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We define quantum determinants in quantum matrix algebras related to pairs of compatible braidings.

We establish relations between these determinants and the so-called column and row determinants, which

are often used in the theory of integrable systems. We also generalize the quantum integrable spin systems

using generalized Yangians related to pairs of compatible braidings. We demonstrate that such quantum

integrable spin systems are not uniquely determined by the “quantum coordinate ring” of the basic space

V . For example, the “quantum plane” xy = qyx yields two different integrable systems: rational and

trigonometric.
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1. Introduction

The quantum or q-determinant was introduced in works of L. D. Faddeev’s school (see, e.g., [1]) in
connection with the quantum inverse scattering method. Such determinants were initially introduced in
RTT algebras associated with the Uq(sl(N)) R-matrices or with some current (i.e., depending on spectral
parameters) R-matrices.

Nevertheless, a large family of other involutive and Hecke symmetries was constructed in [2], and
quantum determinants were defined in RTT algebras associated with even1 symmetries. We recall that
these symmetries are particular cases of braidings, i.e., their operators R : V ⊗2 → V ⊗2 satisfy the so-called
braid relation

(R ⊗ I)(I ⊗ R)(R ⊗ I) = (I ⊗ R)(R ⊗ I)(I ⊗ R).

Hereafter, V is a finite-dimensional vector space (called the basic space) and I denotes the identity operator
or matrix.2
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A braiding R is called a Hecke symmetry or an involutive symmetry if it satisfies the respective
supplementary condition

(R − qI)(R + q−1I) = 0, q �= ±1 or R2 = I.

We assume that the nonzero parameter q ∈ C is general, i.e., such that

kq =
qk − q−k

q − q−1
�= 0 for all k ∈ Z.

Our objective here is threefold. First, using the scheme in [2], we define quantum determinants in
quantum matrix algebras (QMAs) associated with the pairs of compatible braidings introduced in [3], half-
quantum algebras (HQAs) defined in [4], and generalized Yangians introduced in [5], [6]. We also show
that in some RTT algebras, including those associated with the quantum group (QG) Uq(sl(N)), quantum
determinants can be written in the form of column or row determinants, which are very popular in the
literature on integrable systems.

Second, using quantum elementary symmetric polynomials closely related to quantum determinants, we
present the Bethe subalgebras in all considered generalized Yangians. We thus obtain quantum integrable
systems that are a far-reaching generalization of the spin systems in [7] and their rational counterparts. We
also discuss different forms of the corresponding determinants.

Third, we emphasize that the “quantum coordinate ring” of the basic space V , contrary to popular
belief, does not uniquely determine the corresponding quantum algebra and quantum determinant. For
example, the so-called quantum plane defined by xy−qyx = 0 yields two completely different RTT algebras
and generalized Yangians and consequently leads to two different integrable systems.

This paper is organized as follows. In Sec. 2, using the method in [2], we define the quantum determi-
nants in the QMAs associated with pairs (R, F ) of compatible braidings, where R is an even involutive or
Hecke symmetry. In Sec. 3, we present some properties of the quantum determinants in different algebras.
In particular, we describe symmetries that allow defining column or row determinants. We also consider the
quantum determinants in the right and left HQAs. In Sec. 4, we define the quantum determinant in rational
and trigonometric generalized Yangians and present integrable systems associated with such Yangians.

2. Quantum determinants in QMAs

With any Hecke symmetry3 R, we associate the R-symmetric and R-skew-symmetric algebras of the
space V defined as the respective quotients of the free tensor algebra T (V ) of the space V :

SymR(V ) = T (V )/〈Im(qI − R)〉, ΛR(V ) = T (V )/〈Im(q−1I + R)〉.

Here, 〈J〉 denotes the two-sided ideal generated by a set J ⊂ T (V ). The ground field is C.
Each homogenous component Sym(k)

R (V ) or Λ
(k)
R (V ) can be identified with the respective image of the

R-symmetrizer S(k)(R) or R-skew-symmetrizer A(k)(R)) acting on the space V ⊗k. These projectors can be
defined by the recurrence relations

S(1) = I, S(k) =
1
kq

S(k−1)(q−(k−1)I + (k − 1)qRk−1 k)S(k−1),

A(1) = I, A(k) =
1
kq

A(k−1)(qk−1I − (k − 1)qRk−1 k)A(k−1),

k ≥ 2. (2.1)

3In this section, we mainly consider Hecke symmetries. The corresponding results and formulas for involutive symmetries
can be obtained by setting q = 1.
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As usual, the subscripts indicate the positions where matrices or operators are located. These formulas can
be deduced from the representation theory of the symmetric group if R is involutive or of the Hecke algebra
if R is a Hecke symmetry (see [8]).

