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1. Introduction

In “Mysterium Cosmographicum,” published in 1596, Kepler proposed a model of the Solar system

by relating the five extra-terrestrial planets (Mercury, Venus, Mars, Jupiter, and Saturn) known at that

time to the five Platonic solids (the tetrahedron or pyramid, cube, octahedron, dodecahedron, and icosa-

hedron) [1], [2]. Kepler’s work attracted the attention of the Danish astronomer Brahe who recruited him

in October 1600 as an assistant. Kepler then accessed Brahe’s empirical data, and published the so-called

Kepler’s first two laws of planetary motion in 1609 [3], [4], and the third one in 1619 [5]. Kepler thus

obtained from Brahe a detailed set of observations of the motion of the planet Mars, analyzed them, and

deduced that the path of Mars is an ellipse, with the Sun located at one of its focal points, and that the

radius vector from the Sun to this planet sweeps out equal areas in equal times [6]. The Kepler direct

problem of determining the nature of the force required to maintain elliptical motion about a focal force

center was finally solved by Newton in the 1680s. Indeed, Newton determined the functional dependence

on distance of the force required to sustain such an elliptical path of Mars about the Sun as a center of

force located at a focal point of the ellipse. Today, scientists still concentrate on the inverse problem that
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consists in using the combined gravitational forces of the Sun and the other planets to predict and explain

perturbations in the conic paths of planets and comets.

On the other hand, although the Kepler problem was a central theme of analytical dynamics for

centuries, addressed by several authors, it continues to be so in the contemporary studies as well, revealing

interesting mathematical symmetries. Significant steps in understanding the symmetries underlying the

Kepler dynamics were made with its quantum explorations, where the SO(4), O(4, 1), and O(4, 2) symmetry

groups were explored (see, e.g., [7]–[13] and the references therein). These studies led to the reinvestigation

of the classical Kepler problem (see [14]–[17] and the references therein). Thus, in 1966, Bacry et al. [15]

proved that the transformations generated by the angular momentum and the Runge–Lenz vector indeed

form a group of canonical transformations isomorphic to SO(4). In 1968, Györgyi [16] gave a formulation

of the Kepler problem, manifestly invariant under the SO(4) and SO(3, 1) symmetry groups, in terms of

the Fock variables and their canonical conjugates, respectively, and introduced a new time parameter,

proportional to the eccentric anomaly. In that work, a transformation of the dynamical variables was

performed in order to regain the standard time t leading in a natural way to Bacry’s generators inducing

the SO(4, 2) symmetry group. In 1970, Moser [18] regularized the Kepler problem, enlarging the phase space

in such a way that the temporal evolution generates a global time flow, a situation otherwise precluded by

the existence of collision orbits. Six years later, in 1976, Ligon et al. [19] completed the previous works by

adding the symplectic forms and the Hamiltonian vector fields. They transformed the Kepler problem in

such a way that both the time flow and the SO(4) symmetry were globally realized in a simple and canonical

way. This was also done for a positive energy and the group SO(1, 3). Since 1976, several works have focused

on the classical Kepler problem, (see, e.g., [17], [20]–[24]). Further, in a remarkable book published in 2001,

Vilasi [25] showed that the Lie algebra of symmetries for the Kepler dynamics is so(3) ⊗ so(3), or better,

su(2)⊗ su(2), which is locally isomorphic to so(4).

In addition, in the last few decades, there was a renewed interest in the Kepler problem as one of

completely integrable Hamiltonian systems (IHS), the concept of which goes back to Liouville in 1897 [26]

and Poincaré in 1899 [27]. Loosely speaking, IHS are dynamical systems admitting a Hamiltonian descrip-

tion and possessing sufficiently many constants of motion. Many of these systems are Hamiltonian systems

with respect to two compatible symplectic structures [28]–[31], permitting a geometric interpretation of

the so-called recursion operator [32]. Hence, a natural approach to integrability is to try to find sufficient

conditions for the eigenvalues of the recursion operator to be in involution [33]. In 1992, Marmo et al. [34]

constructed two Hamiltonian structures for the Kepler problem in action–angle coordinates and proved their

compatibility condition by verifying the vanishing of the Nijenhuis tensor of the corresponding recursion

operator.

Over the past few years, Magri’s approach [28] to integrability through bi-Hamiltonian structures has

became one of the most powerful methods relating to the integrability of evolution equations, applicable

in studying both finite- and infinite-dimensional dynamical systems [35]. This approach has also been

proven to be one of the classical methods of integrability of evolution equations along with, for example,

the Hamilton–Jacobi method of separation of variables and the Lax representation method [32], [36]. When

a completely integrable Hamiltonian system does admit a bi-Hamiltonian construction, infinite hierarchies

of conserved quantities can be generated following the construction by Oevel [37] based on scaling invari-

ances and master symmetries [38], [39]. Another generalization is due to Bogoyavlenskij [40], who proposed

a complete classification of the invariant Poisson structures for nondegenerate and degenerate Hamilto-

nian systems. In 1997 and 1999, Smirnov [36], [39] formulated a constructive method of transforming

a completely integrable Hamiltonian system, in Liouville’s sense, into Magri–Morosi–Gel’fand–Dorfman’s

(MMGD) bi-Hamiltonian form. He showed that the action–angle variables can be a powerful tool in solving

the problem of transforming a completely integrable Hamiltonian system into its MMGD bi-Hamiltonian
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form. Smirnov’s result is applicable to the classical Kepler problem due to the possibility of transforming

the action–angle coordinates connected with the spherical–polar coordinates to the Delaunay coordinates.

In 2005, Rañada [41] proved the existence of a bi-Hamiltonian structure arising from a nonsymplectic

symmetry as well as the existence of master symmetries and additional integrals of motion (weak superin-

tegrability) for certain particular values of two parameters b and k. In 2015, Grigoryev et al. [35] showed

that the perturbed Kepler problem is a bi-Hamiltonian system in spite of the fact that the graph of the

Hamilton function is not a hypersurface of translation, which goes against a necessary condition for the

existence of a bi-Hamiltonian structure according to the Fernandes theorem [42]. They explicitly presented

a few nondegenerate bi-Hamiltonian formulations of the perturbed Kepler problem using the Bogoyavlen-

skij construction of a continuum of compatible Poisson structures for isochronous Hamiltonian systems [40].

