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LIE SYMMETRY, NONLOCAL SYMMETRY ANALYSIS, AND

INTERACTION OF SOLUTIONS OF A (2+1)-DIMENSIONAL

KDV–MKDV EQUATION

Zhonglong Zhao∗ and Lingchao He†

We use the method of Lie symmetry analysis to investigate the properties of a (2+1)-dimensional KdV–

mKdV equation. Using the Ibragimov method, which relies only on the existence of the commutator table,

we construct an optimal system of one-dimensional subalgebras of the Lie algebra and study invariant

solutions and similarity reductions by considering representatives of the optimal system. To analyze

some nonlocal symmetry properties, we apply the truncated Painlevé expansion method and obtain two

Bäcklund transformations that are not autotransformations and one auto-Bäcklund transformation. To

localize the nonlocal symmetry and obtain a local Lie point symmetry, we introduce an expanded system.

Using solutions of the corresponding Cauchy problems for Lie point symmetries, we prove a theorem on a

finite symmetry transformation and find the nth Bäcklund transformation in terms of determinants. Based

on one of the obtained Bäcklund transformations that are not autotransformations, we derive lump-type

solutions. In addition, we prove the integrability of the equation by the consistent Riccati expansion

method. We present explicit soliton-cnoidal wave solutions and investigate the dynamical characteristics

of the obtained solutions using numerical analysis.
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1. Introduction

In the last few decades, studying symmetry theory has attracted the attention of many mathematical
physicists. A symmetry allows transforming any solution of a partial differential equation (PDE) into a
manifold of solutions of the same equation. Local symmetries are defined topologically, and their infinitesi-
mals depend on only the independent variable and finite-order derivatives of the dependent variables. The
well-known Lie point symmetries, contact symmetries, and higher-order symmetries are all local [1]–[3].
Because the infinitesimals of a local symmetry have the localization property, local symmetries are just a

∗Department of Mathematics, North University of China, Taiyuan, Shanxi, China, e-mail: zhaozlhit@163.com,

zhaozl@nuc.edu.cn.
†College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China.

This research is supported by Shanxi Province Science Foundation for Youths (No. 201901D211274), Research

Project Supported by Shanxi Scholarship Council of China (No. 2020-105), Scientific and Technological Innovation

Programs of Higher Education Institutions in Shanxi (No. 2019L0531), and Fund for Shanxi “1331KIRT.”

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya

i Matematicheskaya Fizika, Vol. 206, No. 2, pp. 164–185, February, 2021. Received September 12, 2020. Revised

October 18, 2020. Accepted October 22, 2020.

142 0040-5779/21/2062-0142 c© 2021 Pleiades Publishing, Ltd.



subset of all symmetries. A symmetry whose infinitesimals depend on integrals of dependent variables is
said to be nonlocal. Compared with a local symmetry, a nonlocal symmetry can reflect the global behavior
of dependent variables. Considering the absence of a unified approach for seeking nonlocal symmetries,
Bluman and Cheviakov proposed a systematic method for finding them using potential systems obtained
from conservation laws [4], [5]. Further, a method based on analyzing symmetries of the inverse potential
systems was proposed in [6]–[8] for studying nonlocal symmetries of a system of PDEs. It was shown
in several studies that in addition to potential systems, nonlocal symmetries can be constructed using a
Darboux transformation [9], a Bäcklund transformation [10], a Lax pair [11], and so on.

Painlevé analysis is an effective method for investigating the integrability properties of PDEs [12]. It
is known that the residue from a truncated Painlevé expansion is a nonlocal symmetry. Based on this,
Lou et al. developed a concise method for constructing nonlocal symmetries of integrable systems[13], [14].
Subsequently, many nonlocal symmetries and interaction solutions of integrable systems such as the (2+1)-
dimensional modified Korteweg–de Vries (mKdV)–Calogero–Bogoyavlenkskii–Schiff equation [15], the Gard-
ner equation [16], the (2+1)-dimensional Konopelchenko–Dubrovsky equation [17], the reduced Maxwell–
Bloch equations [18], and a (2+1)-dimensional nonlinear system [19] (which can be regarded as a generalized
sine-Gordon equation) were investigated using the truncated Painlevé expansion method. Similarly to the
truncated Painlevé expansion, we can substitute a consistent Riccati expansion (CRE) in an integrable
equation and use it to construct a Bäcklund transformation, which is useful in studying solutions describing
the interaction between a solitary wave and another nonlinear wave [20]. If the CRE method is applicable
to an integrable equation, then this equation is CRE integrable. It was shown that many integrable systems
have CRE integrability, for example, the (2+1)-dimensional KdV equation [21], the modified Kadomtsev–
Petviashvili equation [22], and the (2+1)-dimensional Boussinesq equation [23].

As is known, a solitary wave, described by the classical KdV equation

ut + 6uux + uxxx = 0,

was first observed in a narrow channel by John Scott Russell in 1834. Later, the bell-shaped solution of the
KdV equation was obtained, and the existence of solitary waves was thus proved mathematically. In recent
years, more and more studies have shown that the KdV equation plays an important role in analyzing
theoretical problems in many disciplines such as plasma physics, astrophysics, biology, ocean waves, and
other interdisciplinary subjects.

Here, we consider the (2+1)-dimensional KdV–mKdV equation

ut + uxxy + 4uuy − 4u2uy + 2uxv = 0, vx = uy − 2uuy. (1)

It is a generalization of the KdV equation from the standpoint of dimension and nonlinear terms. Clearly,
if y = x, then Eq. (1) is reducible to the KdV–mKdV equation

ut + 6uux − 6u2ux + uxxx = 0.

Analyses of the algebraic, geometric, and also integrability properties of the KdV–mKdV equation can be
found in many sources [24]–[27]. Equation (1) first appeared in studying a countable set of conservation
laws of a two-dimensional nonlinear equation [28]. The (2+1)-dimensional KdV–mKdV equation is closely
related to the (2+1)-dimensional Gardner equation [29]–[31]. A multisymplectic formulation was used in [32]
to investigate the generalized (2+1)-dimensional KdV–mKdV equation. In [33], the integrability of Eq. (1)
was investigated in the sense of Painlevé analysis, and some exact solutions were found using the Wronskian
technique. In [34], traveling wave solutions and conservation laws were obtained for Eq. (1). In solid state
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physics, the phenomenon of the propagation of a thermal pulse through a single crystal of sodium fluoride
can be explained using Eq. (1).