Let R and F be braidings. Following [3], we say that the ordered pair (R, F ) is compatible (or the
braidings R and F are compatible) if the relations

R12F23F12 = F23F12R23, R23F12F23 = F12F23R12

are satisfied. Below, we always assume that R to be an involutive or a Hecke symmetry.
Let L = ‖lij‖1≤i,j≤N be an N×N matrix and L1 = L⊗ I2...p, p ≥ 2. (Hence, L1 is an Np×Np matrix.)

We introduce the notation

L1̄ = L1, Lk+1 = Fk k+1Lk̄F−1
k k+1, k ≤ p − 1. (2.2)

We recover the standard definition Lk+1 = Pk k+1LkPk k+1 in the case F = P , where P denotes the usual
flip.

Following [3] (also see the references therein), we define a QMA L(R, F ) as a unital associative algebra
generated by elements of the matrix L = ‖lji ‖ subject to the system of commutation relations

R12L1̄L2̄ = L1̄L2̄R12. (2.3)

The matrix L is called the generating matrix of the algebra L(R, F ). We note that the compatibility of
the braidings R and F implies that the defining relations of the algebra L(R, F ) can be pushed forward to
higher positions in the sense that

Rk k+1Lk̄Lk+1 = Lk̄Lk+1Rk k+1, k < p.

We note that each of the pairs (R, P ) and (R, R) is obviously compatible. The corresponding algebras
L(R, P ) and L(R, R) are respectively the RTT algebra and reflection equation (RE) algebra.4 The defining
relations of the former algebra L(R, P ) are

R12L1L2 = L1L2R12.

The defining relations of the RE algebra L(R, R) can be written in the form

R12L1R12L1 = L1R12L1R12.

Remark. We emphasize that if a symmetry R is a deformation of the usual flip, then the corresponding
RTT and RE algebras are deformations of the commutative algebra Sym(gl(N)), and hence the dimensions
of the homogenous components of these QMAs are classical (if R is a Hecke symmetry, the parameter q

must be general). But if R is a braiding coming from the QGs of the series Bn, Cn, Dn, then this property
is absent, and any similar deformation of the algebra Sym(g), where g is a Lie algebra belonging to one of
these series, therefore does not exist. In contrast, there exist quantum deformations of the function algebra
Fun(G), where G is the corresponding Lie group. The corresponding quotients of the RTT algebras were
presented in [10].

4One more example of compatible braidings (R, F ) is that formed by the braidings in (2.6), where the second matrix plays
the role of R. An example of such was also presented in [9].
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We now assume that the symmetry R is even. Let Λ
(m)
R (V ), m ≥ 2, be the highest nontrivial homoge-

nous component5 of the algebra ΛR(V ). Because the dimension of this component is 1 by definition, there
exist two tensors u = ‖ui1...im‖ and v = ‖vj1...jm‖ such that

A(m)(xi1 ⊗ · · · ⊗ xim) = ui1...im vj1...jmxj1 ⊗ · · · ⊗ xjm ,

〈v, u〉 := vi1...im ui1...im = 1.

Hereafter, {xi}1≤i≤N is a basis of the space V and summation over repeated indices is always understood.
Hence, the element vj1...jmxj1 ⊗ · · · ⊗ xjm is a generator of ImA(m). We note that the tensors u and v are
defined up to a rescaling6

u �→ au, v �→ a−1v, a ∈ C, a �= 0. (2.4)

By analogy with [2], we introduce the following definition.

Definition. The element of the QMA L(R, F )

detL(R,F )(L) := 〈v|L1̄ · · ·Lm|u〉 := vi1...im(L1̄ · · ·Lm)j1...jm

i1...im
uj1...jm (2.5)

is called the quantum determinant of the generating matrix L.

Of course, the quantum determinant detL(R,F )(L) can be written in other explicit forms modulo the
defining relations of the QMA L(R, F ). We present some of them below. We say that form (2.5) is canonical.

