordon, Dirac, Salpeter, finite-difference equations in relativistic configuration space, etc. The
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first models of a relativistic harmonic oscillator used in elementary particle physics appeared in the 1950s

in [4], [5]. These were followed by the work by Feynman et al. [6]. The impetus for the study of relativistic

oscillatory models was the desire to solve the problem of the mass spectrum of elementary particles. These

four-dimensional oscillatory models were described by relativistic equations of the Klein–Gordon type,

in which the direct relativistic generalization xμxμ = x20 − x2 of the nonrelativistic harmonic oscillator

potential was used. Such equations have spurious solutions associated with oscillations along the time axis

(see also reviews [7], [8]). In this regard, we especially note paper [6], where the authors used a four-

dimensional relativistic oscillator model to describe the spectrum and decays of hadrons and faced the

problem of nonphysical degrees of freedom. These nonphysical degrees of freedom primarily occur because

the four-dimensional oscillator includes timelike states with a negative norm. Excluding these states from

consideration leads, in particular, to violating the unitarity condition of the theory, because the complete

set of states is then not used. Subsequently, a four-dimensional oscillatory model was developed in [9]–[11]

(see also [12]). In [13], a special relativistic harmonic oscillator was proposed, modeled by the Klein-Gordon

theory in the anti-de Sitter space (also see [14]).

In [15], by replacing the momentum in the Dirac equation p with p− iβmωr, where β is the standard

Dirac matrix, m is the particle mass, and ω is the oscillator frequency, a new exactly solvable potential of

the relativistic harmonic oscillator was obtained. The relativistic oscillator obtained in this way is called

the Dirac oscillator and describes a particle with spin 1/2. In the nonrelativistic limit, it transforms into

a three-dimensional isotropic harmonic oscillator with spin–orbit coupling. The Dirac oscillator has found

wide application in the physics of the nucleus and elementary particles (see, e.g., works [16]–[20]).

Relativistic harmonic oscillators described by the spinless Salpeter equation [21], [22] are considered

in [22], [23]. We recall that in the case of one quantum particle, the Hamiltonian of the spinless Salpeter

equation with a static interaction potential V (r̂) has the form H =
√
p̂2 +m2+V (r̂), i.e., it is a simple and

straightforward generalization of the corresponding Schrödinger Hamiltonian. For l = 0, wave functions in

the momentum representation are found as infinite series in [22], and exactly, in [23].

On the other hand, the concept of a relativistic configuration r-representation introduced in [24], [25]

provided the basis for constructing a finite-difference version of relativistic quantum mechanics, which has

many important features of nonrelativistic quantum mechanics. The main difference between this version

of the theory and quantum mechanics is that the wave function in it satisfies a finite-difference equation

with a step equal to the Compton wavelength of a particle λ̄ = �/mc. We emphasize that the momentum

space canonically conjugate to the r-space is the Lobachevsky space, realized on the upper sheet of the

particle mass shell p20 − p2 = m2c2, p0 > 0.

In [26]–[37], various finite-difference equations were investigated, giving a generalization of the harmonic

oscillator problem to the relativistic case. In [26], [29], [33] relativistic models of a three-dimensional

harmonic oscillator were studied in the relativistic configuration r-representation. We note that these

three-dimensional relativistic oscillator models are free from the disadvantages inherent in four-dimensional

relativistic oscillators [4]–[8]. For example, their wave functions are normalized and allow a probabilistic

interpretation.

In [27], [28], an exactly solvable linear oscillator model in the relativistic configuration x-representation

was considered in detail. Preprint [30] is devoted to the study of this model in the presence of a uniform

external field Vg(x) = gx, which corresponds to a constant external force F (x) = −∇xVg(x) = −g, where
∇x = ∂x. It is shown that in contrast to the corresponding nonrelativistic case, depending on the magnitude

of the force |g|, both a discrete spectrum and a continuous energy spectrum are possible.

The purpose of this paper is to present the results of the unpublished preprint [30]. This preprint has

been referenced in a number of papers (see, e.g., [34]–[37]), i.e., its results are of physical and mathematical

interest and have not lost their relevance to this day. For the model under consideration, generalized coherent
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states were constructed in [34] and Wigner functions for stationary states, as well as for thermodynamic

equilibrium states, were constructed in [36].