In this paper, we focus on investigations into dynamical symmetry groups and bi-Hamiltonian structures

for the Kepler dynamics in a noncommutative (NC) phase space.

The paper is organized as follows. In Sec. 2, we introduce the noncommutative phase space and give

some basic notions useful in what follows. In Sec. 3, we give the Hamiltonian function, the symplectic form,

and the vector field describing the Kepler dynamics in the noncommutative phase space. In Sec. 4, we study

the existence of dynamical symmetry groups SO(3), SO(4), and SO(1, 3) in the described setting. In Sec. 5,

we derive relevant geometric quantities in action–angle variables and obtain the corresponding Hamiltonian

system. In Sec. 6, we construct bi-Hamiltonian structures and the associated recursion operators. In Sec. 7,

we define the hierarchy of master symmetries and compute the conserved quantities. In Sec. 8, we end with

some concluding remarks.

2. Noncommutative phase space and basic definitions

Let Q = R
3\{0} be the manifold describing the configuration space of the Kepler problem, and

T ∗Q = Q×R
3 be the cotangent bundle with the local coordinates (q, p) and a natural symplectic structure

ω : T Q −→ T ∗Q given by

ω =

3∑

i=1

dpi ∧ dqi,

where T Q is the tangent bundle. By definition, ω is nondegenerate. It induces the map P : T ∗Q −→ T Q
defined by

P =

3∑

i=1

∂

∂pi
∧ ∂

∂qi
,

called a bivector field, which is the inverse map of ω, i.e., ω ◦ P = P ◦ ω = 1 [25]. In this case, the Hamil-

tonian vector field Xf of a Hamiltonian function f is given by

Xf = P df.

The noncommutativity [43] between phase space variables is here understood by replacing the usual product

with the ∗β-product, also known as the Moyal product, between two arbitrary functions of position and

momentum as follows [44]–[46]:

(f ∗β g)(q, p) = f(qi, pi) exp

(
1

2
βab←−∂a

−→
∂b

)
g(qj , pj)

∣∣∣∣
(qi,pi)=(qj ,pj)

,

where

βab =

(
αij δij + γij

−δij − γij λij

)
.
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The parameters α and λ are antisymmetric (n×n) matrices generating the noncommutativity in coordinates

and momenta, respectively; γ can depend on α and λ. The ∗β-deformed Poisson bracket is defined as

{f, g}β := f ∗β g − g ∗β f,

providing the commutation relations

{qi, qj}β = αij , {qi, pj}β = δij + γij ,

{pi, qj}β = −δij − γij , {pi, pj}β = λij .
(1)

It is worth noting that the transformed coordinates

q′i = qi −
1

2

n∑

j=1

αijpj , p′i = pi +
1

2

n∑

j=1

λijqj (2)

obey the same commutation relations as in (1) with respect to the usual Poisson bracket:

{q′i, q′j} = αij , {q′i, p′j} = δij + γij ,

{p′i, q′j} = −δij − γij , {p′i, p′j} = λij ,

while qi and pj satisfy the canonical commutation relations

{qi, qj} = 0, {qi, pj} = δij , {pi, pj} = 0.

A Hamiltonian system is a triple (Q, ω,H), where (Q, ω) is a symplectic manifold, which in the present

context is the configuration space for the Kepler problem, and H is a smooth function on Q, called the

Hamiltonian or Hamiltonian function [47].

Given a general dynamical system defined on the 2n-dimensional manifold Q [36], its evolution can be

described by the equation

ẋ(t) = X(x), x ∈ Q, X ∈ T Q. (3)

If system (3) admits two different Hamiltonian representations

ẋ(t) = XH1,H2 = P1dH1 = P2dH2,

its integrability as well as many other properties are subject to Magri’s approach. The bi-Hamiltonian vector

field XH1,H2 is defined by two pairs of Poisson bivectors P1, P2 and Hamiltonian functions H1, H2. Such

a manifold Q equipped with two Poisson bivectors is called a double Poisson manifold, and the quadruple

(Q, P1, P2, XH1,H2) is called a bi-Hamiltonian system. P1 and P2 are two compatible Poisson bivectors with

the vanishing Schouten–Nijenhuis bracket [48]:

[P1, P2]NS = 0.

3. NC Kepler Hamiltonian system

We consider the NC Kepler Hamiltonian function in the transformed phase space coordinates (2),

H ′ =
3∑

i=1

p′ip
′i

2m
− k

r′
.
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The dynamical variables satisfy the NC Poisson bracket relations [49]

{f, g}nc =
3∑

ν=1

θ−1
ν

(
∂f

∂pν

∂g

∂qν
− ∂f

∂qν
∂g

∂pν

)

with respect to the NC symplectic form

ωnc :=

3∑

i=1

dp′i ∧ dq′i =
3∑

ν=1

θνdpν ∧ dqν ,

with

θν =

4∑

μ=1

(
δμν +

1

4
λμναμν

)
	= 0, δμν =

⎧
⎨

⎩
0, μ 	= ν,

1, μ = ν.

For n = 3, the Hamiltonian function H ′ takes the form

H ′ =
1

2m

3∑

i=1

(
pi +

1

2

3∑

j=1

λijq
j

)2
− k

[ 3∑

i=1

(
qi − 1

2

3∑

j=1

αijpj

)2 ]−1/2

, (4)

yielding the Hamilton equations:

q̇μ := {H ′, qμ}nc = θ−1
μ

(
σμpμ +

3∑

s=1

Rμsq
s +

k

4Y 3

3∑

l,ν=1

αlμαlνpν

)
, (5)

ṗμ := {H ′, pμ}nc = −θ−1
μ

(
σ̃μq

μ −
3∑

s=1

Rμsps +
1

4m

3∑

l,ν=1

λlμλlνq
ν

)
, (6)

where

Y =

[(
q1 − 1

2
(α12p2 + α13p3)

)2
+

(
q2 − 1

2
(α21p1 + α23p3)

)2
+

(
q3 − 1

2
(α31p1 + α32p2)

)2 ]1/2
,

σμ =
1

m
+

1

4Y 3

3∑

i=1

(αiμ)
2, σ̃μ =

1

Y 3
+

1

4m

3∑

i=1

(λiμ)
2, Rμs =

λμs

2m
− αsμk

2Y 3
.