We now consider two examples. We fix a basis {x = x1, y = x2} of the basic space V , N = dimV = 2,
and introduce two symmetries represented by the matrices in this basis

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 0 q 0

0 q−1 0 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎝

q 0 0 0

0 q − q−1 1 0

0 1 0 0

0 0 0 q

⎞
⎟⎟⎟⎟⎠

. (2.6)

Each of these symmetries is a deformation of the usual flip P . The first symmetry is involutive, and the
second is a Hecke symmetry coming from the QG Uq(sl(2)).

For the involutive symmetry, we have

u = (u11, u12, u21, u22) =
1
2
(0, 1,−q−1, 0), v = (v11, v12, v21, v22) = (0, 1,−q, 0).

For the Hecke symmetry, we have

u =
q−1

2q
(0, 1,−q, 0), v = (0, 1,−q, 0).

We note that the tensors v corresponding to these symmetries coincide and the algebras

SymR(V ) = T (V )/〈v〉 = T (V )/〈xy − qyx〉, (2.7)

5In general, m could be different from N = dim V (see [2], [11]).
6If the rank of a symmetry R is two, then we can recover the symmetry R by knowing u and v. All pairs (u, v) yielding

such symmetries were classified in [2].
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called the “quantum plane,” are therefore the same for the two symmetries in (2.6). Nevertheless, the
tensors u differ. Consequently, the canonical forms of the corresponding determinants detL(R,F )(L) differ
for all pairs (R, F ).

We compute these determinants for the corresponding RTT algebras L(R, P ) and RE algebras L(R, R).
We let l11 = a, l21 = b, l12 = c, and l22 = d denote elements of the generating matrix L of these algebras:

L =

(
a b

c d

)
.

Example 1. The defining relations of the RTT algebra L(R, P ) corresponding to the first (involutive)
matrix in (2.6),

R12L1L2 = L1L2R12,

lead to the system of equations for the generators

ab = q−1ba, ac = qca, ad = da, bc = q2cb, bd = qdb, cd = q−1dc.

According to our definition, the canonical form of the quantum determinant in this algebra is

detL(R,P )(L) =
ad + da

2
− q−1bc + qcb

2
.

Using the above commutation relations on the generators, we can transform the canonical form to the
expressions

detL(R,P )(L) = ad − qcb = ad − q−1bc. (2.8)

The defining relations between the generators of the algebra corresponding to the second matrix in (2.6)
are (see [10])

ab = qba, ac = qca, ad − da = (q − q−1)bc, bc = cb, bd = qdb, cd = qdc.

The corresponding quantum determinant is

detL(R,P )(L) =
q−1ad + qda

2q
− bc + cb

2q
= ad − qcb = ad − qbc. (2.9)

The first expression here is the canonical form of the determinant. We discuss other expressions in the next
section.

We also present the corresponding algebras ΛR(V ). If R is the first symmetry in (2.6), then we have

ΛR(V ) = T (V )/〈x2, y2, xy + qyx〉. (2.10)

If R is the second symmetry in (2.6), then the last generator of the ideal in the above quotient should be
qxy + yx.

Therefore, we see that quantum plane (2.7) yields two different RTT algebras and consequently two
different determinants, although we can find a specific form ad−qcb that is the same for both determinants.
In the next section, we consider higher-dimensional analogues of these algebras and determinants in more
detail and explain this coincidence.
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Example 2. The defining relations

R12L1R12L1 = L1R12L1R12

of the RE algebra L(R, R) corresponding to the first (involutive) matrix in (2.6) in explicit form are

ab = ba, ac = ca, ad = da, bc = cb, bd = db, cd = dc.

This algebra is therefore commutative. This is an unsurprising result because the involutive R in (2.6) is
related to the usual flip P by conjugation,

R12 = D1P12D
−1
1 , D =

(
q1/2 0

0 q−1/2

)
.

Therefore, the matrix

L̃ = D−1LD =

(
a b/q

qc d

)

satisfies the relation
P12L̃1P12L̃1 = L̃1P12L̃1P12 ⇐⇒ L̃2L̃1 = L̃1L̃2,

which means that the elements of L̃ generate a commutative algebra. Therefore, the elements of the matrix
L also mutually commute. The canonical form of the determinant in this case is

detL(R,R)(L) =
ad + da

2
− bc + cb

2
,

or with the commutativity of the RE L(R, R) taken into account, it is reducible to the classical expression
ad − bc.

