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MULTI-COMPONENT TODA LATTICE IN CENTRO-AFFINE R
n

Xiaojuan Duan∗, Chuanzhong Li†‡, Jing Ping Wang§

We use the group-based discrete moving frame method to study invariant evolutions in a n-dimensional

centro-affine space. We derive the induced integrable equations for invariants, which can be transformed

to local and nonlocal multi-component Toda lattices under a Miura transformation, and thus establish

their geometric realizations in centro-affine space.
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1. Introduction

Integrable systems are closely linked to classical geometries. Geometric evolutions for curves in homo-

geneous spaces induce integrable flows for geometric invariants such as curvatures. The space of these

invariants can be viewed as coordinates of the moduli space of curves under the group action. The moving

frame approach leads to a natural description of its associated Hamiltonian structures defined on the moduli

space.

A well-known example was given by Hasimoto [1]. He showed that a curve flow in Euclidean space,

invariant under the Euclidean group, known as the vortex-filament flow, induces the nonlinear Schrödinger

(NLS) equation for the curvature and torsion of the curve flow. The vortex filament flow is called an

Euclidean realization of the NLS equation. Geometric realizations of other integrable systems such as the

Korteweg–de Vries (KdV) equation, the modified KdV and sine-Gordon equations are derived in classical

geometries. The method of a group-based moving frame introduced by Fels and Olver [2], [3] has played

a very important role in establishing the relations. There are many papers devoted to this topic. We refer

to [4], [5] and the references therein.
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In 2013, the method of group-based discrete moving frames was introduced by Mansfield, Maŕı-Beffa

and Wang [6], which essentially amounted to a sequence of moving frames with overlapping domains. It pro-

vides a powerful tool to study the link between induced completely integrable systems on discrete curvatures

(or invariants) and the invariant evolutions of polygons in different geometric settings. As examples, the

projective RP
2 and 2-dimensional centro-affine R

2 discrete realizations of the modified Volterra and Toda

lattices were derived in [6]. That study was soon extended to projective polygons in RP
n in [7], establishing

a close relation between the projective invariant evolutions and the Hamiltonian evolutions on the invariants

of the flow.

The induced flows for invariants from geometric evolutions for curves in classical geometries can be

viewed as a syzygy between differential and difference invariants [8], [9], which offers a great advantage in

direct computation of the Euler–Lagrange equations in terms of invariants from given invariant Lagrangians.

This paper is devoted to the study of invariant evolutions in centro-affine R
n and induced integrable

systems. In the 3-dimensional centro-affine case, the authors of [10] studied the geometric realizations of

the B-Toda and C-Toda lattices. Recently, Beffa and Calini investigated the evolutions of arc length-

parameterized polygons (corresponding to the case ps = 1 in Section 4) in an n-dimensional centro-affine

space, which can be identified with the case of projective RPn−1 [11]. They proved that the Poisson brackets

derived in [7] form a bi-Hamiltonian pair.

In this paper, we derive the induced integrable equations from invariant evolutions in the n-dimensional

centro-affine space and establish their geometric realizations.

The paper is organized as follows. In Sec. 2, we review basic facts on discrete moving frames and

invariants of evolutions, mainly following [6], [7]. In Sec. 3, we give a brief introduction to multi-component

Toda lattices for both local and nonlocal flows. Our main results are in Sec. 4. We use the approach

of discrete moving frames to derive the flow of invariants for a given invariant time evolution. In the

3-dimensional centro-affine space, we construct a Hamiltonian pair that generates both local and nonlocal

integrable differential–difference systems, which can be transformed into 3-component local and nonlocal

Toda lattices under the same Miura transformation. In the general n-dimension case, although it is difficult

to give the Hamiltonian pair explicitly, we write the integrable differential–difference systems that are

multi-component local and nonlocal Toda lattices.

2. Discrete moving frames and invariant evolutions

In this section, we describe basic definitions and theorems on discrete group-based moving frames and

invariant evolutions. We only state results (without proofs) for the left group action and the right discrete

moving frame, which are taken from [6], [7]. We refer the readers to the original papers for the details.

2.1. Discrete moving frames. Let M be an n−dimensional manifold and G ×M → M be a left

action of an r-dimensional Lie group G on M .