In terms of the new coordinates p′i and q′i, Hamilton equations (5) and (6) become

q̇i =

3∑

j=1

θ−1
i

(
1

m
p′i +

k

2Y 3
αijq

′j
)
, ṗi =

3∑

j=1

θ−1
i

(
1

2m
λjip

′
j +

k

Y 3
q′i
)
,

where μ, i = 1, 2, 3, ν 	= μ; q′i = q′i(q, p) and p′i = p′i(q, p) are given by relations (2).

The Hamiltonian function H ′ in (4) can be viewed as a generalization of the Hamiltonian function

obtained in our previous work [50]. The quantity Y deforming the distance between the Sun and the

considered planet is responsible for the distortion of the conic path about the Sun.

The 1-form dH ′ ∈ T ∗Q is given by

dH ′ =
3∑

μ=1

[(
σμpμ +

3∑

s=1

Rμsq
s +

k

4Y 3

3∑

l,ν=1

αlμαlνpν

)
dpμ +

+

(
σ̃μq

μ −
3∑

s=1

Rμsps +
1

4m

3∑

l,ν=1

λlμλlνq
ν

)
dqμ
]
, (7)

where ν 	= μ.
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Using the NC Poisson bracket in (3), we obtain the NC Hamiltonian vector field

XH′ =
3∑

μ=1

θ−1
μ

[(
σμpμ +

3∑

s=1

Rμsq
s +

k

4Y 3

3∑

l,ν=1

αlμαlνpν

)
∂

∂qμ
−

−
(
σ̃μq

μ −
3∑

s=1

Rμsps +
1

4m

3∑

l,ν=1

λlμλlνq
ν

)
∂

∂pμ

]
, ν 	= μ,

satisfying the required condition for a Hamiltonian system, i.e.,

ιX
H′ ω

′ = −dH ′,

where ι
X

H′ ω
′ is the interior product of ω′ with the Hamiltonian vector field XH′ . Hence, the triplet

(T ∗Q, ω′, H ′) is a Hamiltonian system.

The NC coordinates q′i and p′i generate the noncommutative relations

{p′i, q′j}nc = Fij , {p′i, p′j}nc = Dij , {q′i, q′j}nc = Eij ,

where

Fii = θ−1
i +

1

4

3∑

j=1

λijαijθ
−1
j , Fij =

1

4
λirαjrθ

−1
r , Dij =

λji

2
(θ−1

i + θ−1
j ),

Eij =
αji

2
(θ−1

i + θ−1
j ), i, j, r = 1, 2, 3.

4. Dynamical symmetry groups

We start by defining the NC phase space angular momentum vector L′ and the Laplace–Runge–Lenz

(LRL) vector A′ as

L′ = q′ × p′, A′ = p′ × L′ −mk
q′

Y
,

where p′ is the momentum vector and q′ is the position vector of the particle of mass m. Their components

⎧
⎪⎪⎨

⎪⎪⎩

L′
1 = q′2p′3 − q′3p′2,

L′
2 = q′3p′1 − q′1p′3,

L′
3 = q′1p′2 − q′2p′1,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A′
1 = p′2L

′
3 − p′3L

′
2 −mk

q′1

Y
,

A′
2 = p′3L

′
1 − p′1L

′
3 −mk

q′2

Y
,

A′
3 = p′1L′

2 − p′2L′
1 −mk

q′3

Y

do not commute with the Hamiltonian function H ′:

{H ′, L′
i}nc =

3∑

μ,ν,j=1

εμiν

[(
1

m
Dνjp

′
j +

k

Y 3
Fνjq

′j
)
q′μ +

(
1

m
Fjνp

′
j +

k

Y 3
Ejνq

′j
)
p′μ

]
, (8)

{H ′, A′
i}nc =

3∑

η,�=1

εiη�

{ 3∑

μ,ν,j=1

εμ�ν

[(
1

m
Dνjp

′
j +

k

Y 3
Fνjq

′j
)
q′μ +

+

(
1

m
Fjνp

′
j +

k

Y 3
Ejνq

′j
)
p′μ

]
p′η +

3∑

j=1

(
1

m
Dηjp

′
j +

k

Y 3
Fηjq

′j
)
L′
η

}
−

− mk

Y

3∑

j=1

(
1

m
Fjip

′
j +

k

Y 3
Ejiq

′j
)
+

mk

Y 3

3∑

j,h=1

(
1

m
Fjhp

′
j +

k

Y 3
Ejhq

′j
)
q′hq′i, (9)
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where i = 1, 2, 3, εμ�ν , εiη�, and εμiν are Levi-Civita symbols given by

εijk :=
1

2
(i− j)(j − k)(k − i).

Proposition 1. Under the conditions

1) λijαij = −[(λiκαiκ + λjκαjκ)/2 + 4], i, j, κ = 1, 2, 3,

2)
q′i

q′j
=

λκiθj
λκjθi

= −ακjθi
ακiθj

and
p′i
p′j

=
ακiθj
ακjθi

= −λκjθi
λκiθj

,

3) F is a symmetric 3× 3 matrix with F11 = F22 = F33,

the vectors L′
i and A′

i are in involution with the Hamiltonian function H ′:

{H ′, L′
i}nc = 0, {H ′, A′

i}nc = 0, (10)

and hence become constants of motion or first integrals of H ′ on T ∗Q.

Proof. Condition 1 leads to λijθi = λjiθj and αijθi = αjiθj . Therefore, Dij = Eij = 0, and Eqs. (8)

and (9) reduce to

{H ′, L′
i}nc =

3∑

μ,ν,j=1

εμiν

(
k

Y 3
Fνjq

′jq′μ +
1

m
Fjνp

′
jp

′
μ

)
, i = 1, 2, 3,

{H ′, A′
i}nc =

3∑

η,�=1

εiη�

{ 3∑

μ,ν,j=1

εμ�ν

(
k

Y 3
Fνjq

′jq′μ+
1

m
Fjνp

′
jp

′
μ

)
p′η +

3∑

j=1

k

Y 3
Fηjq

′jL′
η

}
−

− mk

Y

3∑

j=1

1

m
Fjip

′
j +

mk

Y 3

3∑

j,h=1

1

m
Fjhp

′
jq

′hq′i, i = 1, 2, 3.

