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SPIN NONCLASSICALITY VIA VARIANCE

Yue Zhang∗† and Shunlong Luo‡§

Although variance, as one of the most fundamental and ubiquitous quantities in quantifying uncertainty,

has been widely used in both classical and quantum physics, there are still new applications awaiting

exploration. In this work, by interchanging the roles of the state variable and the observable variable, i.e.,

by formally regarding any state as an observable (which is rational because any state is a priori a Hermitian

operator) and considering the average variance of this state (now in the position of an observable) in

all spin coherent states, we introduce a quantifier of spin nonclassicality with respect to a resolution

of identity induced by spin coherent states. This quantifier is easy to compute and it admits various

operational interpretations, such as the purity deficit, the Tsallis 2-entropy deficit, and the squared norm

deficit between the Wigner function and the Husimi function. We reveal several intuitive properties of this

quantifier, connect it to the phase-space distribution uncertainty, and illustrate it with some prototypical

examples. Various extensions are further indicated.
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1. Introduction

Quantum systems can be roughly classified into continuous and discrete. Typical continuous systems

include bosonic fields (quantum harmonic oscillators), while typical discrete systems include spin or atomic

systems. Ever since Mandel introduced the Q parameter [1], [2], quantification of nonclassicality of bosonic

field states has been extensively studied [3]–[22]. However, the spin nonclassicality (nonclassicality of

discrete systems) is relatively less explored, although several important quantifiers of spin nonclassicality

have been introduced [23]–[28]. Due to the complex, subtle, but at the same time relevant nature of

nonclassicality, it is desirable to characterize and quantify spin nonclassicality from various perspectives.

In this paper, we introduce a quantifier of spin nonclassicality in terms of the variance of spin states

(regarded as observables) in spin coherent states, reveal its basic properties, and further illustrate the results

with various typical spin states. The key idea here is to change the perspective by inputting the spin states

as observables in the expression of variance.
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More precisely, we recall that for a quantum system in a state τ , the variance of any observable

(Hermitian operator) X is defined as

Vτ (X) = tr τX2 − (tr τX)2. (1)

It is well known that the variance Vτ (X) is a concave function of τ in the sense that

Vc1τ1+c2τ2(X) � c1Vτ1(X) + c2Vτ2(X)

for any quantum states τi and constants ci � 0, c1 + c2 = 1. However, it seems relatively less known that

the variance Vτ (X) is a convex function of X in the sense that

Vτ (c1X1 + c2X2) � c1Vτ (X1) + c2Vτ (X2)

for any observables Xi and constants ci � 0, c1 + c2 = 1. By noting that the variance is nonnegative,

the above convexity follows readily from the identity

Vτ (c1X1 + c2X2) + c1c2Vτ (X1 −X2) = c1Vτ (X1) + c2Vτ (X2),

which can be verified directly.

By considering V|ζ〉〈ζ|(ρ), we exploit the above convexity and the resolution of identity induced by the

spin coherent states |ζ〉 to quantify spin nonclassicality of any spin state ρ. It turns out that the resulting

quantifier of spin nonclassicality has intrinsic relations with spin phase-space functions and enjoys a variety

of remarkable properties. In particular, a convenient and useful criterion for spin nonclassicality follows.

This paper is structured as follows. In Sec. 2, we review basic features of spin systems. In Sec. 3,

we quantify spin nonclassicality via averaged variance, and explore its basic properties. We illustrate the

results with various examples in Sec. 4. Finally, we summarize the results and discuss some extensions and

perspectives in Sec. 5.

2. Spin systems

For j = 0, 1/2, 1, 3/2, . . ., a spin-j system can be described by a finite-dimensional Hilbert space C2j+1

together with the spin operators (angular momentum operators) J = (Jx, Jy, Jz) satisfying the commutation

rules

[Jx, Jy] = iJz, [Jy, Jz] = iJx, [Jz, Jx] = iJy,

which characterize the su(2) Lie algebra. We note that Jz and the total spin operator J2 = J2
x + J2

y + J2
z

commute, and their joint eigenvectors (the so-called Dicke states) |j,m〉, m = −j,−j+1, . . . , j−1, j, satisfy

Jz|j,m〉 = m|j,m〉, J2|j,m〉 = j(j + 1)|j,m〉,

and furnish an orthogonal resolution of identity:

j∑

m=−j

|j,m〉〈j,m| = 1.