We begin with a discrete analogue of the mth-order submanifold jet bundle introduced in [12]. We

assume that x : Z → M is a discrete function. Here we use the subscript notation xs = x(s) to denote the

evaluation of x at an integer point s ∈ Z. The collection of m+ 1 points

x[m]
s = (xs, xs+1, . . . , xs+m), xs+i ∈ M, i = 0, . . . ,m,

is the mth-order forward discrete jet at s ∈ Z denoted by (s, x
[m]
s ). Then the mth-order forward discrete

jet space J [m] is defined as the collection of (s, x
[m]
s ), that is,

J [m] =
⋃

s∈Z

(s, x[m]
s ).
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Let πm : J [m] → Z denote the projection onto the discrete index

πm(s, x[m]
s ) = s.

Then for each s ∈ Z, the fiber J [m]|s = (πm)−1(s) � Mm+1 is a smooth manifold, when m � 0. Naturally,

we can extend the action of G on M to J [m] as follows:

g · (s, x[m]
s ) = (s, g · xs, g · xs+1, . . . , g · xs+m). (1)

Definition 1. A discrete right (respectively left) moving frame is a G-equivariant map ρ : J [m] → G

satisfying

ρ(s, g · x[m]
s ) = ρ(s, x[m]

s )g−1

(respectively g · ρ(s, x[m]
s )) for all g ∈ G.

For simplicity, we use the notation ρs to denote the image of the moving frame ρ at the point (s, x
[m]
s ).

If ρs is a left moving frame, then ρ−1
s is a right moving frame. As in the continuous case, the construction

of a discrete moving frame is based on the choice of the cross section. The cross section is not unique.

One adequate cross section can simplify the computation. We use Ks to denote the cross sections over s

on J [m]. For a discrete moving frame, its cross section over s is replicated for all other base points s + i,

which means the cross section over s+ i is represented by Ks+i = T iKs for all i ∈ Z, where T is the shift

operator. Consequently, we have that ρs+i = T iρs.

The discrete moving frames provide a powerful approach to construct discrete invariants. We say that

a function F : J [m] → R is a discrete invariant if

F (g · x[m]
s ) = F (x[m]

s ) for all g ∈ G and x[m]
s ∈ J [m].

For a right moving frame, the quantities

Is,j := ρs · xj (2)

are invariants. The induced action on the coordinate functions also produces discrete invariants, that is, for

any difference function F : J [m] → R, the induced action on it F (s, ρs · x[m]
s ) is a discrete invariant. We are

able to describe a smaller set of generating invariants, the Maurer–Cartan invariants.

Definition 2. Let ρ : J [m] → G be a right moving frame. The element of the group

Ks = ρs+1(ρs)
−1 (3)

is called the right Maurer–Cartan matrix for ρ.

The equivariance of ρ implies that the Ks are invariant under the group action. In addition, using (2)

and (3) we have

Ks · Is,j = ρs+1ρ
−1
s · ρs · xj = ρs+1 · xj = Is+1,j , (4)

and iterating this, we have Ks+1Ks · Is,j = Is+2,j , and so on. Hence, the components of Ks, together with

the set of all diagonal invariants, Ij,j = ρj · xj , generate all other invariants [6].

703



2.2. Invariant evolutions. For an evolution equation

(xs)t = Fs((xr)) (5)

we say that it is an invariant time evolution under the action of the group G if the group action takes

solutions to solutions, that is, if (xr) is a solution, then so is (g · xr) for any g ∈ G. Any invariant time

evolution can be explicitly expressed in terms of the invariants and the moving frame.

Here we consider homogeneous manifolds M = G/H with H a closed subgroup and assume that G

acts on M via left multiplication on representatives of the class. The distinguished class of H is denoted

by o ∈ G/H . Let ρs be the discrete right moving frame satisfying ρs · xs = o for all s. We can describe the

general formula for an invariant evolution (5) in terms of the moving frame [6], [7].

We let Γg : G/H → G/H denote the map defined by the action of g ∈ G, that is, Γg(x) = g · x, and
dΓg(x) denote the tangent map of Γg at x ∈ G/H . Any G-invariant evolution of form (5) can be written as

(xs)t = dΓρ−1
s
(o)(vs), (6)

where vs is an invariant vector in the tangent space to M at xs.

For invariant evolution (6), there is a simple process to describe the evolution induced on the Maurer–

Cartan matrices, and hence on a generating set of invariants as stated in the next theorem. Its proof for

the left discrete moving frame can be found [6].

Theorem 1. Let ς : G/H → G be a section of G/H such that ς(o) = e ∈ G, where e is the identity.