Finally, if we take the second (Hecke) symmetry R in (2.6), we obtain the system of equations for the
generators

q2ab = ba, q2ca = ac, ad = da,

q(bc − cb) = λa(d − a), q(cd − dc) = λca, q(db − bd) = λab,

where we set λ = q − q−1. The canonical form of the determinant is

detL(R,R)(L) =
q(ad + da)

2q
− q(bc + q2cb)

2q
− λa2

2q
. (2.11)

Taking the relations between the generators into account, we can transform the canonical determinant to
the equivalent forms

detL(R,R)(L) = ad − q2cb = q2(ad − bc) − qλa2. (2.12)

Another way to introduce quantum analogues of the determinant is based on the notion of quantum
elementary symmetric polynomials defined via quantum traces. Such a quantum trace is well known in
the cases related to the QG Uq(sl(N)). Nevertheless, the quantum trace can be associated with any skew-
invertible braiding R using the Lyubashenko method [12], [13]. We say that a given braiding R : V → V is
skew-invertible if there exists an operator Ψ: V ⊗2 → V ⊗2 such that

Tr(2) R12Ψ23 = P13 = Tr(2) Ψ12R23 ⇐⇒ Rkl
ij Ψjn

lm = δk
mδn

i = Ψkl
ijR

jn
lm.
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If R is a skew-invertible braiding, then the corresponding R-trace TrR is defined by the formula

TrR X = Tr(CRX), CR := Tr(2) Ψ,

where X is an arbitrary N×N matrix (possibly with noncommutative elements).
We consider a compatible pair of braidings (R, F ) and assume that the braiding R is skew-invertible.

We now define a quantum version of the elementary symmetric polynomials in the algebra L(R, F ) as

e0 = 1, ek = TrR(1...k) A(k)L1̄L2̄ · · ·Lk̄, k ≥ 1. (2.13)

Hereafter, Tr(1...k) = Tr(1) · · ·Tr(k). Using the equality

A(k)L1̄ · · ·Lk̄ = A(k)L1̄ · · ·Lk̄A(k), (2.14)

which holds in any QMA, we obtain the relation

TrR(1...m) A(m)L1̄ · · ·Lm = TrR(1...m) A(m)L1̄ · · ·LmA(m) = (v ·R u)〈v|L1̄ · · ·Lm|u〉, (2.15)

where
(v ·R u) = vj1...jm(CR)i1

j1
(CR)i2

j2
· · · (CR)im

jm
ui1...im . (2.16)

Hence, the highest-degree elementary symmetric polynomial em differs from the quantum determinant
detL(R,F )(L) by a numerical factor. In the particular case F = P , these elements are just equal to each
other because (v ·P u) = 1 in this case (we note that CP = I).

3. Some properties of quantum determinants

In this section, we consider two questions. The first is what is the relation between the determinant
detL(R,F )(L) and the characteristic polynomial of the matrix L. The second is whether the quantum
determinant is central. We always assume that the rank of a symmetry R is m.

We say that an m-degree monic polynomial ch(t) is characteristic if ch(L) = 0. By virtue of the Cayley–
Hamilton theorem in the classical case R = F = P (the corresponding algebra L(P, P ) is commutative),
the characteristic polynomial is

ch(t) = detL(P,P ) (L − tI).

Proposition 1. In the algebras L(R, R), where R is a Hecke symmetry, we have the relation

detL(R,R) (L − tI) =
∑

0≤k≤m

(−t)m−kαkek, (3.1)

where αk = qmk(m!/k! (m − k)!)(kq! (m − k)q!/mq!).

We note that similar assertions can be found in [14].

Proof. For any even Hecke symmetry of rank m, quantity (2.16) is

(v ·R u) = q−m2
.

This follows from the relation (see [6])

TrR(k+1...m) A
(m)
1...m = q−m(m−k) kq!(m − k)q!

mq!
A

(k)
1...k (3.2)
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for k = 0. In the expansion of the element

qm2
detL(R,R)(L − tI) = TrR(1...m) A

(m)
1...m(L − tI)1̄ · · · (L − tI)m,

we combine terms containing k factors Lī in some places and the identity matrices in other places. The
number of such terms is m!/k! (m − k)!, and they are equal to each other. This property holds because7

TrR(1...m) A
(m)
1...mLī1Lī2 · · ·Līk

= TrR(1...m) A
(m)
1...mL1̄L2̄ · · ·Lk̄

for any ordered subset of indices 1 ≤ i1 < i2 < · · · < ik ≤ m. It now suffices to apply formula (3.2). Finally,
we obtain

TrR(1...m) A
(m)
1...m L1̄ · · ·Lk̄ = q−m(m−k) kq!(m − k)q!

mq!
ek(L).