This paper is organized as follows. In Sec. 2, we use the Lie symmetry analysis method to obtain Lie
point symmetries of Eq. (1) and derive the group transformations of solutions. In Sec. 3, we construct
an optimal system of one-dimensional subalgebras of the Lie algebra using the Ibragimov method, which
relies on only the commutator table of the symmetry operators. In Sec. 4, based on the optimal system, we
consider similarity reductions and invariant solutions. In Sec. 5, we mainly focus on investigating nonlocal
symmetries and Bäcklund transformations using the truncated Painlevé expansion method. In Sec. 6,
applying the Bäcklund transformation obtained in Sec. 5, we construct lump-type solutions of Eq. (1). In
Sec. 7, we investigate the CRE integrability of Eq. (1). In Sec. 8, we obtain soliton-cnoidal wave solutions.
In Sec. 9, we present some conclusions.

2. Lie point symmetries

Proposition 1. For (2+1)-dimensional KdV–mKdV equation (1), we have the six Lie point symme-

tries

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂y
,

X4 = 2ϕ(t)
∂

∂x
+ ϕ′(t)

∂

∂v
, X5 = −t

∂

∂t
− y

∂

∂y
+ v

∂

∂v
,

X6 = −2t
∂

∂t
− 2x

∂

∂x
− (4t − 2y)

∂

∂y
+ (2u − 1)

∂

∂u
.

(2)

Proof. The Lie algebra of the (2+1)-dimensional KdV–mKdV equation is generated by the vector
field

X = ξ1(x, y, t, u, v)
∂

∂t
+ ξ2(x, y, t, u, v)

∂

∂x
+ ξ3(x, y, t, u, v)

∂

∂y
+ η1(x, y, t, u, v)

∂

∂u
+ η2(x, y, t, u, v)

∂

∂v
.

The third prolongation of X for Eq. (1) has the form

X(3) = X + η
1(1)
t

∂

∂ut
+ η1(1)

x

∂

∂ux
+ η1(1)

y

∂

∂uy
+ η2(1)

x

∂

∂vx
+ η1(3)

xxy

∂

∂uxxy
,

where the functions η
1(1)
t , η

1(1)
x , η

1(1)
y , η

2(1)
x , and η

1(3)
xxy are determined recursively. The invariance condition

is
X(3)(Λ1)

∣
∣
Δ1=0

= 0, X(3)(Λ2)
∣
∣
Δ2=0

= 0,

where
Δ1 = ut + uxxy + 4uuy − 4u2uy + 2uxv, Δ2 = vx − uy + 2uuy.

This invariance condition yields an overdetermined system of PDEs. Solving this system, we obtain

ξ1 = (−2c2 − c1)t + c3, ξ2 = −2c2x + 2ϕ(t) + c4, ξ3 = (−4t + 2y)c2 − c1y + c5,

η1 = 2c2u − c2, η2 = c1v + ϕ′(t).

Therefore, the infinite-dimensional Lie algebra for Eq. (1) is spanned by the vector fields presented in the
proposition.
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To consider a finite-dimensional Lie algebra spanned by the operators in Proposition 1, we choose an
arbitrary function ϕ(t) = t. We then obtain the usual vector fields (2) with X4 = 2t ∂/∂x + ∂/∂v.

Operators (2) generate a six-dimensional Lie algebra L6 under the commutators. These commutators
are given in Table 1. We obtain the corresponding one-parameter Lie transformation group for Xi (i =
1, . . . , 6) by solving the Cauchy problem for the system of ordinary differential equations

dt∗

dε
= ξ1(t∗, x∗, y∗, u∗, v∗),

dx∗

dε
= ξ2(t∗, x∗, y∗, u∗, v∗),

dy∗

dε
= ξ3(t∗, x∗, y∗, u∗, v∗),

du∗

dε
= η1(t∗, x∗, y∗, u∗, v∗),

dv∗

dε
= η2(t∗, x∗, y∗, u∗, v∗),

t∗|ε=0 = t, x∗|ε=0 = x, y∗|ε=0 = y, u∗|ε=0 = u, v∗|ε=0 = v.

As a result, we obtain six one-parameter groups of symmetries:

G1 : (t∗, x∗, y∗, u∗, v∗) → (t + ε, x, y, u, v),

G2 : (t∗, x∗, y∗, u∗, v∗) → (t, x + ε, y, u, v),

G3 : (t∗, x∗, y∗, u∗, v∗) → (t, x, y + ε, u, v),

G4 : (t∗, x∗, y∗, u∗, v∗) → (t, 2εt + x, y, u, v + ε),

G5 : (t∗, x∗, y∗, u∗, v∗) → (te−ε, x, ye−ε, u, veε),

G6 : (t∗, x∗, y∗, u∗, v∗) →
(

te−2ε, xe−2ε, te−2ε + (−t + y)e2ε,
1
2

+
(

u − 1
2

)

e2ε, v

)

.

Table 1
[Xi,Xj] X1 X2 X3 X4 X5 X6

X1 0 0 0 2X2 −X1 −2X1 − 4X3

X2 0 0 0 0 0 −2X2

X3 0 0 0 0 −X3 2X3

X4 −2X2 0 0 0 X4 0
X5 X1 0 X3 −X4 0 0
X6 2X1 + 4X3 2X2 −2X3 0 0 0

Commutator table.