It was shown in preprint [30] that in the presence of a constant external force, the wave functions of

the relativistic oscillator belonging to the discrete spectrum in the relativistic configuration x-space are

expressed in terms of the Meixner–Pollaczek polynomials. The dynamical symmetry group and coherent

states were found, as was a new finite-difference analogue of the Rodrigues formula for the Meixner–Pollaczek

polynomials. A bilinear generating function for the Meixner–Pollaczek polynomials was obtained, with the

help of which the Green’s function was calculated. In this work, we present only part of these results.

The paper is structured as follows. Section 2 is devoted to a brief description of the nonrelativistic

linear oscillator in an external uniform field. Section 3 details the relativistic model of a linear oscillator in

an external uniform field. In Sec. 4, a dynamical symmetry group is constructed. The results are discussed

in Sec. 5. The appendix contains the proof of a limit formula for the Meixner–Pollaczek polynomials.

2. Nonrelativistic linear oscillator in an external uniform field

Of the many different properties of a harmonic oscillator, we note the following two. A harmonic

oscillator has 1) an infinite set of bound states, whose corresponding energy levels are equidistant; 2) a class

of solutions in the form of coherent states (CS). CSs minimize the product of the coordinate and momentum

uncertainty by Gaussian wave packets, whose shape is preserved over time. In nonrelativistic quantum

mechanics, the Hamiltonian of a linear oscillator in a uniform external field

HN = − �
2

2m
∇2

x +
1

2
mω2x2 + gx (1)

has the eigenfunctions [1]

ψNn(x) = CNnHn

(
(x+ x0)

√
mω

�

)
e−(mω/2�)(x+x0)

2

, (2)

where x0 = g/mω2, n = 0, 1, 2, . . . and Hn(x) are Hermite polynomials. Wave functions (2) correspond to

the energy levels

ENn = E
(0)
Nn − mω2

2
x20, E

(0)
Nn = �ω

(
n+

1

2

)
(3)

and satisfy the orthonormality condition

∫ ∞

−∞
ψ∗
Nn(x)ψNm(x) dx = δnm. (4)

From this condition for the normalization constant, we obtain

CNn =
CN0√
2nn!

, CN0 =

(
mω

π�

)1/4

.

The wave functions ψNn(x) in (2) in the x-representation can be obtained from the wave functions ψ
(0)
Nn(x)

of a nonrelativistic linear oscillator without a field (g = 0) by a simple shift,

ψNn(x) = UNψ
(0)
Nn(x) = ψ

(0)
Nn(x+ x0), (5)

using the shift operator

UN = eix0p̂/� = ex0∇x . (6)
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In momentum representation, this shift reduces to multiplication by a simple phase factor:

ΦNn(p) = eix0p/�Φ
(0)
Nn(p). (7)

As is well known, if we introduce the bosonic creation and annihilation operators

b± = UNa
±U−1

N = a± +
ξ0√
2
, [b−, b+] = 1, (8)

where a± = (ξ ∓ ∇ξ)/
√
2 and ξ = x

√
mω/�, ξ0 = x0

√
mω/�, then we can find eigenfunctions (2) and

eigenvalues (3) of Hamiltonian (1) in a purely algebraic way. However, here we give only two formulas:

a formula for the Hamiltonian in Eq. (1) expressed in terms of b+ and b− (or a+ and a−),

HN = �ω

(
b+b− +

1

2

)
− 1

2
mω2x20 = �ω

[
a+a− +

ξ0√
2
(a+ + a−) +

1

2

]
(9)

and a formula for normalized eigenfunctions (2),

ψNn(x) =
1√
n!
(b+)nψN0(x). (10)

The action of the operators b− and b+ on eigenfunctions (10) is given by the relations

b−ψNn =
√
nψN,n−1, b+ψNn =

√
n+ 1ψN,n+1. (11)

3. Relativistic linear oscillator in a uniform external field

We consider a finite-difference equation describing a relativistic linear oscillator in the presence of

a constant external force F (x) = −g [30]:

H(x)ψ(x) ≡ mc2
[
cosh(iλ̄∇x) +

mω2

2
x(x + iλ̄)eiλ̄∇x + gx

]
ψ(x) = Eψ(x). (12)

It is known that solutions of this equation, in principle, can contain arbitrary functions of the variable x with

the period iλ̄ (so-called iλ̄-periodic constants, which appear in solutions due to the finite-difference nature

of Hamiltonian (12)), i.e., if ψ(x) is a solution of Eq. (12), then C(x)ψ(x) is a solution of this equation, with

C(x± iλ̄) = C(x) (see also [38]–[41]). These iλ̄-periodic constants can affect the asymptotic behavior of the

wave function. Based on this property of the finite-difference equation, an interesting explanation for quark

confinement was given in [42]. We fix the form of iλ̄-of periodic constants based on the condition that the

relativistic wave function have the correct nonrelativistic limit. Thus, we consider the wave function ψ(x)

in the domain C∞
0 (−∞,+∞)— in the space of infinitely differentiable functions with a compact support

contained in the interval (−∞,+∞). This means that as |x| → ∞, ψ(x) and all its derivatives of any order

tend to zero faster than any power of |x|−1.