The proof is complete.

If R is an involutive symmetry, then by setting q = 1 in (3.1), we obtain the following proposition.

Proposition 2. If R is an involutive symmetry, then the polynomial detL(R,R) (L−tI) is characteristic.

If R is a Hecke symmetry, the polynomial detL(R,R) (L − tI) is not characteristic. But we obtain the
characteristic polynomial by replacing αk with qk in the right-hand side of (3.1), i.e.,

ch(t) := tm − qe1t
m−1 + q2e2t

m−2 + · · · + (−q)m−1em−1t + (−q)mem.

Therefore, substituting t = L in this polynomial, we obtain the Cayley–Hamilton identity for the matrix L:

Lm − qe1L
m−1 + q2e2L

m−2 + · · · + (−q)m−1em−1L + (−q)memI = 0.

We note that this identity in the algebras L(R, R) was first proved in [15].
We now pass to the second question. It is well known that if a Hecke symmetry R comes from the QG

Uq(sl(N)), then the quantum determinant detL(R,P )(L) is central (see [10]). If the quantum determinant
is central in a given RTT algebra L(R, P ), then by imposing the condition detL(R,P )(L) = 1, we can define
a Hopf algebra structure in the quotient algebra. But the quantum determinant in general is not central in
the algebras L(R, P ). As was shown in [2], the quantum determinant detL(R,P )(L) is central if and only if
the matrix

M = ‖M j
i ‖, where M j

i = uii2···imvi2···im j ,

is scalar.
We study the centrality of the quantum determinants in the algebras L(R, P ) corresponding to sym-

metries (2.6). By straightforward computations, we obtain the respective matrices M for the symmetries
in (2.6):

−1
2

(
q 0

0 q−1

)
, − 1

2q

(
1 0

0 1

)
.

Therefore, the quantum determinant is not central in the algebra L(R, P ) corresponding to the involutive
symmetry in (2.6) and is central in the algebra corresponding to the Hecke symmetry in (2.6). In contrast,
the quantum determinant in the RE algebras L(R, R) is always central. Hence, imposing the condition
detL(R,R)(L) = 1, we obtain a braided Hopf algebra structure in the quotient algebra (see [11]).

7We emphasize that this property is absent if F �= R.
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We now discuss a way of reducing the quantum determinants to the so-called column and row deter-
minants, which play an important role in the theory of integrable systems. We set F = P , i.e., we consider
the RTT algebra L(R, P ). Using relation (2.14). we obtain the equality

ui1...imvj1...jm lk1
j1

· · · lkm

jm
= ui1...im〈v|L1 · · ·Lm|u〉vk1...km .

Because the tensor u �≡ 0, the factors ui1...im can be canceled. We also assume that m = N and v12...N = 1.
This condition can be satisfied by a proper normalization of v if v12...N �= 0. We then obtain

detL(R,P )(L) = vj1...jN l1j1 · · · l
N
jN

. (3.3)

This form of the quantum determinant is called the column determinant of L. It is characterized by the
property that the factors lji in each of its summands are arranged in the order of columns of the matrix L

enumerated by the superscripts of lji . We note that if m �= N , then we have no privileged component of the
tensor v (like the component v12...N ).

Similarly, if the factors in each of the summands of the determinant are arranged in the order of rows
of the matrix L, then we call it the row determinant. If m = N and u12...N �= 0, then we can transform the
canonical determinant detL(R,P ) to the form of a row determinant:

detL(R,P )(L) = li11 · · · liN

N ui1...iN . (3.4)

We note that the column determinant or row determinant depends on only the respective tensor v or u.
Therefore, if two symmetries have the same tensors v but different tensors u, we have identical column
determinants but different row determinants. This is the case of symmetries (2.6) considered above. We
see that the column determinants (the middle expressions in (2.8) and (2.9)) are equal to each other but
the row determinants (the right expressions) differ.

We now introduce the higher-dimensional counterparts of symmetries (2.6) and present the correspond-
ing quantum determinants in the algebras L(R, P ).