Theorem 1. If u = f(t, x, y), v = g(t, x, y) is a solution of the (2+1)-dimensional KdV–mKdV equa-

tion, then we can obtain corresponding new solutions of the groups of symmetries as

u1 = f(t − ε, x, y), v1 = g(t − ε, x, y),

u2 = f(t, x − ε, y), v2 = g(t, x − ε, y),

u3 = f(t, x, y − ε), v3 = g(t, x, y − ε),

u4 = f(t, x − 2εt, y), v4 = g(t, x − 2εt, y) + ε, (3)
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u5 = f(eεt, x, eεy), v5 = eεg(eεt, x, eεy),

u6 =
1
2

+ e2ε

[

f(e2εt, e2εx, e2εt + e−2ε(y − t)) − 1
2

]

,

v6 = g(e2εt, e2εx, e2εt + e−2ε(y − t)).

This theorem shows that we can obtain new solutions of Eq. (1) from a seed solution f(t, x, y), g(t, x, y)
using formulas (3).

3. Optimal systems of subalgebras

The concept of optimal systems of subalgebras of a Lie algebra was first introduced by Ovsyannikov to
describe the group of invariant solutions of PDEs. The Ibragimov method for constructing optimal systems
of subalgebras is a simple method [35], [36] and relies on only the commutator table of symmetry operators.
We previously extended this method to the (2+1)-dimensional Boiti–Leon–Pempinelli system [37], the
Heisenberg equation [38], and the AKNS system [39] and studied the optimal systems of subalgebras of the
Lie algebra for these equations.

We can write an arbitrary operator of the Lie algebra L6 expanded in the symmetry operators Xi

(i = 1, . . . , 6) as
X = l1X1 + l2X2 + · · · + l6X6. (4)

Obviously, because operator (4) depends on six arbitrary constants l1, l2, . . . , l6, there are infinitely many
one-dimensional subalgebras of the Lie algebra L6. Two subalgebras are similar if they are related by a
transformation of the symmetry group. The corresponding invariant solutions in these subalgebras are
then related by the same transformation. In this section, we assign similar operators X ∈ L6 to one
class and choose one representative from each class. The set of representatives comprises an optimal
system of one-dimensional subalgebras. The transformations of the symmetry group are equivalent to
linear transformations of the vector l = (l1, . . . , l6).

To find the linear transformations of the vector l, we use the generators

Ei = cλ
ij l

j ∂

∂lλ
(i = 1, . . . , 6), (5)

where cλ
ij is defined by [Xi, Xj ] = cλ

ijXλ. Using Eq. (5) and Table 1, we can write E1, . . . , E6 as

E1 = −(l5 + 2l6)
∂

∂l1
+ 2l4

∂

∂l2
− 4l6

∂

∂l3
,

E2 = −2l6
∂

∂l2
, E3 = (−l5 + 2l6)

∂

∂l3
,

E4 = −2l1
∂

∂l2
+ l5

∂

∂l4
, E5 = l1

∂

∂l1
+ l3

∂

∂l3
− l4

∂

∂l4
,

E6 = 2l1
∂

∂l1
+ 2l2

∂

∂l2
+ (4l1 − 2l3)

∂

∂l3
.

(6)

To find the transformations given by these generators, we must solve the Lie equations

dl̃1

da1
= −(l̃5 + 2l̃6),

dl̃2

da1
= 2l̃4,

dl̃3

da1
= −4l̃6,

dl̃4

da1
= 0,

dl̃5

da1
= 0,

dl̃6

da1
= 0,

146



dl̃1

da2
= 0,

dl̃2

da2
= −2l̃6,

dl̃3

da2
= 0,

dl̃4

da2
= 0,

dl̃5

da2
= 0,

dl̃6

da2
= 0,

dl̃1

da3
= 0,

dl̃2

da3
= 0,

dl̃3

da3
= −l̃5 + 2l̃6,

dl̃4

da3
= 0,

dl̃5

da3
= 0,

dl̃6

da3
= 0,

dl̃1

da4
= 0,

dl̃2

da4
= −2l̃1,

dl̃3

da4
= 0,

dl̃4

da4
= l̃5,

dl̃5

da4
= 0,

dl̃6

da4
= 0,

dl̃1

da5
= l̃1,

dl̃2

da5
= 0,

dl̃3

da5
= l̃3,

dl̃4

da5
= −l̃4,

dl̃5

da5
= 0,

dl̃6

da5
= 0,

dl̃1

da6
= 2l̃1,

dl̃2

da6
= 2l̃2,

dl̃3

da6
= 4l̃1 − 2l̃3,

dl̃4

da6
= 0,

dl̃5

da6
= 0,

dl̃6

da6
= 0

with the initial condition l̃|ai=0 = l (i = 1, . . . , 6). Solving them, we obtain six one-parameter transforma-
tions

T1 : l̃1 = −a1l
5 − 2a1l

6 + l1, l̃2 = 2a1l
4 + l2, l̃3 = −4a1l

6 + l3,

l̃4 = l4, l̃5 = l5, l̃6 = l6,

T2 : l̃1 = l1, l̃2 = −2a2l
6 + l2, l̃3 = l3,

l̃4 = l4, l̃5 = l5, l̃6 = l6,

T3 : l̃1 = l1, l̃2 = l2, l̃3 = −a3l
5 + 2a3l

6 + l3,

l̃4 = l4, l̃5 = l5, l̃6 = l6,

T4 : l̃1 = l1, l̃2 = −2a4l
1 + l2, l̃3 = l3,

l̃4 = a4l
5 + l4, l̃5 = l5, l̃6 = l6,

T5 : l̃1 = ea5 l1, l̃2 = l2, l̃3 = ea5 l3

l̃4 = e−a5 l4, l̃5 = l5, l̃6 = l6,

T6 : l̃1 = e2a6 l1, l̃2 = e2a6 l2, l̃3 = e2a6 l1 + e−2a6(−l1 + l3),

l̃4 = l4, l̃5 = l5, l̃6 = l6.

These transformations map the vector X given by (4) to the vector

X̃ = l̃1X1 + l̃2X2 + l̃3X3 + l̃4X4 + l̃5X5 + l̃6X6.

Constructing the optimal system is equivalent to simplifying the vector l = (l1, l2, . . . , l6) using the trans-
formations Ti (i = 1, . . . , 6).