Let J− = Jx − iJy, J+ = Jx + iJy be the ladder operators, then

J+|j,m〉 =
√
(j −m)(j +m+ 1) |j,m+ 1〉, m � j − 1, J+|j, j〉 = 0,

J−|j,m〉 =
√
(j +m)(j −m+ 1) |j,m− 1〉, m � −j + 1, J−|j,−j〉 = 0.
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In a spin-j system, the spin coherent states (also called SU(2) coherent states, atomic coherent states,

or Bloch coherent states) can be defined in various equivalent forms as [29]–[34]

|ζ〉 = eξJ+−ξ∗J− |j, j〉 =
j∑

m=−j

√(
2j

j +m

)(
cos

θ

2

)j+m(
eiφsin

θ

2

)j−m

|j,m〉 =

=

j∑

m=−j

√(
2j

j −m

)
ζj−m

(1 + |ζ|2)j |j,m〉,

where

ξ = −θ
2
e−iφ, ζ = eiφ tan

θ

2
∈ C, θ ∈ [0, π), φ ∈ [0, 2π).

The resolution of identity induced by the spin coherent states is given by

∫

C

|ζ〉〈ζ| dμ(ζ) = 1,

where

dμ(ζ) =
(2j + 1)

π(1 + |ζ|2)2 d
2ζ, ζ = x+ iy ∈ C, x, y ∈ R (2)

with d2ζ = dx dy the standard Lebesgue measure on the complex plane C. In the Fock–Bargmann repre-

sentation of a spin-j system, the Hilbert space C2j+1 is identified with the analytic function space

Hj =

{
analytic f : C → C, 〈f |f〉 =

∫

C

f∗(ζ)f(ζ) dμ(ζ) <∞
}
.

We note that in the two most important sets of bases of a spin-j system, the Dicke states |j,m〉,
m = −j,−j + 1, . . . , j − 1, j, are orthonormal, while the spin coherent states |ζ〉, ζ ∈ C, are not, because

the overlap

〈ζ1|ζ2〉 = (1 + ζ∗1 ζ2)
2j

(1 + |ζ1|2)j(1 + |ζ2|2)j , ζ1, ζ2 ∈ C,

vanishes only for the antipodal points.

Following [23], we call any spin state ρ classical if it is a spin coherent state or can be expressed as

a probabilistic mixture of spin coherent states. Otherwise, we call it nonclassical. This is a discrete analogue

of the Glauber–Sudarshan scheme for optical nonclassicality of bosonic field states.

3. Quantifying spin nonclassicality

Our key idea for quantifying nonclassicality in terms of variance lies in regarding the spin state ρ as an

observable and considering its average uncertainty in the spin coherent states. Thus, in the variance Vτ (X),

we replace X with ρ and take τ to be any spin coherent state |ζ〉〈ζ|. Consequently, we are naturally led to

N(ρ) =

∫

C

V|ζ〉〈ζ|(ρ) dμ(ζ), (3)

which is our quantifier of spin nonclassicality. We note that the variance is defined by Eq. (1) and dμ(ζ) is

defined by Eq. (2). It is remarkable that the above quantity has the equivalent expressions

N(ρ) =

∫

C

(〈ζ|ρ2|ζ〉 − 〈ζ|ρ|ζ〉2) dμ(ζ) = tr ρ2 −
∫

C

ρ̃2(ζ) dμ(ζ), (4)
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where

ρ̃(ζ) = tr |ζ〉〈ζ|ρ = 〈ζ|ρ|ζ〉

is the Husimi function of the quantum state ρ [35], [36], which satisfies 0 � ρ̃(ζ) � 1 and can be regarded

as a phase-space probability distribution with the measure dμ(ζ) defined by Eq. (2), because

∫

C

ρ̃(ζ) dμ(ζ) = 1.

There are at least three interpretations related to the operational meaning of the spin nonclassicality

quantifier N(ρ) defined by Eq. (3).

1. As the purity deficit. Because tr ρ2 is the purity of a quantum state ρ and the integral
∫
C
ρ̃2(ζ) dμ(ζ)

can be formally regarded as the purity of the Husimi function of ρ, which is a kind of “classicalization”

(with respect to spin coherent states), the spin nonclassicality as the difference defined by Eq. (4) is

a kind of purity deficit due to the generalized measurement induced by the resolution of spin coherent

states (discrete analogue of the optical heterodyne measurement).

2. As the entropy deficit. We recall that the classical Tsallis entropies are defined as [37]

Sr(f) =
1

1− r

(∫

M

f r(x) dμ(x) − 1

)
, r ∈ R,

for a probability density function f on a measurable space M (endowed with a nonnegative measure

μ), and the corresponding quantum analogues are defined as

Sr(ρ) =
1

1− r
(tr ρr − 1), r ∈ R,

for any quantum state ρ. In the limit r → 1, we recover the quantum (von Neumann) entropy

S1(ρ) = lim
r→1

Sr(ρ) = − tr ρ ln ρ.

Considering r = 2, we can rewrite the spin nonclassicality as N(ρ) = S2(ρ̃)−S2(ρ), which is precisely

the Tsallis 2-entropy deficit.