After computing, replacing the Fij by their expressions, and using conditions 2 and 3, we obtain {H ′, L′
i}nc =

{H ′, A′
i}nc = 0 Then L′ and A′ are constants of motion or first integrals of H ′ on T ∗Q. �

Equation (10) means that the functions L′
i and A′

i, i = 1, 2, 3, are also constant along the orbits of H ′.
Then, in T ∗Q, the orbits of H ′ lie in the inverse image of a value of these functions [17], [19].

Proposition 1 naturally leads to the following one.

Proposition 2. Let L′ be an integral of motion on T ∗Q. Then, under the NC Poisson bracket defined

in (3), its components L′
i’s generate the Lie algebra so(3) of the group SO(3), . . . , {L′

i, L
′
j}nc = εijhF

′
hhL

′
h,

where εijhF
′
hh are the structure constants of the Lie algebra.

Proof. Under conditions 1–3 of Proposition 1, the Poisson bracket

{L′
i, L

′
j}nc = εijκ

{ 3∑

η,�,υ=1

[
1

2
εη�υ

(
Dη�q

′υq′κ + Eη�p
′
υp

′
κ

)
+

+ εη�κ
(
Fηκp

′
�q

′κ − Fκηq
′�p′κ − Fη�q

′κp′κ
)]
− FκκL

′
κ

}
,

where i, j, h = 1, 2, 3, yields {L′
i, L

′
j}nc = εijhF

′
hhL

′
h, where εijhF

′
hh are the structure constants of the Lie

algebra. �
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Moreover, the following relations hold:

{A′
i, A

′
j}nc = −2mεijhF

′
hhH

′L′
h, (11)

{L′
i, A

′
i}nc = F ′

jh(L
′
hp

′
j + L′

jp
′
h), (12)

{L′
i, A

′
j}nc = εijh

(
F ′
hhA

′
h − F ′

hj

mk

Y
q′j
)
+ F ′

hjL
′
iph, (13)

where F ′
ij = −Fij and i, j, h = 1, 2, 3.

We now consider some noncommutative constant-energy hypersurfaces Πc defined as

Πc := {(q, p) ∈ T ∗Q | H(q, p) = c},

where c is a constant. Then, following [19] and [51], because the 1-form dH ′ obtained in (7) has no zeroes

on T ∗Q, the noncommutative constant-energy hypersurfaces Πc are closed submanifolds of T ∗Q. Moreover,

we define open submanifolds Πτ :=
⋃

c≷0Πc, τ = −,+, of T ∗Q such that

T ∗Q = Π− ∪ Π0 ∪ Π+,

Π− = {(q, p) ∈ T ∗Q|H(q, p) < 0}, Π+ = {(q, p) ∈ T ∗Q|H(q, p) > 0},

with Π0 being the common boundary of Π− and Π+.

On Πτ , we introduce

L′τ
i := L′

i|Πτ , τ = +,−, i = 1, 2, 3,

and define a scaled Runge–Lenz–Pauli vector Γ̂′ by

Γ̂′ =

⎧
⎪⎪⎨

⎪⎪⎩

Γ̂′− =
1

(−2mH ′)1/2
A′, τ = −,

Γ̂′+ =
1

(2mH ′)1/2
A′, τ = +,

where H ′ is the Hamiltonian function given in (4). We then obtain {H ′, Γ̂′+
i }nc = {H ′, Γ̂′−

i }nc = 0,

proving that Γ̂′+
i and Γ̂′−

i are also constants of motion respectively on Π+ and Π−. We can then rewrite

relations (11), (12), and (13) as

{Γ̂′τ
i , Γ̂′τ

j }nc = −τεijhF ′
hhL

′τ
h ,

{L′τ
i , Γ̂′τ

i }nc = (2mτH ′)−1/2F ′
jh(L

′τ
h p′j + L′τ

j p′h),

{L′τ
i , Γ̂′τ

j }nc = εijh

(
F ′
hhΓ̂

′τ
h − (2mτH ′)−1/2F ′

hj

mk

Y
q′j
)
+ (2mτH ′)−1/2F ′

hjL
′τ
i ph,

where F ′
ij = −Fij , i, j, h = 1, 2, 3, and τ = −,+.

For all i, j, h = 1, 2, 3, setting L′τ
h p′j = −L′τ

j p
′
h and (m/Y )q′j = εijhL

′τ
i p′h, we arrive at a Lie algebra

isomorphic to the Lie algebra so(4) for τ = −:

{L′−
i , L′−

j }nc = εijhF
′
hhL

′−
h ,

{Γ̂′−
i , Γ̂′−

j }nc = εijhF
′
hhL

′−
h ,

{L′−
i , Γ̂′−

j }nc = εijhF
′
hhΓ̂

′−
h
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with the associated generators given by

Φhj =

3∑

i=1

εhjiF
′
iiL

′−
i , h, j, i = 1, 2, 3,

Φh4 = −Φh4 = F ′
hhΓ̂

′−
h , Φ44 = 0, h = 1, 2, 3,

and, for τ = +, at a Lie algebra isomorphic to the Lie algebra so(1, 3):

{L′+
i , L′+

j }nc = εijhF
′
hhL

′+
h ,

{Γ̂′+
i , Γ̂′+

j }nc = −εijhF ′
hhL

′+
h ,

{L′+
i , Γ̂′+

j }nc = εijhF
′
hhΓ̂

′+
h

with the corresponding generators given by

Ψhj =

3∑

i=1

εhjiF
′
iiL

′+
i , h, j, i = 1, 2, 3,

Ψh4 = Ψh4 = −F ′
hhΓ̂

′+
h , Ψ44 = 0, h = 1, 2, 3.

5. The case of action–angle coordinates

The idea of considering a Liouville-integrable Hamiltonian system in the action–angle coordinates leads

to many interesting results elucidating the general properties of Hamiltonian systems [36], [52].

Assuming the conditions
∑3

i,j,k=1 λijλikq
jqk = 0 and αij = 0, Hamiltonian function (4) takes the form

H ′ =
1

2m

3∑

i=1

[
p2i −

1

2

3∑

j,k=1

εijkLk +
1

4

3∑

j=1

(λijq
j)2
]
− k

r
, (14)

where Lk = qjpi−qipj (i, j, k = 1, 2, 3) denote the components of the angular momentum L on the cotangent

bundle T ∗Q = Q× R
3. The term

� = − 1

4m

3∑

i,j,k=1

εijkLk +
1

8m

3∑

i,j=1

(λijq
j)2

contains the deformation parameters perturbing the initial Kepler Hamiltonian function

H =
1

2m

3∑

i=1

p2i −
k

r
.