The Hecke symmetry R from the QG Uq(sl(N)) is

Rkl
ij = qδk,lδk

j δl
i + (q − q−1)θ(l>k)δ

k
i δl

j ,

where θ(l>k) = 1 if l > k and θ(l>k) = 0 if l ≤ k. We also introduce the involutive symmetry R by its action
on the basis vectors xi ⊗ xj of the space V ⊗2:

R(xi ⊗ xi) = xi ⊗ xi, R(xi ⊗ xj) =

⎧⎨
⎩

qxj ⊗ xi if i < j,

q−1xj ⊗ xi if i > j.

For both symmetries, the components of the tensors u and v are nontrivial if and only if their indices are
pairwise distinct. For both symmetries, we can take the nontrivial components of v as

vj1...jN = (−q)l(σ),

where l(σ) is the length (i.e., the minimum number of transpositions) of the permutation

σ : (1 . . . N) �→ (j1 . . . jN ).
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Such a tensor v is sometimes called the q-Levi-Civita tensor.
The tensors u for these symmetries are respectively equal to

ui1...iN = α1(−q)l(σ), ui1...iN = α2(−q−1)l(σ),

where α−1
1 = qN(N−1)/2Nq! and α−1

2 = N ! are normalizing factors.
Similarly to the two-dimensional example above, we have the same “quantum coordinate ring” for both

symmetries:
xixj = qxjxi, i < j,

often called the quantum torus (with the additional condition that the generators are invertible).
The formulas for the quantum column determinants are also the same in both RTT algebras:

detL(R,P )(L) =
∑

σ

(−q)l(σ)l1j1 · · · l
N
jN

.

In this form, the quantum determinant detL(R,P )(L) was given in [10] for the RTT algebra associated
with the Uq(sl(N)) symmetry R. But the tensors u corresponding to the considered symmetries differ.
Consequently, the row determinants in the corresponding RTT algebras differ from each other.

Concluding this section, we turn to the so-called HQAs and the corresponding quantum determinants.
We again consider a compatible pair (R, F ), where R is a skew-invertible Hecke symmetry. We introduce
two systems of equations or the generating matrix L = ‖lij‖1≤i,j≤N :

S(2)L1̄L2̄A
(2) = 0 ⇐⇒ L1̄L2̄A

(2) = A(2)L1̄L2̄A
(2), (3.5)

A(2)L1̄L2̄S
(2) = 0 ⇐⇒ A(2)L1̄L2̄ = A(2)L1̄L2̄A

(2), (3.6)

where the R-symmetrizer S(2) and the R-skew-symmetrizer A(2) are defined in (2.1). The matrices with
barred indices have the same meaning as above (see (2.2)).

The following statement is well known and can be directly verified.

Proposition 3. System (2.3) is equivalent to the union of systems (3.5) and (3.6).

Imposing only half of the relations (only (3.5) or (3.6)) on the generators, we obtain a larger algebra
than L(R, F ). Nevertheless, even in such an algebra, we can develop some elements of a linear algebra
(see [4], where these algebras were introduced and studied). Some particular cases of these algebras were
also considered in [16] and [7], where they were called Manin matrices and q-Manin matrices.

We call a unital algebra defined by system (3.5) or (3.6)) the respective right or left HQA, denoted by
Hr(R, F ) and H�(R, F ). If R is an even symmetry, then we define the quantum determinant in the algebra
Hε(R, F ), ε ∈ {r, �}, by formula (2.5) and let detHε(R,F )(L) denote it.

We can still define quantum elementary symmetric polynomials in the algebras Hε(R, F ) by formu-
las (2.13), where the projectors A(k) can be moved to the rightmost position or placed in both positions,
to the right and to the left of the chain of L-matrices.

We note that the quantum determinant in the algebra Hε(R, F ) also differs from the highest quantum
elementary symmetric polynomial by a factor.

Remark. Such algebras were first considered by Manin’s monograph [17]. Their definition was mo-
tivated by the following consideration. We endow the space V with the coaction of an RTT algebra,
xi → tji ⊗ xj , and extend it to the space V by assuming that the generators xi and tjk mutually commute.
Relation (3.5) or (3.6) where we set F = P then means that the respective subspace ImA(2) or Im S(2) is
preserved under this coaction. But if F �= P , then the assumption that the generators xi and tjk commute
is no longer applicable.
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Because relation (2.14) holds in any left HQA, we can write the quantum determinant detH�(R,P )(L),
where R is one of symmetries (2.6) or its higher-dimensional counterpart, as a column determinant. In
any right HQA, we can write the quantum determinants as row determinants. Nevertheless, in any HQA
the number of relations between the generators is insufficient to prove that the elementary polynomials
mutually commute.