Theorem 2. An optimal system of one-dimensional subalgebras of the Lie algebra spanned by the
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operators X1, X2, . . . , X6 of the (2+1)-dimensional KdV–mKdV equation is provided by the operators

X1, X2, X3, X4, X5, X6,

X1 ± X5, X1 ± X6, X1 ± X5 ± X6,

X1 ± X4, X1 ± X4 ± X6, X2 ± X3,

X4 ± X3, X5 ± X2, X5 ± X6, X6 ± X4.

Proof. We divide the construction of an optimal system of one-dimensional subalgebras of the Lie
algebra L6 into two cases.

Case 1. Let l1 �= 0.

We consider the vector l = (l1, l2, l3, l4, l5, l6). Taking a4 = l2/2l1 in T4, we reduce this vector to
l = (l1, 0, l3, l4, l5, l6).

We take a6 = (1/4) log(1 − l3/l1) in T6 and reduce l to l = (l1, 0, 0, l4, l5, l6).

Case 1.1. Let l5 �= 0. Then we can use T4 with a4 = −l4/l5 and obtain l̃4 = 0, and we reduce l to
l = (l1, 0, 0, 0, l5, l6), which provides the operators X1 ± X5 and X1 ± X5 ± X6.

Case 1.2. Let l5 = 0. We consider l = (l1, 0, 0, l4, 0, l6), which yields the operators X1, X1 ± X4,
X1 ± X6, and X1 ± X4 ± X6.

Case 2. Let l1 = 0. We must work with the vector l = (0, l2, l3, l4, l5, l6).

Case 2.1. Let l6 �= 0. Taking a4 = l3/4l6 and using T1, we obtain l = (0, l2, 0, l4, l5, l6), If we take
a2 = l2/2l6 and use T2, then we can further reduce l to l = (0, 0, 0, l4, l5, l6).

Case 2.1.1. Let l5 �= 0. Taking a4 = −l4/l5 in T4, we obtain l = (0, 0, 0, 0, l5, l6), which provides the
operators X5 and X5 ± X6.

Case 2.1.2. Let l5 = 0. Then we must work with l = (0, 0, 0, l4, 0, l6), which provides the operators
X6 and X6 ± X4.

Case 2.2. Let l6 = 0. We consider l = (0, l2, l3, l4, l5, 0).

Case 2.2.1. Let l5 �= 0. Taking a4 = −l4/l5 in T4, we obtain l̃4 = 0, and l is mapped to l =
(0, l2, l3, 0, l5, 0). Similarly, taking a3 = −l3/2l6 in T3 yields l = (0, l2, 0, 0, l5, 0), which provides the
operator X5 ± X2.

Case 2.2.2. Let l5 = 0. Then we must work with l = (0, l2, l3, l4, 0, 0). If l4 �= 0, then we take
a1 = −l2/2l4 in T1 and transform the vector into l = (0, 0, l3, l4, 0, 0), which provides the operators X4 and
X4 ±X3. If l4 = 0, then we reduce l to l = (0, l2, l3, 0, 0, 0), which provides the operators X2, X2 ±X3, and
X3.

4. Similarity reductions and the invariant solutions

Based on the subalgebras of the optimal system in Theorem 2, we investigate the similarity reductions
of the (2+1)-dimensional KdV–mKdV equation. Invariant solutions can be obtained by solving the reduced
equations. We have the following theorem describing the optimal system of invariant solutions.
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Theorem 3. Some invariant solutions obtained from similarity reductions are described using repre-

sentatives of the optimal system in the following cases:

Case 1. X1 : u = f(x, y), v = g(x, y),

where fxxy + 4ffy − 4f2fy + 2fxg = 0, gx − fy + 2ffy = 0.
(7)

Case 2. X2 : u = f(y, t), v = g(y, t),

where ft + 4ffy − 4f2fy = 0, fy(2f − 1) = 0.
(8)

Case 3. X3 : u = f(x, t), v = g(x, t),

where ft + 2fxg = 0, gx = 0.
(9)

Case 4. X4 : u = f(y, t), v = g(y, t) +
x

2t
,

where ft + 4ffy − 4f2fy = 0, 1 − 2tfy + 4tffy = 0.

(10)

Case 5. X5 : u = f(ξ, η), v =
1
y
g(ξ, η), ξ = x, η =

t

y
,

where fη − ηfξξη − 4ηffη + 4ηf2fη + 2fξg = 0, gξ + ηfη − 2ηffη = 0.

(11)

Case 6. X6 : u =
1
2

+ f(ξ, η), v = g(ξ, η), ξ =
t

x
, η = −tx + xy,

where fξ + ξ2fξξη − 2ξηfξηη + η2fηηη + 2ξfξη − 4f2fη − 2ξfξg + 2ηfηg − 2fg = 0,

− ξgξ + ηgη + 2ffη = 0.

(12)

Case 7. X1 + X4 : u = f(ξ, η), v = t + g(ξ, η), ξ = y, η = t2 − x,

where fξηη + 4ffξ − 4f2fξ − 2fηg = 0, −gη − fξ + 2ffξ = 0.
(13)

Case 8. X2 + X3 : u = f(ξ, η), v = t + g(ξ, η), ξ = t, η = y − x,

where fξ + fηηη + 4ffη − 4f2fη − 2fηg = 0, −gη − fη + 2ffη = 0.
(14)

Case 9. X4 + X3 : u = f(ξ, η), v =
x

2t
+ g(ξ, η), ξ = t, η = y − x

2t
,

where 4ξ2fξ + fηηη + 16ξ2ffη − 16ξ2f2fη − 4ξfηg = 0,

1 − gη − 2ξfη + 2ξffη = 0.

(15)

Case 10. X5 + X6 : u =
1
2

(

1 +
2f(ξ, η)

x

)

, v =
g(ξ, η)√

x
,

ξ =
t

x3/2
, η =

√
x y −

√
x t,

where − 3ξgξ + ηgη − g + 4ffη = 0,

2fη + 4fξ − 16ffη − 8fg + 9ξ2fξξη + 21ξfξη − 6ξηfξξη +

+ η2fηηη − 3ηfηη − 12ξfξg + 4ηfηg = 0.