Given a right moving frame ρs, we assume that ρs · xs = o and ρs = ρHs ς(xs)
−1, for some ρHs ∈ H . Then

the invariant evolution (6) leads to the structure equation

(Ks)t = Ns+1Ks −KsNs, (7)

where Ks is the right Maurer–Cartan matrix and Ns = (ρs)tρ
−1
s ∈ g. Furthermore, we assume that

g = m ⊕ h, where g is the algebra of G, h is the algebra of H , and m is a linear complement (which can

be identified with the tangent to the image of the section ς). Then, if Ns = Nh
s + Nm

s splits accordingly,

we have

Nm
s = −dς(o)vs. (8)

In this paper, we apply Theorem 1 to the centro-affine space. In fact, equation (7) and condition (8)

completely determine the evolution of Ks [6] [7], [10]. We note that identity (7) is similar to the zero-

curvature condition (without the spectral parameter) for completely integrable systems. This is a key point

when we link integrable systems to invariant evolutions.

3. Multi-component Toda lattices

We link the invariant evolutions in a centro-affine space to multi-component Toda lattices. To be

self-contained, we recall some facts on the Toda lattices in this section.

The well-known Toda lattice [13] is given by

d2us

dt2
= eus−1−us − eus−us+1 . (9)

Here, the dependent variable u is a function of the time t and a discrete variable s ∈ Z. It can be viewed

as a discretization of the KdV equation. Using the Flaschka coordinates [14], [15]

qs =
dus

dt
, ps = eus−us+1 ,
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we rewrite Toda lattice (9) in the form

dps
dt

= ps(qs − qs+1),
dqs
dt

= ps−1 − ps. (10)

Its complete integrability was first established by Flaschka and Manakov [14]–[16]. Its Lax representation

can be written as
∂L
∂t

= [B,L] = BL − LB, (11)

where

L = T −1 + qs + psT , B = −L≥1 = −psT .

The above scalar Lax representation has been generalized to higher-order difference operators involving more

dependent variables [17]. From now on, we drop the subscript s without causing confusion. For instance,

we simply write p for ps and pi for ps+i. Let

L = T −n +

n∑

j=1

wjT −n+j + uT , B = L≥1 = uT , (12)

where u and wj , j = 1, 2, . . . , n are dependent variables. It follows from Lax equation (11) that the (n+1)-

component Toda lattice is of the form [17]

w1
t = u− u−n,

wj
t = uwj−1

1 − wj−1u−n+j−1, j = 2, . . . , n, (13)

ut = u(wn
1 − wn).

When n = 1, this leads to Toda lattice (10) by letting u = ps and w1 = −qs. For any fixed n, applying

an r-matrix formalism, their bi-Hamiltonian structures can be constructed. In [17], the bi-Hamiltonian

structures for two and three fields are explicitly given.

From Lax operator (12), we can also derive a nonlocal multi-component Toda equation by taking its

nth root [18]. Here, we write the first two terms of this Laurent series in T :

L1/n = T −1 + η + · · · , η = (1 + T −1 + · · ·+ T 1−n)−1w1.

Then the Lax flow is given by

∂tL = [(L1/n)≥1,L] = −[(L1/n)≤0,L] = −[T −1 + η,L],

which leads to

ut = u(T − 1)η,

wj
t = wj+1 − wj+1

−1 − wj(1− T −n+j)η, j = 1, . . . , n− 1, (14)

wn
t = u− u−1,

where η = (1 + T −1 + · · ·+ T 1−n)−1w1.

In particular, if we take n = 2, it leads to a local 3-component Toda equation [17]

ut = u(w2
1 − w2),

w1
t = u− u−2, (15)

w2
t = uw1

1 − u−1w
1

and a nonlocal 3-component Toda equation

ut = u(T − 1)T (1 + T )−1w1,

w1
t = w2 − w2

−1 − w1(T − 1)(1 + T )−1w1, (16)

w2
t = u− u−1.
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4. Invariant evolutions in centro-affine RRR
n

Centro-affine geometry is obtained by deleting translations from the affine geometry. Let G = SL(n,R)

act linearly on M = R
n as x → g · x, where x is a n-vector, g ∈ G, and the product is the matrix

multiplication. The n-dimensional centro-affine space M = R
n can be regarded as the homogeneous space

SL(n,R)/H , where H is the isotropy subgroup of e1 = (1, 0, . . . , 0)T, where the superscript T denotes

matrix transposition. We write

H =

(
1 Y1×(n−1)

0(n−1)×1 A(n−1)×(n−1)

)

and

G/H =

(
x 01×(n−1)

y(n−1)×1 B(n−1)×(n−1)

)
,

with the matrix B(n−1)×(n−1) = diag(1/x, 1, . . . , 1), where (x, yT) can be viewed as the n coordinates on

M = R
n.