4. Generalized Yangians and integrable systems of CFRS type

We first describe the Baxterization procedure, which allows constructing current braidings via invo-
lutive and Hecke symmetries (see [18], [19]). We clarify that by a current braiding R(u, v), we mean an
operator depending on parameters and satisfying the braid relation

R12(u, v)R23(u, w)R12(v, w) = R23(v, w)R12(u, w)R23(u, v). (4.1)

We associate an involutive symmetry R with a current braiding by the rule

R(u, v) = R − I

u − v
(4.2)

and a Hecke symmetry R with a current braiding by the rule

R(u, v) = R − (q − q−1)uI

u − v
. (4.3)

By a direct calculation, we can verify that these operators satisfy relation (4.1). Current braidings (4.2)
and (4.3) (and all corresponding algebras) are respectively said to be rational and trigonometric.

We introduce a countable set of elements lij [k], k ∈ Z≥, 1 ≤ i, j ≤ N , and consider a formal power
series

L(u) =
∑
k≥0

L[k]u−k, L[k] = ‖lji [k]‖1≤i,j≤N , (4.4)

i.e., L(u) is an N×N matrix, and its elements are power series in u−1 with the coefficients lij [k].
A generalized Yangian Y(R, F ) is an associative unital algebra generated by elements lij [k] subject to

the system
R12(u, v)L1̄(u)L2̄(v) − L1̄(v)L2̄(u)R12(u, v) = 0, (4.5)

where L1̄(u) = L1(u) and L2̄(u) = F12L1̄(u)F−1
12 . We note that expanding the current matrix L(u) in a

series as indicated in (4.4), we obtain a countable set of polynomial relations for the generators lji [k].
In the case F = R, the algebra Y(R, R) with the supplementary condition L[0] = I is called a braided

or generalized Yangian of RE type (see [5] for details). We note that the condition L[0] = I is motivated
by the evaluation morphism, similar to that in the Drinfeld Yangian Y(gl(N)), which is a particular case
of rational Yangians corresponding to the symmetry R = F = P .

We note that for a special value of the ratio u/v = q2 in the trigonometric case, system (4.5) can be
treated in terms of the HQA. A similar treatment is possible in the rational case if u−v = 1. More precisely,
for the indicated relations between the parameters u and v, the current braiding R(u, v) becomes equal (up
to a numerical factor) to the R-skew-symmetrizer A(2). Therefore, in the rational and trigonometric cases,
we obtain the relations

A(2)L1̄(u)L2̄(u − 1) = L1̄(u − 1)L2̄(u)A(2),

A(2)L1̄(u)L2̄(q
−2 u) = L1̄(q

−2 u)L2̄(u)A(2),
(4.6)
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and we consequently have

A(2)L1̄(u)L2̄(u − 1)S(2) = 0, S(2)L1̄(u − 1)L2̄(u)A(2) = 0,

A(2)L1̄(u)L2̄(q
−2 u)S(2) = 0, S(2)L1̄(q

−2 u)L2̄(u)A(2) = 0
(4.7)

in the respective rational and trigonometric cases; using the formal Taylor series expansions

L(u − 1) = e−∂uL(u)e∂u , L(q−2u) = q−2u∂uL(u)q2u∂u ,

where ∂u = d/du, we can rewrite relations (4.7) in the form

A(2)(e−∂uL1̄(u))(e−∂uL2̄(u))S(2) = 0, S(2)(e∂uL1̄(u))(e∂uL2̄(u))A(2) = 0,

A(2)(q−2u∂uL1̄(u))(q−2u∂uL2̄(u))S(2) = 0, S(2)(q2u∂uL1̄(u))(q2u∂uL2̄(u))A(2) = 0

in the respective rational and trigonometric cases. Hence, the operator e−∂uL(u) or q−2u∂u L(u)) plays the
role of the generating matrix of a left HQA, and the operator e∂uL(u) or q2u∂uL(u)) plays the role of the
generating matrix of a right HQA.