The Hamiltonian H(x) of Eq. (12) is a Hermitian operator with respect to the inner product

(ψ1, ψ2) =

∫ ∞

−∞
ψ∗
1(x)ψ2(x) dx.

From the Hermiticity condition for the Hamiltonian, H+(x) = H(x), it follows that the parameter g (force)

is real. To solve Eq. (12), we pass to the p-representation. In our case, the momentum space p is the
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one-dimensional Lobachevsky space, realized on the mass-shell hyperbola p20 − p2 = m2c2, p0 > 0. The

transition to the x-representation

ψ(x) =
mc√
2π�

∫
dp

p0
ξ(p, x)ψ(p), p0 =

√
m2c2 + p2, (13)

and the inverse transition to the p-representation

ψ(p) =
1√
2π�

∫
ξ∗(p, x)ψ(x) dx (14)

are carried out using the expansion of the wave functions in terms of a complete orthogonal system of

functions [24], [25], [27]

ξ(p, x) =

(
p0 − p

mc

)−ix/λ̄

= eixχ/λ̄, χ = ln
p0 + p

mc
. (15)

They make up a basis of an irreducible unitary representation of the group of motions of the one-dimensional

Lobachevsky space and satisfy the completeness and orthogonality conditions

mc

2π�

∫
dp

p0
ξ∗(p, x)ξ(p, x′) = δ(x − x′),

1

2π�

∫
ξ∗(p, x)ξ(p′, x) dx =

1

mc
δ(χ− χ′).

(16)

We note that the Hamiltonian of Eq. (12) and relativistic plane waves (15) have the correct nonrela-

tivistic limit:

lim
c→∞[H(x)−mc2] = HN(x), lim

c→∞ ξ(p, x) = eipx/�.

In the momentum representation, Eq. (12) takes the form of a second-order differential equation

H(ζ)ψ(ζ) ≡ �ω

[
−ζ∇2

ζ + iρζ∇ζ +
ζ

4
+

1

ω2
0ζ

]
ψ(ζ) = Eψ(ζ),

ζ =
2c(p0 + p)

�ω
=

2

ω0
eχ, 0 ≤ ζ <∞, ρ =

g

mcω
, ω0 =

�ω

mc2
,

(17)

with the boundary conditions ζ−1/2ψ(ζ)|ζ=0 = 0 and ψ(∞) = 0. Hence, the functions ψ(ζ) are defined in

the space of square-integrable functions with weight ζ−1 on the interval (0,+∞). Setting (17)

ψ(ζ) = ζνe(iρ−δ)ζ/2ϕ(ζ), δ =
√
1− ρ2, ν =

1

2
+

√
1

4
+

1

ω2
0

, (18)

we arrive at an equation for ϕ(ζ),

ζϕ′′(ζ) + (2ν − δζ)ϕ′(ζ) +
(
E

�ω
− νδ

)
ϕ(ζ) = 0 (19)

with the boundary condition ϕ(ζ) < ∞. This is the confluent hypergeometric equation [43]. Because the

parameter ν > 1 takes noninteger values, the general solution of Eq. (19) has the form [1], [43]

ϕ(ζ) = C1Φ

(
ν − E

�ωδ
, 2ν; δζ

)
+ C2ζ

1−2νΦ

(
1− ν − E

�ωδ
, 2− 2ν; δζ

)
,
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where Φ(a, c;x) is the confluent hypergeometric function. Now taking the boundary condition ϕ(ζ) < ∞
into account, we find that C2 = 0. From this, we obtain an explicit form of the wave function in the

momentum p-representation for the considered relativistic linear oscillator in an external field:

ψ(ζ) = C′ζνe(iρ−δ)ζ/2Φ

(
ν − E

�ωδ
, 2ν; δζ

)
. (20)