To construct the right frame ρs, we take the normalization equation to be

ρs · (xs, xs+1, xs+2, . . . , xs+n−1) = (e1, e2, . . . , (−1)n−1psen), (17)

where xs+k = (x0
s+k, x

1
s+k, x

2
s+k, . . . , x

n−1
s+k )

T for k = 0, 1, . . . , n− 1 and

ps = (−1)n−1 det(xs, xs+1, xs+2, . . . , xs+n−1).

This leads to the right Maurer–Cartan matrix

Ks = ρs+1ρ
−1
s =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1s 1 0 . . . 0 0

r2s 0 1
. . .

...
...

...
...

. . .
. . . 0 0

rn−2
s 0 . . . 0 1 0

rn−1
s 0 . . . 0 0 (−1)n−1/ps

ps 0 . . . 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (18)

where

rks = −det(xs, . . . , xk−1+s, xs+n, xk+1+s, . . . , xs+n−1)

T ps
, k = 1, . . . , n− 1.

We drop the subscript s without causing confusion. For example, when n = 2, normalization equa-

tion (17) becomes

ρ · (x, x1) = (e1,−pe2), p = − det(x, x1) = −(x0x1
1 − x0

1x
1).

Solving it, we obtain the left moving frame

ρ−1 =

(
x,−x1

p

)
,

and thus the corresponding right Maurer–Cartan matrix is

K = ρ1ρ
−1 =

(
r1 −1/p

p 0

)
, r1 = −det(x, x2)

p1
. (19)

In this case, the link between invariant evolutions and integrable systems has been discussed in [6]. Next,

we focus on the invariant evolutions and the related integrable systems in the case n = 3.
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4.1. The case of centro-affine RRR
3. It follows from (18) that in this case, the right Maurer–Cartan

matrix (after dropping the subscript s) is

K = ρ1ρ
−1 =

⎛

⎜⎝
r1 1 0

r2 0 1/p

p 0 0

⎞

⎟⎠ , (20)

where

p = det(x, x1, x2), r1 = − 1

p1
det(x, x3, x2), r2 = − 1

p1
det(x, x1, x3)

and

ρ−1 =

(
x, x1,

x2

p

)
. (21)

From (6), the general invariant evolution is given by

(x)t = ρ−1v, v =
(
v1, v2, v3

)T
, (22)

where v1, v2, and v3 are arbitrary functions of the invariants r1, r2, and p and their shifts. Using (21)

and (22), we can easily see that the first column of N is −v. From structure equation (7), we obtain

N =

⎛

⎜⎜⎜⎜⎜⎜⎝

−v1
−T v3

p

−p1T 2v2 + r21T 2v3

p2

−v2 −T v1 +
r1

p
T v3

r1

p2
(p1T 2v2 − r21T 2v3)− T 2v3

pp1

−v3 −pT v2 + r2T v3 v1 + T v1 − r1

p
T v3

⎞

⎟⎟⎟⎟⎟⎟⎠
,

and the evolution equation
d

dt
(p, r1, r2)T = Pv, (23)

where

P =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

p(1 + T + T 2) −r2p1T 2 r2r21T 2 − r1T − r11p

p1
T 2

r1(1 − T ) 1− pp2
p21

T 3 pr22T 3

p21
− r2T 2

p1

r2(1− T 2)
r11pp2
p21

T 3 − r1T 1

p
+

r11r
2

p1
T 2 − pT 3

p1p2
− pr11r

2
2T 3

p21

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (24)

Remark 1. Under the transform p = pk, r
1 = qkpk, r

2 = −rk, we can obtain the corresponding

evolution equations in [10].

We define a matrix

C =

⎛

⎜⎜⎝

(T 2 − 1)−1p −(T + 1)−1r1 0

0 −T −1r2 −T −2 p

p1
0 −T −1p 0

⎞

⎟⎟⎠ . (25)

Then we compute operator multiplication PC and obtain the pseudo-difference antisymmetric operator
⎛

⎜⎜⎜⎜⎜⎜⎝

p(1 + T + T 2)(T 2 − 1)−1p pT (T + 1)−1r1 pr2

−r1(T + 1)−1p
r1(T − 1)(T + 1)−1r1

−T −1r2 + r2T
p

p1
T − T −2 p

p1

−pr2
p

p1
T 2 − T −1 p

p1

r1

p
T −1p− pT r1

p

⎞

⎟⎟⎟⎟⎟⎟⎠
. (26)