3. As the squared norm deficit. It is interesting to note that tr ρ2 can be equivalently expressed as

tr ρ2 =

∫

C

ρ̃2
W
(ζ) dμ(ζ),

where ρ̃W(ζ) is the Wigner phase-space function for a spin system defined in [38]. Hence, our quantifier

of spin nonclassicality can be re-expressed as

N(ρ) =

∫

C

(ρ̃2W(ζ) − ρ̃2(ζ)) dμ(ζ),

which is precisely the difference between the squared norm of the Wigner function and that of the

Husimi function.

Of course, the above interpretations are intimately related, and bear the same origin in the noncom-

mutativity between the quantum state and the ensemble of spin coherent states.
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The spin nonclassicality quantifier N(ρ) has the following desirable properties.

1. 0 � N(ρ) � 1, and N(ρ) = 0 if and only if ρ is the maximally mixed state 1/(2j + 1);

2. N(ρ) is convex in ρ;

3. for any pure state ρ, we have

N(ρ) = 1−
∫

C

ρ̃2(ζ)dμ(ζ).

Moreover, among pure states of a spin-j system, N(ρ) attains its minimal value 2j/(4j + 1) if and

only if ρ is any spin-j coherent state. Consequently, combining with convexity, we have the following

criterion for spin nonclassicality: if a spin-j state ρ satisfies N(ρ) > 2j/(4j+1), then it is nonclassical,

i.e., it cannot be expressed as a probabilistic mixture of spin coherent states.

4. N(ρ) is invariant under rotations in the sense that

N(e−iθn·Jρeiθn·J) = N(ρ), n · J = nxJx + nyJy + nzJz,

for any θ ∈ R and any vector n = (nx, ny, nz) ∈ R3 with unit norm. Geometrically, e−iθn·J is

a rotation through the angle θ about the axis n in the Bloch sphere (as well as the Bloch ball).

All the above properties can be verified directly.

We remark that inspired by Eq. (3), we can define a quantifier characterizing the nonclassicality of

a state ρ with respect to a positive-operator-valued measure (resolution of identity) M = {Mj} with∑
jMj = 1, Mj � 0 as

N(ρ|M) =
∑

j

V (ρ|Mj)

in terms of a “generalized variance” V (ρ|X) as long as V (ρ|X) is convex in ρ for any observable X .

For example, we can take

V (ρ|X) = −1

2
tr[

√
ρ,X ]2

as the Wigner–Yanase skew information [39]–[42]. The case of continuous measurement outcomes can be

treated similarly. The bosonic fields case is studied in [22].

4. Examples

In this section, we evaluate the spin nonclassicality for some typical spin states.

Example 1. For the spin-j coherent state

|z〉 =
j∑

m=−j

√(
2j

j −m

)
zj−m

(1 + |z|2)j |j,m〉, z ∈ C,

whose Husimi function can be readily evaluated as

|̃z〉〈z|(ζ) = |1 + z∗ζ|4j
(1 + |z|2)2j(1 + |ζ|2)2j , ζ ∈ C,

we have

N(|z〉〈z|) = 2j

4j + 1
.

This is a constant independent of the amplitude parameter z ∈ C.
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Example 2. For the Dicke state |j,m〉 in a spin-j system, its Husimi function can be readily

evaluated as

˜|j,m〉〈j,m|(ζ) =
(

2j

j −m

) |ζ|2j−2m

(1 + |ζ|2)2j , ζ ∈ C,

from which we obtain

N(|j,m〉〈j,m|) = 1− 2j + 1

4j + 1

(
2j

j+m

)2
(

4j
2j+2m

) > 2j

4j + 1
, m �= ±j.

Consequently, according to our spin nonclassicality criterion, all Dicke states except the two extremal ones

(corresponding to m = ±j) are nonclassical. Both |j,−j〉 and |j, j〉 are spin coherent states, and therefore

classical.

Example 3. For any spin-1/2 state

ρ =
1

2

(
1+

3∑

i=1

riσi

)
,

where r = (r1, r2, r3) ∈ R3, |r|2 =
∑3

i=1 r
2
i � 1, and σi are the Pauli spin matrices, we readily obtain the

purity

tr ρ2 =
1

2
(1 + |r|2)

and the Husimi function

ρ̃(ζ) =
(1 + r3)|ζ|2 + (r1 − ir2)ζ + (r1 + ir2)ζ

∗ + 1− r3
2(1 + |ζ|2) .

Consequently,

N(ρ) =
|r|2
3
.

In particular, N(ρ) = 0 for the maximally mixed state (r = 0) and N(ρ) = 1/3 for any pure state (|r| = 1).

This is specific to the spin-1/2 system, and is consistent with the fact that any spin-1/2 pure state is a spin

coherent state.