In this case, in contrast to the nonrelativistic case, the requirement ψ(∞) = 0 (boundary condition) for

wave function (20) imposes the constraint |g| < mcω (i.e., |ρ| < 1, 0 < δ ≤ 1) on the value of the parameter

g (force) and leads to the energy quantization condition ν − E/�ωδ = −n, n = 0, 1, 2, . . . . Therefore, the

energy levels of the system are equidistant and equal to

En = �ωδ(n+ ν), n = 0, 1, 2, . . . . (21)

It is clear that this expression for c → ∞ also has the correct nonrelativistic limit, i.e., matches expres-

sion (3). Wave functions (20) corresponding to energy levels (21) in the p-representation

ψn(ζ) = C′
nζ

νe(iρ−δ)ζ/2L2ν−1
n (δζ), C′

n = δν

√
n!

mcΓ(n+ 2ν)
, (22)

can be expressed in terms of the Laguerre polynomials [44]

Lα
n(x) =

(α+ 1)n
n!

Φ(−n, α+ 1;x), (α)n =
Γ(α+ n)

Γ(α)
.

By virtue of the orthogonality condition for the Laguerre polynomials [45]

∫ ∞

0

xαe−xLα
n(x)L

α
m(x) dx =

Γ(n+ α+ 1)

n!
δnm, α > −1, (23)

functions (22) satisfy the normalization condition

mc

∫ ∞

0

ψ∗
n(ζ)ψm(ζ)

dζ

ζ
= δnm. (24)

Because δ2 + ρ2 = 1 and 0 < δ ≤ 1, we can set ρ = cosϕ and δ = sinϕ, with ϕ ∈ (0, π).

Using integral formula [43]

∫ ∞

0

tα−1e−ct(cosβ+i sin β) dt = Γ(α)c−αe−iαβ , c > 0, |β| < π

2
, Reα > 0,

we now easily find wave functions (22) in the relativistic configuration x-representation:

ψn(x) = Cnω
ix/λ̄
0 Γ(ν + ix/λ̄)e(x/λ̄)(ϕ−π/2)P ν

n

(
x

λ̄
;ϕ

)
, (25)

Cn = (2iδ)νe−i(n+ν)ϕ

√
n!

2πλΓ(n+ 2ν)
.

Here, the functions

P ν
n (x;ϕ) =

(2ν)n
n!

einϕF (−n, ν + ix; 2ν; 1− e−2iϕ) (26)

1270



are the Meixner–Pollaczek polynomials [44], [45]. The orthonormality of wave functions (25),

∫ ∞

−∞
ψ∗
n(x)ψm(x) dx = δnm,

follows from the formula [45]

∫ ∞

−∞
P ν
n (x;ϕ)P

ν
m(x;ϕ)ρ(ν)(x) dx =

(2ν)n
n!

δnm, (27)

where the weight function has the form

ρ(ν)(x) =
(2δ)2ν

2π Γ(2ν)
|Γ(ν + ix)|2ex(2ϕ−π).

Formula (27) also follows from (23).

It can be proved that as c → ∞, wave functions (22) and (25) in respective p- and x-representations

transform into wave functions of the nonrelativistic linear oscillator in an external uniform field. For the

proof, we start from the following limit formulas for the Laguerre and Meixner–Pollaczek polynomials:

lim
c→∞ ν−n/2L2ν−1

n (2ν + 2x
√
ν) =

(−1)n

n!
Hn(x), (28)

lim
c→∞ ν−n/2P ν

n

(
x
√
ν; arccos

x0√
ν

)
=

1

n!
Hn(x + x0). (29)

The first formula is given in [45], and the proof of the second formula is given in the appendix.

Using relativistic Fourier transformations (13) and (14) and formulas (22) and (25), we obtain the

integral relations between the Laguerre and Meixner–Pollaczek polynomials

∫ ∞

0

e−(1−i cotϕ)t/2tν+ix−1L2ν−1
n (t) dt = (2 sinϕ)ν+ixe(π/2−ϕ)(iν−x)Γ(ν + ix)e−inϕP ν

n (x;ϕ), (30)

∫ ∞

−∞
t−ixΓ(ν + ix)ex(ϕ−π/2)P ν

n (x;ϕ) dx = 2πeinϕei(ϕ−π/2)νeite
iϕ

tνL2ν−1
n (2t sinϕ), (31)

where t > 0, ν > 0. Using the equalities (it∇t)
nt−ix = xnt−ix and e−in∇x tix = tn+ix, we can rewrite

formulas (30) and (31) in a “local” form

L2ν−1
n (e−i∇x)(2 sinϕ)ixex(ϕ−π/2)Γ(ν + ix) = (2 sinϕ)ixex(ϕ−π/2)Γ(ν + ix)e−inϕP ν

n (x;ϕ), (32)