Without loss of generality, we can consider the matrix λ of the form

λ =

⎛

⎜⎝
0 −ϑ̇ϕ̇ sin(2ϕ)

√
2ϑ̇ϕ̇ cosϕ

ϑ̇ϕ̇ sin(2ϕ) 0
√
2ϑ̇ϕ̇ sinϕ

−
√
2ϑ̇ϕ̇ cosϕ −

√
2ϑ̇ϕ̇ sinϕ 0

⎞

⎟⎠ ,

where we have ϕ ∈ (0, 2π), ϑ ∈ (0, π), and ϑ̇ sin(2ϕ) � m and ϕ̇, ϑ̇ are constants. This yields the

Hamiltonian function in spherical–polar coordinates in the form

H ′ =
1

2m

[
p2r +M2 p

2
ϑ

r2
+

(
1 +

ϑ̇

m
sin(2ϕ)

)
p2ϕ

r2 sin2 ϑ

]
− k

r
,
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where

M =

(
1 +

√
2

m
ϕ̇+

1

2m
ϕ̇2

)1/2

is a constant of motion,

pr = mṙ, pϑ = mr2ϑ̇, pϕ = mr2ϕ̇ sin2 ϑ.

The associated Hamiltonian vector field XH′ ∈ T ∗Q corresponding to the symplectic form

ω′ = dpr ∧ dr + dpϑ ∧ dϑ+ dpϕ ∧ dϕ

is given by

XH′ =
1

m

{
pr

∂

∂r
− 1

r2

(
mk −

M2p2ϑ sin
2 ϑ+

(
1 + (ϑ̇/m) sin(2ϕ)

)
p2ϕ

r sin2 ϑ

)
∂

∂pr
+

+M2 pϑ
r2

∂

∂ϑ
+

(
1 +

ϑ̇

m
sin(2ϕ)

)
p2ϕ cosϑ

r2 sin3 ϑ

∂

∂pϑ
+

+

(
1 +

ϑ̇

m
sin(2ϕ)

)
pϕ

r2 sin2 ϑ

∂

∂ϕ
− ϑ̇ cos 2ϕ

mr2 sin2 ϑ

∂

∂pϕ

}
.

We introduce two additional integrals of motion

Dϕ =

(
1 +

ϑ̇

m
sin(2ϕ)

)1/2
pϕ, L̃2 = M2p2ϑ +

D2
ϕ

sin2 ϑ
, (15)

where L̃ is the modified angular momentum vector in spherical–polar coordinates,

Dϕ = L̃ cos ξ,

and ξ denotes the angle between the orbit plane and the equatorial plane (x, y) [25]. Because the Hamilto-

nian function H ′ does not explicitly depend on time, setting V = W −Et we can find an additive separable

solution

W = Wr(r) +Wϑ(ϑ) +Wϕ(ϕ),

which reduces the Hamilton-Jacobi equation [53]

∂V

∂t
+H ′

(
∂V

∂q

/
q/t

)
= 0

to a simpler form

E =
1

2m

(
∂W

∂r

)2
+

M2

r2

(
∂W

∂ϑ

)2
+

1

2mr2 sin2 ϑ

(
1 +

ϑ̇

m
sin(2ϕ)

)(
∂W

∂ϕ

)2
− k

r
,

leading to the set of equations

(
dWϕ(ϕ)

dϕ

)2
= p2ϕ,

(
dWϑ(ϑ)

dϑ

)2
=

1

M2

(
L̃2 −

D2
ϕ

sin2 ϑ

)
,

− r2
(
dWr(r)

dr

)2
+ 2mr2E + 2mrk = L̃2.
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In the compact case characterized by E < 0, the action–angle variables [36], [40], [53], [54] can be

expressed as

Jϕ =
1

2π

∮
dWϕ(ϕ)

dϕ
dϕ =

1

2π

∮
pϕ dϕ = pϕ,

Jϑ =
1

2π

∮
dWϑ(ϑ)

dϑ
dϑ =

1

2πM

∮ (
L̃2 −

D2
ϕ

sin2 ϑ

)1/2

dϑ,

Jr =
1

2π

∮
dWr(r)

dr
dr =

1

2π

∮ (
2mE +

2mk

r
− L̃2

r2

)1/2

dr,

ϕi =
∂W

∂Ji
, ϕi(0) = 0, i = 1, 2, 3.

According to Eq. (15), Jϕ can be rewritten in terms of Dϕ and sin(2ϕ):

Jϕ = Dϕ

(
1 +

ϑ̇

m
sin(2ϕ)

)−1/2

.

Because ϑ̇ sin(2ϕ)� m, it follows that

ϑ̇ sin(2ϕ)

m
→ 0,

ϑ̇ sin(2ϕ)

2m
� 1.

Using the first-order Maclaurin expansion [55],
(
1 +

ϑ̇

m
sin(2ϕ)

)−1/2

� 1− ϑ̇

2m
sin(2ϕ) � 1

and the standard integration method [56], we obtain

Jϕ = J3 = Dϕ, Jϑ = J2 =
1

M
(L̃−Dϕ), Jr = J1 = −L̃+

mk√
−2mE

,

ϕ1 = − 1

(J1 +MJ2 + J3)2

√
G̃+ arcsin

[
mkr − (J1 +MJ2 + J3)

2

Q̃

]
,

ϕ2 = Mϕ1 −M arcsin

[
(1− (MJ2 + J3)/mkr)(J1 +MJ2 + J3)

3/2

Q̃

]
+M arcsin[Ũ cosϑ],

ϕ3 =
1

M
ϕ2 + arcsin

[
J3 cotϑ√

(MJ2 + J3)2 − J2
3

]
+ ϕ,

(16)

where

Q̃ = (J1 +MJ2 + J3)
√
(J1 +MJ2 + J3)2 − (MJ2 + J3)2 ,

Ũ =
MJ2 + J3√

(MJ2 + J3)2 − J2
3

,

G̃ = −m2k2r2 + 2mk(J1 +MJ2 + J3)
2r − (MJ2 + J3)

2(J1 +MJ2 + J3)
2.