Example 4. In a spin-1 system, we consider the superposition state

|ψλ〉 = 1√
2 + λ

(|1,−1〉+
√
λ|1, 0〉+ |1, 1〉), λ � 0,

whose Husimi function can be evaluated as

˜|ψλ〉〈ψλ|(ζ) = |ζ2 +√
2λζ + 1|2

(2 + λ)(1 + |ζ|2)2 .

Consequently, for j = 1,

N(|ψλ〉〈ψλ|) = 3

5
− 4λ

5(2 + λ)2
>

2j

4j + 1
=

2

5
,

which indicates that |ψλ〉 is nonclassical.
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Example 5. In a spin-j system, we consider the even cat state

|ψ+〉 = |z〉+ |−z〉√
2
(
1 + (1−|z|2)2j

(1+|z|2)2j
) , z �= 0,

whose Husimi function can be evaluated as

˜|ψ+〉〈ψ+|(ζ) = ((1 + z∗ζ)2j + (1 − z∗ζ)2j)((1 + zζ∗)2j + (1 − zζ∗)2j)
2((1 + |z|2)2j + (1− |z|2)2j)(1 + |ζ|2)2j ,

and the nonclassicality can be calculated, but the expression is complicated. For simplicity, we consider

some simple yet important cases. First, for

|ψj〉 = 1√
2
(|j,−j〉+ |j, j〉)

with the Husimi function

˜|ψj〉〈ψj |(ζ) = |1 + ζ2j |2
2(1 + |ζ|2)2j ,

we have

N(|ψj〉〈ψj |) = 1− 2j + 1

4j + 1

(
1

2
+

1(
4j
2j

)
)
.

Moreover, the spin nonclassicality of (|j,−j〉 − |j, j〉)/√2 is the same as the above quantity.

Second, when j = 1, for the even cat states

|ψ+〉 = |z〉+ | − z〉√
2
(
1 + (1−|z|2)2

(1+|z|2)2
) , z �= 0,

we have

N(|ψ+〉〈ψ+|) = 3

5
− 4|z|4

5(1 + |z|4)2 .

In sharp contrast, for the odd cat state

|ψ−〉 = |z〉 − |−z〉√
2
(
1− (1−|z|2)2

(1+|z|2)2
) , z �= 0,

we have

N(|ψ−〉〈ψ−|) = 3

5

which is independent of the parameter z ∈ C. This reveals a fundamental difference between the even and

the odd cat states. It is remarkable that such kinds of state, in the name of even and odd coherent states,

were introduced and studied by Dodonov, Malkin, and Man’ko as early as 1974 in the context of a quantum

harmonic oscillator (single-mode bosonic field) [43].

Example 6. For the mixed spin-j state

ρ = p|j,m〉〈j,m|+ (1− p)
1

2j + 1
, − 1

2j
� p � 1,
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whose purity is

tr ρ2 =
(2jp+ 1)2

(2j + 1)2

and whose Husimi function is

ρ̃(ζ) = p

(
2j

j −m

) |ζ|2j−2m

(1 + |ζ|2)2j +
1− p

2j + 1
,

we have

N(ρ) = p2
(
1− 2j + 1

4j + 1

(
2j

j−m

)2
(

4j
2j−2m

)
)
+

2p(1− p)

2j + 1

(
1− 1(

2j
j−m

)
)
.

In particular, in the simple case j = 1 and m = 0, we have

N(ρ) =
p

3
+

4p2

15
>

2j

4j + 1
=

2

5

when p > 3/4, indicating the nonclassicality in this case.

5. Conclusion

The variance, which couples the two basic ingredients (quantum state and observable) in quantum

mechanics and synthesizes certain uncertainty of the observable in the state, is concave in the state variable

but convex in the observable variable. In this paper, by exploiting the resolution of identity induced by

the spin coherent states and the convexity of the conventional variance with respect to the observable,

and regarding the spin state as an observable, we have introduced a spin nonclassicality quantifier that is

easy to compute and which bears operational significance as the purity (Tsallis 2-entropy, squared norm)

deficit. Its basic properties are revealed, and connections with the phase-space distribution uncertainty

are established. The amounts of spin nonclassicality for a variety of important spin states are evaluated

explicitly, illustrating some intrinsic features of spin nonclassicality.

Various extensions of our approach are possible. For example, by letting the spin number j tend

to infinity, we can obtain a corresponding quantifier of optical nonclassicality because the spin-j system

tends to the single-mode bosonic field as j tends to infinity. More generally, it is natural to generalize the

concept of spin nonclassicality to the case of representations of certain Lie groups, because the construction

of coherent states is available in this general case. One may also extend the approach to more complex

systems such as spin-boson systems or spin chains. All these issues are worthy of further investigations.

Conflicts of interest. The authors declare no conflicts of interest.
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