We now define quantum elementary symmetric polynomials in the respective rational and trigonometric
cases as

e0(u) = 1, ek(u) = TrR(1...k) A(k) L1̄(u)L2̄(u − 1) · · ·Lk̄(u − k + 1),

e0(u) = 1, ek(u) = TrR(1...k) A(k) L1̄(u)L2̄(q
−2u) · · ·Lk̄(q−2(k−1)u),

k ≥ 1.

We note that we can place the projectors A(k) in these formulas after the chain of the matrices L or at two
positions, to the right and to the left of the chain of the L. Moreover, we can write the parameters of the
matrices in the reverse order. These transformations all lead to identical results.

Let R be an even symmetry of rank m. We define the quantum determinants in the respective rational
and trigonometric generalized Yangians by setting

detY(R,F )(L(u)) = 〈v|L1̄(u)L2̄(u − 1) · · ·Lm(u − m + 1)|u〉,

detY(R,F )(L(u)) = 〈v|L1̄(u)L2̄(q
−2u) · · ·Lm(q−2(m−1)u)|u〉.

We note that the quantum determinant equals the highest elementary symmetric polynomial em(u) up to
a factor in full analogy with (2.15). If F = P , then this equality is exact.

We consider the case F = P in more detail. Assuming that m = N and that v1...N and u1...N are
nontrivial, we can write the quantum determinant as a column or row determinant:

detY(R,P )(L) = vj1...jN l1j1(u) · · · lNjN
(u − N + 1) = ui1...iN li11 (u − N + 1) · · · liN

N (u)

in the rational case and

detY(R,P )(L) = vj1...jN l1j1(u) · · · lNjN
(q−2(N−1)u) = ui1...iN li11 (q−2(N−1)u) · · · liN

N (u)

in the trigonometric case.
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We now take the first (involutive) symmetry in (2.6) or its higher-dimensional counterpart as R.
Because the corresponding generalized Yangian is rational, we can write the corresponding quantum deter-
minant as

detY(R,P )(L) =
∑

σ

(−q)l(σ)l1σ(1)(u) · · · lNσ(N)(u − N + 1) =

=
∑

σ

(−q−1)l(σ)l
σ(1)
1 (u − N + 1) · · · lσ(N)

N (u).

In the case of the Uq(sl(N)) symmetries R, the corresponding generalized Yangian is trigonometric. Con-
sequently, we have

detY(R,P )(L) =
∑

σ

(−q)l(σ)l1σ(1)(u) · · · lNσ(N)(q
−2(N−1)u) =

=
∑

σ

(−q)l(σ)l
σ(1)
1 (q−2(N−1)u) · · · lσ(N)

N (u).

We note that the orders of arguments in the matrices are opposite in the expressions for the column and row
determinants. We also note that similarly to the case of the algebras L(R, F ), the quantum determinant is
always central in the generalized Yangians Y(R, R) of RE type but this is not so in Y(R, P ) of RTT type.
More precisely, the quantum determinant detY(R,P )(L) is central if and only if it is central for the quantum
determinant detL(R,P )(L). This property was proved in [5].

The quantum versions of power sums can also be defined in all generalized Yangians, and some quantum
versions of the Cayley–Hamilton identity hold in all of them. The subalgebra generated in the generalized
Yangian Y(R, F ) by the quantum elementary polynomials is called the Bethe subalgebra and is denoted
by B(R, F ).

Proposition 4 [20]. For any compatible pair (R, F ) of braidings such that R is a skew-invertible

involutive or Hecke symmetry the Bethe subalgebra B(R, F ) ⊂ Y(R, F ) is commutative.

A particular case of this proposition, corresponding to F = P and R coming from the Uq(sl(N)) QG
was proved in [7]. (We note that the formula for the projectors A(k) should be taken as in (2.1))

The generalized Yangians of the RE type have a very important property: they admit evaluation
morphisms. These morphisms were constructed in [5]. Similarly to the evaluation map in the Drinfeld
Yangian Y(P, P ), they have the form

L(u) �→ 1 +
M

u

in both the rational and trigonometric cases. But the target algebras generated by matrix elements of M

differ: it is a modified RE algebra with respect to the symmetry R in the rational case and an unmodified
RE algebra in the trigonometric case.

In conclusion, we make a short remark. As already noted, it is impossible to prove that the quantum
elementary polynomials in a HQA commute. Nevertheless, relations (4.6) allow establishing this property
for the generalized Yangians because they are more restrictive than the defining relations in an HQA.
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