Then we obtain the Hamiltonian H ′, the Poisson bivector P ′, the symplectic form ω′, and the Hamiltonian

vector field XH′ ,

H ′ = E = − mk2

2(J1 +MJ2 + J3)2
, P ′ =

3∑

h=1

∂

∂Jh
∧ ∂

∂ϕh
,

ω′ =
3∑

h=1

dJh ∧ dϕh, XH′ := {H ′, · } = mk2

(J1 +MJ2 + J3)3

(
∂

∂ϕ1
+M

∂

∂ϕ2
+

∂

∂ϕ3

)
,

satisfying the required relation ι
X

H′ ω
′ = −dH ′. Therefore, in the action–angle coordinates (J, ϕ), the triplet

(T ∗Q, ω′, H ′) is also a Hamiltonian system.
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6. Construction of bi-Hamiltonian structures

The generalized action–angle variables of Kepler’s problem are usually denoted by L,G,H , l = M,

g = ω, h = Ω, called the Delaunay variables [57]. G and H have the meaning of the respective total and

azimuthal angular momentum, and L has the meaning of the total orbital action. The angles ω and Ω

are the argument of periapsis and the longitude of ascending node. The angle M is just the mean anomaly

containing the only real dynamics in the Kepler problem.

We consider the Delaunay-type variables

⎧
⎪⎪⎨

⎪⎪⎩

I1 = J3,

I2 = MJ2 + J3,

I3 = J1 +MJ2 + J3,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ1 = ϕ3 − 1

M
ϕ2,

φ2 = ϕ2 −Mϕ1,

φ3 = ϕ1,

which coincide with the classical Delaunay variables for λij = 0 [58]:

⎧
⎪⎪⎨

⎪⎪⎩

I1 ≡ H =
√
mka(1− e2) cos ξ,

I2 ≡ G =
√
mka(1− e2) ,

I3 ≡ L =
√
mka,

⎧
⎪⎪⎨

⎪⎪⎩

φ1 ≡ h = Ω,

φ2 ≡ g = ω,

φ3 ≡ l = M = n(t− t0),

where ξ is the inclination, n is the mean motion, a is the semimajor axis of the orbit, e is the eccentricity,

and t0 is the time at which the satellite passes through the perigee.

Then the Hamiltonian function H ′, the symplectic form ω′, the Poisson bivector P ′, and the Hamilto-

nian vector field X ′
H reduce to the expressions

H ′ = −mk2

2I23
, P ′ =

3∑

j=1

Ñj
∂

∂Ij
∧ ∂

∂φj
,

ω′ =
3∑

j=1

1

Ñj

dIj ∧ dφj , X ′
H =

mk2

I33

∂

∂φ3
,

where Ñ1 = 1, Ñ2 = M, Ñ3 = 1.

We recall that a vector fieldX is called nondegenerate or anisochronous if the Kolmogorov condition [40]

for the Hessian matrix

det

∣∣∣∣
∂2H(J1, . . . , Jn)

∂Ji ∂Jk

∣∣∣∣ 	= 0 (17)

is satisfied almost everywhere in the given action–angle coordinates. This condition implies that the dense

subsets of the invariant n-dimensional tori of X are closures of trajectories. If (17) is not satisfied, X is

called a degenerate or isochronous vector field.

In our framework, X ′
H is a degenerate Hamiltonian vector field because

det

∣∣∣∣
∂2H ′(J1, . . . , Jn)

∂Ji ∂Jk

∣∣∣∣ = 0.

Our system is isochronous with a well-defined derivative for H ′ = E < 0,

ã =
∂H ′

∂J1
=

1

k
√
m
(−2E)3/2.
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and therefore, according to the Bogoyavlenskij theorem [40], we can obtain a bi-Hamiltonian formulation

of this system in the domain of definition of action–angle variables (16). In particular, we here use the

Hamiltonian function H ′ in the defined Delaunay-type variables (I, φ) to construct bi-Hamiltonian struc-

tures. Following the example of the generic Bogoyavlenskij construction for the isochronous Hamiltonian

system proposed in [35], we can make the canonical transformations

Ĩ1 = I1, Ĩ2 = I2, Ĩ3 = H ′ = −mk2

2I23
,

φ̃1 = φ1, φ̃2 = φ2, φ̃3 =
k
√
m

(−2H)3/2
φ3,

permitting us to construct a set of Poisson bivectors for all h ∈ N:

P̃h = β̃1(Ĩ1)
∂

∂Ĩ1
∧ ∂

∂φ̃1
+ β̃2(Ĩ2)

∂

∂Ĩ2
∧ ∂

∂φ̃2
+

(
dFh

dĨ3

)−1
∂

∂Ĩ3
∧ ∂

∂φ̃3
.

Putting

β̃1(Ĩ1) = Ĩh1 = Ih1 , β̃2(Ĩ2) = Mh+1Ĩh2 = Mh+1Ih2 ,

Fh = − mk2

(2 + h)I2+h
3

, h ∈ N,

simplifies the expression of the Poisson bivectors P̃h as

P̃h =

3∑

j=1

Ñh+1
j Ihj

∂

∂Ij
∧ ∂

∂φj
, Ñ1 = 1, Ñ2 = M, Ñ3 = 1.

Each of P̃h is compatible with P ′, i.e., [P̃h, P
′]NS = 0. In this case, the eigenvalues of the corresponding

recursion operator T := P̃ ◦P ′−1 are integrals of motion only [34], [39], [40]. Then, for all h ∈ N, a hierarchy

of Poisson bivectors P̃h and their corresponding 2-forms ω̃h is given by

P̃h =

6∑

i,j=1

(P̃h)
ij ∂

∂xi
∧ ∂

∂xj
, ω̃h =

6∑

i,j=1

(ω̃h)ijdx
i ∧ dxj ,

where n = 3, xk = Ik, x
k+3 = φk, k ≤ 3,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(P̃h)
14 = Ih1 ,

(P̃h)
25 = Mh+1Ih2 ,

(P̃h)
36 = Ih3 ,

(P̃h)
ij = 0 otherwise,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(ω̃h)41 = I−h
1 ,

(ω̃h)52 = M−(h+1)I−h
2 ,

(ω̃h)63 = I−h
3 ,

(ω̃h)ij = 0 otherwise,

(P̃h)
ij = −(P̃h)

ji, (ω̃h)ij = −(ω̃h)ji.
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In the previous action–angle coordinate system (J, ϕ), they become

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(P̃h)
14 =

(
k

√
−m
2H ′

)h
,

(P̃h)
24 =

1

M

(
(P̃h)