(16)
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Remark. In Theorem 3, we do not list all invariant solutions obtained using representatives of the
optimal system because some reduced systems are complicated PDEs with variable coefficients, which are
difficult to solve. All invariant solutions of Eq. (1) can be investigated if all 30 operators in Theorem 2
are used. In this section, we mainly presented 10 kinds of similarity reductions, which can be divided
into reduced systems with constant coefficients (Cases 1–3) and reduced systems with variable coefficients
(Cases 4–10).

In Case 1, system (7) admits the Lie point symmetries

X1 =
∂

∂x
, X2 = φ(y)

∂

∂y
− φ(y)v

∂

∂v
,

where φ(y) is an arbitrary function of y. In Cases 2 and 3, we can obtain the solutions u = c, v = g(y, t)
and u = m(−2n(t) + x), v = n′(t), where c is an arbitrary constant and m and n are arbitrary functions,
by solving the reduced systems directly.

It is difficult to directly obtain explicit solutions of the reduced systems with variable coefficients. We
can further reduce the dimensions of these systems (Cases 4–10) using symmetries to investigate the exact
power series solutions [40], [41].

5. Nonlocal symmetry and Bäcklund transformation

Taking into account that the residue from the truncated Painlevé expansion, as is known, is a nonlocal
symmetry, we devote this section to analyzing the nonlocal symmetry and the Bäcklund transformation of
Eq. (1). Based on the Painlevé test and analyzing the truncated expansion, we write the expansion for
Eq. (1):

u = u0 +
u1

f
, v = v0 +

v1

f
+

v2

f2
, (17)

where u0, u1, v0, v1, v2, and f are functions of x, y, and t. Substituting these expansions in (1) and
equating the coefficients of like powers of 1/f to zero, we obtain the solutions for u0, u1, v0, v1, and v2:

u0 =
1
2

(

1 − fxx

fx

)

, u1 = fx,

v0 =
fxxfxy − fxft − fxfy − fxfxxy

2f2
x

, v1 = fxy, v2 = −fxfy,

(18)

where f satisfies the constraint relation

fxxxy =
fxfxyfxxx − f2

xftx − fxyf
2
x + fxxfxfy + 3fxxfxfxxy − 3fxyf

2
xx + fxxfxft

f2
x

, (19)

which is equivalent to the Schwarzian form

Ax + By + Cx = 0, (20)

where

A =
ft

fx
, B =

fxxx

fx
− 3

2
f2

xx

f2
x

, C =
fy

fx
.

As a result, we have the following theorems on the Bäcklund transformation, two of which are nonauto-
transformations and one is an autotransformation.
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Theorem 4 (Non-auto-Bäcklund transformation 1). If a function f is a solution of Schwarzian equa-

tion (20), then

u =
1
2

(

1 − fxx

fx

)

, v =
fxxfxy − fxft − fxfy − fxfxxy

2f2
x

(21)

is a solution of (2+1)-dimensional KdV–mKdV equation (1).

Theorem 5 (Non-auto-Bäcklund transformation 2). If a function f is a solution of Schwarzian equa-

tion (20), then

u =
1
2

(

1 − fxx

fx

)

+
fx

f
, v =

fxxfxy − fxft − fxfy − fxfxxy

2f2
x

+
fxy

f
− fxfy

f2
(22)

is a solution of (2+1)-dimensional KdV–mKdV equation (1).

Theorem 6 (Auto-Bäcklund transformation). If a function (u0, v0) is a solution of (2+1)-dimensional

KdV–mKdV equation (1), then

u = u0 +
fx

f
, v = v0 +

fxy

f
− fxfy

f2
(23)

is also a solution of (2+1)-dimensional KdV–mKdV equation (1), where f satisfies Schwarzian equation (20).

By definition, the residual symmetry of Eq. (1) is written as

σu = fx, σv = fxy. (24)

It is nonlocal because σu and σv contain the new variable f , which cannot be expressed in terms of u and v

and their derivatives. It is known that the Schwarzian equation is invariant under the Möbius transformation

f → a + bf

c + df
(ad �= bc), (25)

and this means that f has the point symmetry σf = −f2, which is easily derived from (25) if we set a = 0,
b = c = 1, and d = ε. The transformation

u =
1
2

(

1 − fxx

fx

)

, v =
fxxfxy − fxft − fxfy − fxfxxy

2f2
x

(26)

brings Eq. (1) to Schwarzian form (20). To find the residual symmetry group,

u → ũ(ε) = u + εσu, v → ṽ(ε) = v + εσv,

we must solve the Cauchy problem

dũ(ε)
dε

= f̃x(ε), ũ(ε)
∣
∣
ε=0

= u,

dṽ(ε)
dε

= f̃xy(ε), ṽ(ε)
∣
∣
ε=0

= v,

where ε is an infinitesimal parameter.
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To solve the Cauchy problem, we must introduce new variables to convert nonlocal symmetry (24) into
a local Lie point symmetry of an extended system. We introduce new variables by setting

h1 = fx, h2 = fy, h3 = h1y, (27)

in which case Eqs. (1), (20), (26), and (27) comprise the extended system. The Lie point symmetry of this
system has the form

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

σu

σv

σf

σh1

σh2

σh3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h1

h3

−f2

−2fh1

−2fh2

−2h2h1 − 2fh3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (28)

By virtue of Lie’s first theorem, we obtain the corresponding Cauchy problem for the Lie point symmetry

dũ(ε)
dε

= h̃1(ε), ũ(0) = u,

dṽ(ε)
dε

= h̃3(ε), ṽ(0) = v,

df̃(ε)
dε

= −f̃2(ε), f̃(0) = f,

dh̃1(ε)
dε

= −2f̃(ε)h̃1(ε), h̃1(0) = h1,

dh̃2(ε)
dε

= −2f̃(ε)h̃2(ε), h̃2(0) = h2,

dh̃3(ε)
dε

= −2h̃2(ε)h̃1(ε) − 2f̃(ε)h̃3(ε), h̃3(0) = h3.