P ν
n (it∇t;ϕ)t

νeite
iϕ

= tνeite
iϕ

einϕL2ν−1
n (2t sinϕ). (33)

To conclude this section, we note that the Hamiltonian in the p-representation

H(ζ) = �ω[aζ(σ, σ
′)a+ζ (σ, σ

′) + c(σ, σ′)] (34)

can be factored in four ways using the operators

aζ(σ, σ
′) =

1

2

[
2
√
ζ∇ζ + Zσ

√
ζ +

(2ν − 1)σ′
√
ζ

]
,

a+ζ (σ, σ
′) =

1

2

[
−2

√
ζ∇ζ + Z∗

σ

√
ζ +

1 + (2ν − 1)σ′
√
ζ

]
.

(35)
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Here, σ = ±1, σ′ = ±1, Zσ = σδ − iρ, and c(σ, σ′) = −σδ((1− σ′)/2 + νσ′).
In the x-representation, operators (35) take the form

ax(σ, σ
′) =

1√
2ω0

{
Zσe

−iλ̄∇x/2 + ω0e
iλ̄∇x/2

[
σ′
(
ν − 1

2

)
− ix

λ̄

]}
,

a+x (σ, σ
′) =

1√
2ω0

{
Z∗
σe

−iλ̄∇x/2 + ω0

[
σ′
(
ν − 1

2

)
+
ix

λ̄

]
eiλ̄∇x/2

}
.

(36)

We also write the Hamiltonian in factored form in the x-representation:

H(x) = �ω[ax(σ, σ
′)a+x (σ, σ

′) + c(σ, σ′)]. (37)

We note that as c→ ∞, operators (35) and (36) have the asymptotic form

aζ(σ, σ
′) ∼= 1√

2

(
∇η +

σ − σ′

2
η − iξ0

)
+

√
mc2

�ω
(σ + σ′),

a+ζ (σ, σ
′) ∼= 1√

2

(
−∇η +

σ − σ′

2
η + iξ0

)
+

√
mc2

�ω
(σ + σ′)

(38)

and

ax(σ, σ
′) ∼= i√

2

(
−σ − σ′

2
∇ξ − ξ − ξ0

)
+

√
mc2

�ω
(σ + σ′),

a+x (σ, σ
′) ∼= i√

2

(
−σ − σ′

2
∇ξ + ξ + ξ0

)
+

√
mc2

�ω
(σ + σ′),

(39)

whence it follows that they have the correct nonrelativistic limit only for σ + σ′ = 0, i.e., for σ − σ′ = ±2,

where η = p/
√
m�ω and ξ = x

√
mω/�. We also present the asymptotic form of the number c(σ, σ′), which

is independent of σ and σ′:

c(σ, σ′) ∼= 1

2
�ω − 1

2
mω2x20 +mc2.

4. Dynamic symmetry group

To construct the dynamical symmetry group of the system described by Eq. (12), we consider the cases

|g| < mcω and |g| ≥ mcω separately.

A. Let |ρ| = |g|/mcω < 1, i.e., 0 < δ ≤ 1 (discrete spectrum). We introduce the following Hermitian

operators in the p-representation:

K0 ≡ Γ0(ζ) =
H(ζ)

�ωδ
, K1 ≡ Γ4(ζ) =

1

2
δζ − Γ0(ζ), K2 ≡ T (ζ) =

1

2
ρζ + iζ∇ζ . (40)

They satisfy the commutation relations for the Lie algebra of the group SU(1, 1):

[Γ0,Γ4] = iT, [T,Γ0] = iΓ4, [Γ4, T ] = −iΓ0. (41)

The Casimir operatorC2 = Γ2
0−Γ2

4−T 2 = s(s+1)I, where I is the unit operator, has the value C2 = ν(ν−1),

i.e., s = ν − 1 or s = −ν. The value s = −ν < 0 corresponds to the unitary irreducible representation

D+(−ν) of the SU(1, 1) group [46]–[48], in which the eigenvalues of the compact generator Γ0 are equal to

−s+ n = n+ ν, n = 0, 1, 2, . . . . Thus, we obtain the correct spectrum (21) for the operator H = ωδΓ0. Its

eigenfunctions (22) and (25) form a basis of the irreducible representation D+(−ν).
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We also present the form of operators (40) in the x-representation:

Γ0(x) =
H(x)

�ωδ
, Γ4(x) =

δ

ω0
e−iλ̄∇x − Γ0(x), T (x) =

x

λ̄
+

ρ

ω0
e−iλ̄∇x . (42)

B. We now let |ρ| ≥ 1 (continuous spectrum). In the case |ρ| > 1, the generators of the Lie algebra of

the dynamical group SU(1, 1) are related to generators (40) (or (42)) as

Γ′
0 = −iΓ4, Γ′

4 = iΓ0, T ′ = −T, δ = iδ′, δ′ =
√
ρ2 − 1. (43)

Because the spectrum of the noncompact generator Γ′
4 is continuous and equal to λ ∈ R [46], we conclude

that for |ρ| > 1, the spectrum of H = �ωδ′Γ′
4 is also continuous.

In the case where |ρ| = 1, we can introduce the operators

Γ′′
0(ζ) =

H(ζ)

�ω
− iρζ∇ζ , Γ′′

4(ζ) = iρζ∇ζ , T ′′(ζ) = −ρ
(
1

2
ζ − Γ′′

0(ζ)

)
, (44)

which form the same closed algebra (41), where we still have C′′
2 = ν(ν − 1). In the x-representation, they

can be written as

Γ′′
0(x) =

H(x)

�ω
− ρ

x

λ
, Γ′′

4(x) = ρ
x

λ
, T ′′(x) = −ρ

(
1

ω0
e−iλ̄∇x − Γ′′

0(x)

)
. (45)

Therefore, H = �ω(Γ′′
0 + Γ′′

4). As is known [46], this operator has a continuous and positive spectrum.

Thus, the dynamical symmetry group of the system under consideration is the group SU(1, 1).

5. Conclusion

In this paper, we considered the model of a relativistic linear oscillator in the presence of a constant

external force in detail both in the Lobachevsky momentum space and in the relativistic configuration space.

Some physical and mathematical results have been obtained. It is interesting to note that in this case, in

contrast to the corresponding nonrelativistic problem, bound states are possible only in a finite region of

the magnitude of the force, namely, for |g| < mcω, while only the continuous energy spectrum exists for

|g| ≥ mcω. The discrete-spectrum energy levels are equidistant. We showed that the wave functions in the

x-representation are expressed in terms of the Meixner–Pollaczek polynomials and constructed a dynamical

algebra, using which, as in the nonrelativistic case, allows finding the energy spectrum in a purely algebraic

way and constructing the wave functions. Knowing the raising and lowering operators, it is possible to

construct the coherent states of the system. We established limit relation (29) connecting the Meixner–

Pollaczek and Hermite polynomials.

The connection we noticed between the Laguerre and Meixner–Pollaczek polynomials (formulas (30)–

(33)) can be used to find a bilinear generating function for the Meixner–Pollaczek polynomials. We also

note that Hamiltonian (12) is an example of a difference operator, and Hamiltonian (17) is an example of

a differential operator, whose spectra cannot be found within the perturbation theory in the vicinity of the

respective points |g| = mcω and |ρ| = 1.

Appendix

Here, we prove formula (29). We proceed from the recursion relations for the Meixner–Pollaczek and

Hermite polynomials [39]

P ν
n+1(x;ϕ) = AnP

ν
n (x;ϕ) +BnP

ν
n−1(x;ϕ), (A.1)

Hn+1(z) = 2zHn(z)− 2nHn−1(z), (A.2)
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where

An =
2[(n+ ν) cosϕ+ x sinϕ]

n+ 1
, Bn = −n− 1 + 2ν

n+ 1
, n = 0, 1, 2, 3, . . . .

Let

Qn = n! ν−n/2P ν
n

(
x
√
ν; arccos

x0√
ν

)
, Q′

n = lim
ν→∞Qn. (A.3)

From (A.1), we then obtain the recursion relation for the polynomials Qn

Qn+1 = A′
nQn +B′

nQn−1, (A.4)

whereA′
n = (n+1)An/

√
ν and B′

n = n(n+1)Bn/ν. Because limν→∞ A′
n = 2(x+x0) and limν→∞B′

n = −2n,

passing to the limit ν → ∞ in (A.4) yields the equality

Q′
n+1 = 2(x+ x0)Q

′
n − 2nQ′

n−1, (A.5)

which coincides with recursion relation (A.2) for the Hermite polynomials for z = x + x0. Hence, Q′
n =

Hn(x+ x0). This completes the proof.
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