14 − (P̃h)
25
)
,

(P̃h)
25 = MhL̃h,

(P̃h)
34 = M(P̃h)

24,

(P̃h)
35 = M

(
(P̃h)

25 − (P̃h)
36
)
,

(P̃h)
36 = Jh

3 ,

(P̃h)
ij = 0 otherwise,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ω̃h)41 =

(
1

k

√
−2H ′

m

)h
,

(ω̃h)42 = M
(
(ω̃h)41 − (ω̃h)52

)
,

(ω̃h)52 =
1

MhL̃h
,

(ω̃h)43 =
1

M
(ω̃h)42,

(ω̃h)53 =
1

M

(
(ω̃h)52 − (ω̃h)63

)
,

(ω̃h)63 = J−h
3 ,

(ω̃h)ij = 0 otherwise,

(P̃h)
ij = −(P̃h)

ji, (ω̃h)ij = −(ω̃h)ji, H
′ = H ′(J, ϕ), L̃h = L̃h(J, ϕ).

The Poisson bracket { · , · }ω̃h
with respect to each symplectic form ω̃h is now defined as

{f, g}ω̃h
=

3∑

i,j=1

(Λh)
i
j

(
∂f

∂Ii

∂g

∂φj
− ∂f

∂φj

∂g

∂Ii

)
, (Λh) =

⎛

⎜⎝
(I1)

h 0 0

0 Mh+1Ih2 0

0 0 (I3)
h

⎞

⎟⎠ .

Proposition 3. For each h ∈ N, the vector field XH is a bi-Hamiltonian vector field with respect

to (ω′, ω̃h), i.e.,

ι
X

H′ ω
′ = −dH ′, ι

X
H′ ω̃h = −dFh, XH′ = {H ′, · } = {Fh, · }ω̃h

,

where Fh (F0 ≡ H ′) are integrals of motion for XH′ .

Proof. Because

ιX(df ∧ dg) = (Xf) dg − (df)Xg,

we obtain

ι
X

H′ ω
′ = −dH ′, ι

X
H′ ω̃h = −dFh, XH′ = {H ′, · } = {Fh, · }ω̃h

. �

Besides, we obtain the recursion operators

Th =

3∑

i,j=1

(Th)
j
i

(
∂

∂Ij
⊗ dIi +

∂

∂φj
⊗ dφi

)
, h ∈ N,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(Th)
1
1 = Ih1 ,

(Th)
2
2 = MhIh2 ,

(Th)
3
3 = Ih3 ,

(Th)
i
j = 0 otherwise,

which in the action–angle coordinate system become (J, ϕ):

Th =

3∑

i,j=1

(
(Rh)

j
i

∂

∂Jj
⊗ dJi + (Sh)

j
i

∂

∂ϕj
⊗ dϕi

)
,
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with
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Rh)
1
1 = (Rh)

3
3 = (Rh)

3
1 = (P̃h)

14,

(Rh)
2
1 = M(P̃h)

14,

(Rh)
1
2 =

1

M
(P̃h)

14,

(Rh)
2
2 = (P̃h)

14 + (P̃h)
25,

(Rh)
3
2 =

1

M
(Rh)

2
2,

(Rh)
2
3 = M(Rh)

2
2,

(Rh)
3
3 = (Rh)

2
2 + (P̃h)

36,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Sh)
1
1 = (Rh)

2
2,

(Sh)
2
1 = − 1

M
(P̃h)

25,

(Sh)
1
2 = −M(P̃h)

25,

(Sh)
2
2 = (P̃h)

36 + (P̃h)
25,

(Sh)
3
2 = −M(P̃h)

36,

(Sh)
2
3 = − 1

M
(P̃h)

36,

(Sh)
3
3 = (P̃h)

36,

(Sh)
3
1 = (Sh)

1
3 = 0.

7. Master symmetries

In differential geometric terms, a vector field Γ on T ∗Q that satisfies

[XH′ ,Γ] 	= 0, [XH′ , X ] = 0, [XH′ ,Γ] = X

is called a master symmetry or a generator of symmetries of degree m = 1 for XH′ [38], [41], [59]–[61].

In the following, we consider the Hamiltonian system (T ∗Q, ω′, H ′) and the integrals of motion Fh,

h ∈ N. Thereby, we obtain the vector fields

Xh := {Fh, · } =
mk2

I
(h+3)
3

∂

∂φ3
,

which commute with the Hamiltonian vector field X0 = XH′ . The X ′
hs are called dynamical symmetries of

the Hamiltonian system (T ∗Q, ω′, H ′), i.e., [XH′ , Xh] = 0.

For the Hamiltonian system (T ∗Q, ω′, H ′), we introduce the vector fields Γiμ ∈ T ∗Q,

Γiμ =
1

(3 + i)

3∑

j=1

Ñμ
j

I
(μ−1)
j

(
∂

∂Ij
+

∂

∂φj

)
, Ñ1 = 1, Ñ2 = M, Ñ3 = 1, i, μ ∈ N,

satisfying the relation

ι
Γiµ

ω′ = −dF̃iμ,

with

F̃iμ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3∑

j=1

Ñj

3 + i

(
ln(Ij)−

φj

Ij

)
, μ = 2,

3∑

j=1

Ñμ−1
j

3 + i

(
I2−μ
j

2− μ
− φj

Iμ−1
j

)
, μ 	= 2.