(29)

Solving this initial value problem, we derive a theorem on the symmetry transformation.

Theorem 7. If (u, v, f, h1, h2, h3) is a solution of extended system (1), (20), (26), (27), then the

symmetry transformation maps it to

ũ(ε) = u +
εh1

1 + εf
, ṽ(ε) = v +

εh3

(1 + εf)2
− ε2h1h2

(1 + εf)2
, f̃(ε) =

f

1 + εf
,

h̃1(ε) =
h1

(1 + εf)2
, h̃2(ε) =

h2

(1 + εf)2
, h̃3(ε) =

h3

(1 + εf)2
− 2εh1h2

(1 + εf)3
,

(30)

and
(

ũ(ε), ṽ(ε), f̃(ε), h̃1(ε), h̃2(ε), h̃3(ε)
)

is also a solution of the extended system.

Theorem 7 is useful for obtaining new solutions of Eq. (1) from a seed solution of Schwarzian form (20).
Starting from the form of Eq. (19), we easily obtain f = eρx+ωy+κt. Using symmetry transformation (30),
we obtain a new solution of Eq. (1):

u =
1
2
(1 − ρ) +

ερeρx+ωy+κt

1 + εeρx+ωy+κt
, (31)

v = −κ + ω

2ρ
+

ερωeρx+ωy+κt

1 + εeρx+ωy+κt
− ε2ρω(eρx+ωy+κt)2

(1 + εeρx+ωy+κt)2
, (32)
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Fig. 1. Kink-type solitary wave (31) and bright soliton (32) with ρ = 1, ω = 2, κ = 3, and ε = 0.1:

three-dimensional plots of (a) u(x, y, 0) and (b) v(x, y, 0).

where ρ, ω, and κ are arbitrary constants. We show this solution with a particular choice of the parameters
and t = 0 in Fig. 1.

Because of the symmetry, all Eqs. (24) are linear in f , and Schwarzian equation (20) has infinitely
many solutions. We obtain infinitely many nonlocal symmetries

σu
n =

n∑

i=1

ϑifi,x, σv
n =

n∑

i=1

ϑifi,xy, (33)

where n is an arbitrary constant and fi (i = 1, . . . , n) are solutions of the Schwarzian equation

Ãx + B̃y + C̃x = 0, (34)

where

Ã =
fi,t

fi,x
, B̃ =

fi,xxx

fi,x
− 3

2
f2

i,xx

f2
i,x

, C̃ =
fi,y

fi,x
.

Similarly to the n=1 case, we introduce new variables to augment Eq. (1) and obtain an extended system
such that nonlocal symmetry (33) can be localized and converted into a Lie point symmetry. The new
variables are given by

h1,i = fi,x, h2,i = fi,y, h3,i = h1y,i. (35)

As a result, nonlocal symmetry (33) becomes the Lie point symmetry

σu
n =

n∑

i=1

ϑih1,i, σv
n =

n∑

i=1

ϑih3,i, σfi = −ϑif
2
i −

n∑

j �=i

ϑjfifj,

σh1,i = −2ϑifih1,i −
n∑

j �=i

ϑj(fih1,j + fjh1,i),

σh2,j = −2ϑifih2,i −
n∑

j �=i

ϑj(fih2,j + fjh2,i),

σh3,i = −2ϑi(h2,jh1,i + fih3,i) −
n∑

j �=i

ϑj(h2,jh1,j + h2,jh1,i + fih3,j + fjh3,i).
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We write the corresponding Cauchy problem for the point symmetry as

dũ(ε)
dε

=
n∑

i=1

ϑih̃1,i(ε),

dṽ(ε)
dε

=
n∑

i=1

ϑih̃3,i(ε),

df̃i(ε)
dε

= −ϑif̃
2
i (ε) −

n∑

j �=i

ϑj f̃i(ε)f̃j(ε),

dh̃1,i(ε)
dε

= −2ϑif̃i(ε)h̃1,i(ε) −
n∑

j �=i

ϑj

(

f̃i(ε)h̃1,j(ε) + f̃j(ε)h̃1,i(ε)
)

,

dh̃2,i(ε)
dε

= −2ϑif̃i(ε)h̃2,i(ε) −
n∑

j �=i

ϑj

(

f̃i(ε)h̃2,j(ε) + f̃j(ε)h̃2,i(ε)
)

,

dh̃3,i(ε)
dε

= −2ϑi

(

h̃2,i(ε)h̃1,i(ε) + f̃i(ε)h̃3,i(ε)
)

−

−
n∑

j �=i

ϑj

(

h̃2,i(ε)h̃1,j(ε) + h̃2,j(ε)h̃1,i(ε) + f̃i(ε)h̃3,j(ε) + f̃j(ε)h̃3,i(ε)
)

with the initial conditions

ũ(0) = u, ṽ(0) = v, f̃i(0) = fi, h̃1,i(0) = h1,i, h̃2,i(0) = h2,i, h̃3,i(0) = h3,i.

Solving this problem, we establish a theorem on the nth Bäcklund transformation.

Theorem 8. If (u, v, fi, h1,i, h2,i, h3,i) is a solution of extended system (1), (34), (35) and

u =
1
2

(

1 − fi,xx

fi,x

)

, v =
fi,xxfi,xy − fi,xfi,t − fi,xfi,y − fi,xfi,xxy

2f2
i,x

,

then
(

ũ(ε), ṽ(ε), f̃i(ε), h̃1,i(ε), h̃2,i(ε), h̃3,i(ε)
)

, where

ũ(ε) = u + (log�)x, ṽ(ε) = v + (log�)xy,

f̃i(ε) =
�i

� , h̃1,i(ε) = f̃i,x(ε), h̃2,i(ε) = f̃i,y(ε), h̃3,i(ε) = f̃i,xy(ε),

is also a solution of the extended system. Here, � is the determinant

� =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ϑ1εf1 + 1 ϑ1εθ12 · · · ϑ1εθ1n

ϑ2εθ21 ϑ2εf2 + 1
. . .