In fact, this operator is a Hamiltonian operator as stated in the following theorem.
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Theorem 2. The operator H = PC in (26) is a Hamiltonian operator and it forms a Hamiltonian

pair with

H0 =

⎛

⎜⎝
0 0 p

0 T − T −1 0

−p 0 0

⎞

⎟⎠ . (27)

Proof. We introduce the transformation

u =
p

p1
, v = −r2, w = r1, (28)

whose Frechet derivative is

D(u,v,w) =

⎛

⎜⎜⎜⎝

1

p1
− p

p21
T 0 0

0 0 −1

0 1 0

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

1

p1
− u

p1
T 0 0

0 0 −1

0 1 0

⎞

⎟⎟⎟⎠ . (29)

Under th3transformation (28),

D(u,v,w)H0D†
(u,v,w) =

⎛

⎜⎝
0 −u(1− T ) 0

(1− T −1)u 0 0

0 0 T − T −1

⎞

⎟⎠ (30)

and

D(u,v,w)HD†
(u,v,w) =

⎛

⎜⎜⎜⎝

u(T −1 − T 2)(T + 1)−1u −u(T − 1)v u(1− T )(T −1 + 1)−1w

v(T −1 − 1)u wT −1u− uT w −uT 2 + T −1u

w(T + 1)−1(T −1 − 1)u T −2u− uT w(T − 1)(T + 1)−1w

+T −1v − vT

⎞

⎟⎟⎟⎠ ,

which form a Hamiltonian pair for a three-component Toda system with the Lax operator

L = T −2 + wT −1 + v + uT .

Here, we used the same notation as in [17], where the Hamiltonian pair is given explicitly. The statement

is proved.

Remark 2. 1. This theorem can also be proved by verifying that the operator H defines a Poisson

bivector, as is done in [7].

2. Another method to prove this statement is by using recent results on pre-Hamiltonian opera-

tors [19], [20]. We call a difference operator pre-Hamiltonian if its image is a Lie subalgebra with respect

to the Lie bracket of evolutionary vector fields. Direct computation shows that the operator P is indeed

a pre-Hamiltonian operator.

Theorem 2 implies the following result on invariant evolutions (22).

Theorem 3. The invariant evolution in the centro-affine space R
3 described by

(x)t =

(
x, x1,

x2

p

)
⎛

⎜⎜⎝

0

−p−2

p−1

0

⎞

⎟⎟⎠ , (31)
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induces the integrable system

⎛

⎜⎝
pt

r1t
r2t

⎞

⎟⎠ =

⎛

⎜⎜⎜⎜⎝

pr2

p

p1
− p−2

p−1

r1
p−1

p
− p

p1
r11

⎞

⎟⎟⎟⎟⎠
= H δr2 = H0 δ

(
p−1

p
r1 +

(r2)2

2

)
, (32)

where the Hamiltonian pair H and H0 is given in Theorem 2, and it becomes 3-component Toda lattice (15)

under the transformation

u =
p

p1
, w1 = r1, w2 = −r2. (33)

Proof. Taking v = C(0, 0, 1)T = (0,−p−2/p−1, 0)
T, we obtain (31) from (22) and (32) from (23).

Moreover, Eq. (32) is a bi-Hamiltonian systems because H and H0 form a Hamiltonian pair, as follows from

Theorem 2.

Under the transformation, we have

ut =
pt
p1

− p

p21
p1,t =

p

p1
r2 − p

p1
r21 = u(w2

1 − w2).

After a direct calculation for wi
t, i = 1, 2, we obtain the 3-component Toda lattice as stated.

We note that e2 = (0, 1, 0)T is in the kernel of H0. If we take

v = −Ce2 = ((T + 1)−1r1, T −1r2, T −1p)T

in (23), then we obtain the integrable nonlocal equation

pt = −p(1 + T )−1r11 ,

r1t = r2−1 − r2 − r1(T − 1)(1 + T )−1r1, (34)

r2t =
p−1

p
− p

p1
,

which becomes nonlocal 3-component Toda lattice (16) under transformation (33).

4.2. Towards the general centro-affine case. For an n-dimensional centro-affine space, we can

in principle carry out the same study as we did for the centro-affine R
3. However, the explicit formula for

the operator P in (24) is rather bulky in this case and thus we do not write it here. We simply present the

expression for the matrix N and some results.