Computing the Lie bracket between Xi and Γiμ, we obtain (see Fig. 1 for their diagram representation)

[Xi,Γiμ] = Xi+μ, [Xi, Xi+μ] = 0, Xi+μ =
mk2

I
(μ+i+3)
3

∂

∂I3
. (18)

Hence, Γiμ are master symmetries or generators of symmetries of degree m = 1 for Xi. The quantities F̃iμ

are called master integrals. Furthermore, we have

LΓi0(P
′) = − 1

3 + i
P ′

(
α̃ = − 1

3 + i

)
; LΓi0 (P̃1) = 0 (β̃ = 0);

LΓi0(H
′) = − 2

3 + i
H ′

(
γ̃ = − 2

3 + i

)
.
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Fig. 1. Diagrammatical illustration of Eq. (18).

showing that the vector fields

Γi0 =
1

(3 + i)

3∑

j=1

Ij

(
∂

∂Ij
+

∂

∂φj

)

are conformal symmetries for both P ′, P̃1 andH ′ [38]. Now, defining the families of quantitiesX ′
h,Γ

′
ih, P

′
h, ω

′
h

and dH ′
h by

X ′
h := T hX0, P ′

h := T hP ′, ω′
h := (T ∗)hω′,

Γ′
ih := T hΓi0, dH ′

h := (T ∗)h dH ′,

where i, h ∈ N and T ∗ := P ′−1 ◦ P̃1 denotes the adjoint of T := P̃1 ◦ P ′−1, we obtain

P ′
h =

3∑

j=1

Ñh+1
j Ihj

∂

∂Ij
∧ ∂

∂φj
,

Γ′
ih =

3∑

j=1

Ñh
j I

h+1
j

3 + i

(
∂

∂Ij
+

∂

∂φj

)
, X ′

h =
mk2

I3−h
3

∂

∂φ3
,

ω′
h =

3∑

j=1

Ñh−1
j Ihj dIj ∧ dφj , dH ′

h =
mk2

I3−h
3

dI3, H ′
h =

⎧
⎪⎨

⎪⎩

mk2 ln(I3), h = 2,

mk2

(2− h)I2−h
3

, h 	= 2,

and, for each i ∈ N, we derive the plethora of conserved quantities

LΓ′
ih
(Γ′

il) =
l − h

3 + i
Γ′
i(l+h), LΓ′

ih
(X ′

l) = −
3− l

3 + i
X ′

l+h, LΓ′
ih
(P ′

l ) =
l− h− 1

3 + i
P ′
l+h,

LΓ′
ih
(ω′

l) =
l + h+ 1

3 + i
ω′
l+h, LΓ′

ih
(T ) =

1

3 + i
T 1+h, l ∈ N,

〈dH ′
l ,Γ

′
ih〉 =

⎧
⎪⎪⎨

⎪⎪⎩

mk2

3 + i
, h+ l = 2,

−2− (h+ l)

3 + i
H ′

l+h, h+ l 	= 2,
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satisfying

LΓ′
ih
(Γ′

il) = (β̃ − α̃)(l − h)Γ′
i(l+h), LΓ′

ih
(X ′

l) = (β̃ + γ̃ + (l − 1)(γ̃ − α̃))X ′
l+h,

LΓ′
ih
(P ′

l ) = (β̃ + (l − h− 1)(β̃ − α̃))P ′
l+h, LΓ′

ih
(ω′

l) = (β̃ + (l + h+ 1)(β̃ − α̃))ω′
l+h,

LΓ′
ih
(T ) = (β̃ − α̃)T 1+h, 〈dH ′

l ,Γ
′
ih〉 =

⎧
⎨

⎩

mk2

3 + i
, h+ l = 2,

(γ̃ + (l + h)(β̃ − α̃))H ′
l+h, h+ l 	= 2,

similarly to the Oevel formulas (see [36]–[39]).

8. Concluding remarks

In this paper, we have defined a noncommutative phase space, derived a Hamiltonian system, and

proved the existence of dynamical symmetry groups SO(3), SO(4), and SO(1, 3) for the Kepler problem.

Further, we have investigated the same Kepler problem in action–angle coordinates and obtained its cor-

responding Hamiltonian system. Then, we have constructed a hierarchy of bi-Hamiltonian structures in

the considered action–angle coordinates following the example of the generic Bogoyavlenskij construction

for the isochronous Hamiltonian system proposed by Grigoryev et al., and computed conserved quantities

using related master symmetries.
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13. L. Hulthén, “Über die quantenmechanische Herleitung der Balmerterme,” Z. Phys., 86, 21–23 (1933).

14. D. M. Fradkin, “Existence of the dynamic symmetries O4 and SU3 for all classical central potential problems,”

Prog. Theor. Phys., 37, 798–812 (1967).

15. H. Bacry, H. Ruegg, and J. M. Souriau, “Dynamical groups and spherical potentials in classical mechanics,”

Commun. Math. Phys., 3, 323–333 (1966).

16. G. Györgyi, “Kepler’s equation, Fock variables, Bacry’s generators and Dirac brackets,” Nuovo Cimento A, 53,

717–736 (1968).

17. A. Guichardet, “Histoire d’un vecteur tricentenaire,” Gaz. Math., 117, 23–33 (2008).

767



18. J. Moser, “Regularization of Kepler’s problem and the averaging method on a manifold,” Commun. Pure Appl.

Math., 23, 609–636 (1970).

19. T. Ligon and M. Schaaf, “On the global symmetry of the classical Kepler problem,” Rep. Math. Phys., 9,

281–300 (1976).

20. D. E. Chang and J. E. Marsden, “Geometric derivation of Delaunay variables and geometric phases,” Celest.

Mech. Dyn. Astron., 86, 185–208 (2003).

21. A. Chenciner and R. Montgomery, “A remarkable periodic solution of the three-body problem in the case of

equal masses,” Ann. Math., 152, 881–901 (2000).

22. R. H. Cushman and J. J. Duistermaat, “A characterization of the Ligon–Schaaf regularization map,” Commun.

Pure Appl., 50, 773–787 (1997).

23. J. Milnor, “On the geometry of the Kepler problem,” Amer. Math. Monthly, 90, 353–365 (1983).

24. C.-M. Marle, “A property of conformally Hamiltonian vector fields; application to the Kepler problem,” J.

Geom. Mech., 4, 181–206 (2012).

25. G. Vilasi, Hamiltonian Dynamics, World Sci., Singapore (2001).

26. R. Liouville, “Sur le mouvement d’un corps solide pesant suspendu par l’un de ses points,” Acta Math., 20,

239–284 (1897).
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137–138 (1855).

55. C. Canute and A. Tabacco, Mathematical Analysis I, Springer, Milan (2008).

56. M. Born, The Mechanics of the Atom, G. Bell and Sons Limited, London (1927).

57. V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics (3),

Springer, Berlin (2006).

58. A. Morbidelli, Modern Celestial Mechanics: Aspects of Solar System Dynamics, Taylor & Francis, New York

(2002).

59. R. Caseiro, “Master integrals, superintegrability and quadratic algebras,” Bull. Sci. Math., 126, 617–630 (2002).

60. P. A. Damianou, “Symmetries of Toda equations,” J. Phys. A: Math. Gen., 26, 3791–3796 (1993).
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