...

...
. . .

. . . ϑn−1εθn−1,n

ϑnεθ1n · · · ϑnεθn,n−1 ϑnεfn + 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, θij =
√

fifj , (36)

and �i is the determinant of the matrix obtained by replacing the ith row in �i with

θ1i · · · θi,i−1 fi θi,i+1 · · · θin.
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6. Obtaining lump-type solutions using a non-auto-Bäcklund
transformation

Lumps, being one kind of rogue wave, arise in many branches of science, for example, in describing
waves in shallow water, optical media, and the Bose–Einstein condensate [42]–[44]. It was proved that
bilinear functions can be used to construct lump solutions of integrable systems [45]–[49]. The function f

in Theorem 5 satisfies trilinear equation (19), and this suggests the idea to construct a solution in the form
of a quadratic function. In [49], a solution of the Kadomtsev–Petviashvili equation was constructed using
bilinear forms. Inspired by this work, we use non-auto-Bäcklund transformation 2 can be used to construct
lump solitons and similar lump solutions of Eq. (1).

To find a quadratic solution of Eq. (19), we choose

f = (a1x + a2y + a3t + a4)2 + (a5x + a6y + a7t + a8)2 + a9, (37)

where ai (i = 1, . . . , 9) are real parameters to be determined. Substituting (37) in (19) and using symbolic
computation, we obtain equations relating the ai:

a3 = −−a1a5a7 + a2a
2
5 + a2a

2
1

a2
5

, a6 = −a1a2

a5
. (38)

Substituting (37) with (38) in (22) gives the solutions

u =
1
2

(

1 − fxx

fx

)

+
fx

f
, (39)

v =
fxxfxy − fxft − fxfy − fxfxxy

2f2
x

+
fxy

f
− fxfy

f2
, (40)

where

f =
(

a1x + a2y − −a1a5a7 + a2a
2
5 + a2a

2
1

a2
5

t + a4

)2

+
(

a5x − a1a2

a5
y + a7t + a8

)2

+ a9

and the ai are arbitrary constants. Solutions (39) and (40) can be used to describe nonlinear wave phe-
nomena in oceanography and nonlinear optics.

In Fig. 2, we show the spatial localization of solutions (39) and (40) with certain values of the parameters
ai. In Figs. 2a and 2b, we see a wave falling off on both sides according to the law of inverse proportionality.
This is a wave of the lump type because the function u given by (39) tends to zero as f → ∞. Compared
with the solution u given by (39), the lump soliton v given by (40) is a spatially localized wave with a large
energy accumulation, which can be seen in Figs. 2c and 2d. The condition a2

1a2/a5 + a2a5 �= 0 ensures the
localization of lump solution (40) in all spatial directions, i.e., v(x, y, t) → 0 as x2 + y2 → ∞ for any t ∈ R;
the inequality a9 > 0 makes the lump solution positive.

7. The CRE integrability

Theorem 9. If w(x, y, t) is a solution of the Schwarzian form

A′
x + B′

y + C′
x − δwxwxy = 0, (41)

where

A′ =
wt

wx

, B′ =
wxxx

wx

− 3
2

w2
xxx

w2
x

, C′ =
wy

wx

,
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Fig. 2. Lump-type wave (39) and lump soliton (40) with a1 = a4 = a5 = 1, a2 = −2, a7 = 1/2,

a8 = 3, and a9 = 4: (a) three-dimensional plot of u(x, y, 0) and (b) plot of u(x, y, 0) along the x axis

with y = 0 (solid), y = 2 (dashed), and y = 4 (dotted); (c) three-dimensional plot of v(x, y, 0) and

(d) plot of v(x, y, 0) along the x axis with y = 0 (solid), y = −2 (dashed), and y = −5 (dotted).

then

u =
1
2

(

1 + wx +
a1wxx

wx

)

+ wxR(w),

v = −
wxwy + wxwt − wxywxx + 2a0a2wyw3

x + wxwxxy + a1wxyw2
x

2w2
x

−

− (a2wxy + a1a2wxwy)R(w) − a2
2wxwyR2(w)

(42)

is a solution of system (1), where R(w) is a solution of the Riccati equation

R(w)w = a0 + a1R(w) + a2R
2(w), a0, a1, a2 = const. (43)

Proof. In accordance with the CRE method, we write the solutions of Eq. (1) in the form

u = u0 + u1R(w), v = v0 + v1R(w) + v2R
2(w), (44)
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where R(w) is a solution of Riccati equation (43). Substituting the given expressions for u and v in (1)
with (43) taken into account and equating the coefficients of like powers of R(w) to zero, we obtain the
relations

u0 =
1
2

(

1 + wx +
a1wxx

wx

)

, u1 = wx,

v0 = −
wxwy + wxwt − wxywxx + 2a0a2wyw3

x + wxwxxy + a1wxyw2
x

2w2
x

,

v1 = −a2wxy − a1a2wxwy, v2 = −a2
2wxwy,

(45)

and the function w(x, y, t) satisfies the equation

wxxxy =
1

w2
x

(

3wxxwxwxxy − (wx)2wxy − (wx)2wtx + wxwxywxxx − 3wxy(wxx)2 +

+ wxwxxwy + wxxwxwt + δw4
xwxy

)

, (46)

where δ = a2
1 − 4a0a2, which is equivalent to (41). The theorem is proved.

8. Soliton-cnoidal wave solutions of Eq. (1)

In this section, we investigate solutions of Eq. (1) with a cnoidal wave form using Theorem 9. For the
Riccati equation, we choose

w = k1x + l1y + h1t + ψ(ξ), ξ = k2x + l2y + h2t, (47)

where ψξ = dψ(ξ)/dξ is a solution of the elliptic equation

ψ2
ξξ = c0 + c1ψξ + c2ψ

2
ξ + c3ψ

3
ξ + c4ψ

4
ξ , (48)

where the ci (i = 0, . . . , 4) are constants. Substituting (47) and (48) in (46), we obtain a set of constraint
equations for the coefficients ci:

c0 = −1
3

k1

(

(−δk3
1 + (1 + c2k

2
2)k1 − 2c1k

3
2)l2 + h2k1 − k2(h1 + l1)

)

l2k
4
2

,

c3 =
1
3

4δl2k
3
1 + (2k2

2l2c2 − h2 − l2)k1 − k2(l2c1k
2
2 − h1 − l1)

l2k
2
1k2

, c4 = δ.