We assume that the general invariant evolution is given by

(x)t = ρ−1v, v = (v1, v2, . . . , vn)T, (35)

where v1, v2, and . . . , vn are arbitrary functions of the invariants rk, k = 1, . . . , n − 1 and p and their

shifts. We know that N = ρtρ
−1. Thus the first column of N is −v, the kth column of N is Mk−1v for

k = 2, . . . , n− 1 with

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0
1

p
T

T 0 . . . 0
−r1

p
T

...
. . .

. . .
...

...

0 . . . T 0
−rn−2

p
T

0 . . . 0 (−1)n−1pT (−1)nrn−1T

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (36)
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and the last column of N can be obtained from structure equation (7), namely,

N1,n =
(−1)n−1

p2
T Nn,n−1,

Nj+1,n =
(−1)n−1T Nj,n−1

p
− rjN1,n, j = 1, . . . , n− 2,

Nn,n = −(N1,1 + · · ·+Nn−1,n−1),

reflecting the fact that the matrix N is traceless.

Theorem 4. The invariant evolution in the centro-affine space R
n+1 given by

(x)t =

(
x, x1, . . . ,

(−1)n

p
xn

)(
0,− p−n

p1−n
, 0, . . . , 0

)T
, (37)

induces the integrable system

pt = (−1)nrnp,

r1t = − p−n

p1−n
+

p

p1
, (38)

rjt = rj−1 pj−1−n

pj−n
− rj−1

1

p

p1
, j = 2, . . . , n,

which becomes (n+ 1)-component Toda lattice (13) under the transformation

u =
p

p1
, wk = (−1)k+1rk, k = 1, . . . , n. (39)

Proof. From the given invariant evolution (37), we know

v = (0,−p−n/p1−n, 0, . . . , 0)
T.

Thus, we obtain an expression for N using the formula above. Alternatively, we can determine N using

structure equation (7): the nonzero entries are

Ni+1,i = T i−1 p−n

p1−n
, i = 1, 2, . . . , n− 1,

Nn+1,n = (−1)np−1,

N1,n+1 =
1

p
,

Ni+1,n+1 = −ri

p
, i = 1, 2, . . . , n− 1.

We further obtain the corresponding flow of invariants as given by (38). The second part of the statement

can be proved by direct calculation of changing variables.

Similarly, we can obtain the result for the invariant evolution relating it to nonlocal multi-component

Toda lattices as in the centro-affine R
3.
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Theorem 5. The invariant evolution in the centro-affine space R
n+1 given by

(x)t =

(
x, x1, . . . , (−1)n

xn

p

)
T −1

( n−2∑

k=0

T −kη, r2, r3, . . . , rn, p

)T

, (40)

where η = (1 + T −1 + · · ·+ T 1−n)−1r1, induces the integrable system

pt = −pη,

rjt = rj+1
−1 − rj+1 − rj(1− T −n+j)η, j = 1, . . . , n− 1, (41)

rnt = (−1)n
(
p−1

p
− p

p1

)
,

which becomes the nonlocal (n+ 1)-component Toda lattice under transformation (39).

Proof. The second part of the statement can be proved by direct calculation of changing variables.

For the proof of the first part, we set

η̄ = (1 + T −1 + · · ·+ T 2−n)η. (42)

From the given invariant evolution (40), we see that the first column of the matrix N is

−(T −1η̄, T −1r2, T −1r3, . . . , T −1rn, T −1p)T.

Using structure equation (7), we can determine N as

N = −

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T −1η̄ 1 0 . . . 0 0

T −1r2 η̄ − r1 1
. . .

...
...

T −1r3 0 T (η̄ − r1)
. . . 0

...
...

...
. . .

. . . 1 0

T −1rn
...

. . . 0 T n−2(η̄ − r1) (−1)n/p

T −1p 0 . . . 0 0 ξ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where ξ = (T n−1 − T −1)η̄ + (1− T n−1)r1. Moreover, we obtain the flow for invariants

pt = p(T −1η̄ − r1),

rjt = rj(T −1 − T j−1)η̄ + (T −1−1)rj+1 − rj(1− T j−1)r1, j = 1, . . . , n− 1,

rnt = rn(T −1 − T n−1)η̄ − rn(1− T n−1)r1 + (−1)n
(
p−1

p
− p

p1

)
.

We note that N is traceless under the given relation between η and r1, that is,

r1 = (1 + T −1 + · · ·+ T 1−n)η.

Substituting this and (42) in the above flow, we obtain the system in Eq. (41).
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