(49)

Theorem 9 allows constructing explicit solutions describing the interaction between solutions of Schwar-
zian equation (41) and solutions of Riccati equation (43). As is known, a solution of the Riccati equation
is expressed in terms of the hyperbolic tangent. Based on the analysis presented above, we can conclude
that Eq. (41) has a solution written in terms of Jacobi elliptic functions. As a result, we obtain solutions
of Eq. (1) of the type of interacting soliton-cnoidal waves.

A simple solution of Eq. (48) is written in terms of the Jacobi elliptic function as

ψξ = μ0 + μ1sn(mξ, n).

We substitute this expression together with (49) in (48) and take the identities cn2( · ) = 1 − sn2( · ) and
dn2( · ) = 1 − n2sn2( · ) for the Jacobi elliptic function into account. We then equate the coefficients of like
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powers of sn to zero. We obtain

c1 = 16μ3
0a2a0 − 4μ3

0a
2
1 + 2μ0m

2n2 + 2μ0m
2,

c2 = −24μ2
0a2a0 + 6μ2

0a
2
1 − m2n2 − m2,

h1 = − ((1 + (2n2 − 2)m2k2
2)l2 + h2)

√

4m2δ + δ(h2μ0 + l1 + l2μ0)
δ

,

k1 = − (μ0a
2
1 − 4μ0a2a0 +

√

δm2 )k2

δ
, μ1 =

√

1
δ
mn.

(50)

Using formula (42), we derive a soliton-cnoidal wave solution of Eq. (1):

u =
1
2

μ1mCDk2
2 + k1 + (μ0 + μ1S)k2 + a1(k1 + (μ0 + μ1S)k2)

2

k1 + (μ0 + μ1S)k2
+

+
1
2
(k1 + (μ0 + μ1S)k2)Θ, (51)

v = − 1
2
[

(l1 + (μ0 + μ1S)l2)(k1 + (μ0 + μ1S)k2) +

+ (k1 + (μ0 + μ1S)k2)(h1 + (μ0 + μ1S)h2) − μ2
1m

2C2D2l2k
3
2 +

+ 2(k1 + (μ0 + μ1S)k2)3(l1 + (μ0 + μ1S)l2)a0a2 +

+ (k1 + (μ0 + μ1S)k2)(−μ1m
2D2S − μ1m

2C2n2S)l2k
2
2 +

+ (k1 + (μ0 + μ1S)k2)2μ1ml2k2a1CD
]

(k1 + (μ0 + μ1S)k2)−2 −

− 1
2

(−a2μ1ml2k2CD − a1a2(k1 + (μ0 + μ1S)k2)(l1 + (μ0 + μ1S)l2))
a2

Θ −

− 1
4
(k1 + (μ0 + μ1S)k2)(l1 + (μ0 + μ1S)l2)Θ2, (52)

where

Θ = a1 +
√

δ tanh
(

1
2

√
δ

(

k1x + l1y + h1t +
∫ ξ

ξ0

(

μ0 + μ1sn(mY, n)
)

dY

))

,

the constants a0, a1, a2, μ0, k2, l1, l2, h2, and ξ0 are arbitrary, the parameters h1, k1, and μ1 are given
by (50), and

S = sn(m(k2x + l2y + h2t), n), C = cn(m(k2x + l2y + h2t), n),

D = dn(m(k2x + l2y + h2t), n).

As can be seen in Fig. 3, the solution u given by (51) describes an interaction between a kink and a cnoidal
wave. We also present a plot of the solution v given by (52) (see Fig. 4), which describes a soliton traveling
along with a cnoidal wave. The solutions u and v play an important role in investigating atmospheric
dynamics and other physical fields modeled by the (2+1)-dimensional KdV–mKdV equation.

9. Conclusions

We have focused our attention on investigating the properties of local and nonlocal symmetries of a
(2+1)-dimensional KdV–mKdV equation, which describes the propagation of a thermal pulse. We applied
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Fig. 3. Soliton-cnoidal wave u(x, y, t) given by (51) with m = 1/4, n = 1/3, h2 = 3, k2 = 2, l1 = 1,

l2 = 2, a0 = 1, a1 = 3, a2 = 2, and ξ0 = 0: (a) three-dimensional plot of u(x, y, 0), (b) the wave

u(x, 0, 0) along the x axis, (c) the wave u(0, y, 0) along the y axis, and (d) the wave u(0, 0, t) along

the t axis.

Fig. 4. The same plots with the same parameters as in Fig. 3 for the soliton-cnoidal wave v(x, y, t)

given by (52).

the method of Lie symmetry analysis to obtain Lie point symmetries, the group transformation of solu-
tions, and an optimal system of one-dimensional subalgebras of the Lie algebra spanned by the Lie point
symmetries. This optimal system contains 30 operators. Using some of these operators, we considered
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similarity reductions of solutions and invariant solutions. We proved that we can expand Eq. (1) using
the truncated Painlevé expansion. Moreover, a nonlocal symmetry is obtained from the term correspond-
ing to the residue. Based on these results, we derived two non-auto-Bäcklund transformations and one
auto-Bäcklund transformation. In addition, we wrote the nth Bäcklund transformation in terms of the
determinant. Interestingly, the non-auto-Bäcklund transformation in Theorem 5 can be used to construct
the lump and lump-type solutions. The lump-type wave falling off on both sides of the wave maximum
describes an inverse proportional dependence. The considered (2+1)-dimensional KdV–mKdV equation is
integrable using the CRE method, and this allows obtaining solutions of the type of soliton-cnoidal waves.
Using numerical analysis, we investigated the dynamical characteristics of the interaction solutions.
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