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STUDY OF CYLINDRICALLY SYMMETRIC SOLUTIONS IN AN f(R)

GRAVITY BACKGROUND

M. A. Farooq∗ and M. F. Shamir†

We investigate static cylindrically symmetric solutions of the Weyl and Gödel space–times in the framework

of modified f(R) gravity. With this aim, we consider the modified higher-order theory of gravity based on

nonconformal invariant gravitational waves. From the modified Einstein equations, we derive two exact

solutions of the Weyl space–time and find one exact and one numerical solution of the Gödel space–time.

In particular, we obtain a family of exact solutions with a constant scalar curvature R depending on

arbitrary constants for both space–times. It is interesting that the second solution for the Weyl metric

has a nonconstant Ricci scalar. We find that the result obtained by solving the higher-order theory of

gravity is similar to the result for the Einstein field equations with a cosmological constant. Moreover, we

graphically study the role of the metric coefficients in both space–times.
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1. Introduction

Cosmology is the branch of astronomy concerned with investigating the Universe as a whole from the
Big Bang to today and further to what should occur in the future. The current generally accepted model
of cosmology is the theory of the Big Bang. Cosmologists have puzzled over mysterious ideas like dark
energy and dark matter. Cosmology spans the whole history of the Universe from birth to death with
many secrets at every phase. The beginning of the 20th century brought new insights into this vast field of
science. One of the greatest accomplishments of 20th-century physics is Albert Einstein’s theory of general
relativity (GR). Edwin Hubble investigated the galaxy from a different standpoint and concluded that the
Universe is not static but expanding. The expansion of the Universe became one of the most interesting
research topics in the last decade. Results based on data from observing supernovas using the Hubble space
telescope showed that the expansion of the Universe has accelerated [1]. This accelerating expansion of the
Universe is caused by some unidentified energy with a powerful negative pressure, called dark energy.

There are several modified theories of gravity that are assumed to describe the real cause of this
accelerating expansion of the Universe. Some popular modified theories are f(R), f(G), f(R,G), f(G, T ),
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f(R, T ), f(R, φ), and f(R, RαβRαβ, φ) theories, where T , G, R, Rαβ , and φ are the respective energy–
momentum trace, Gauss–Bonnet invariant, Ricci scalar, Ricci tensor, and scalar field. It is expected that
the modification of GR can explain the accelerating expansion of the Universe.

The most attention was attracted to theories of f(R) gravity as a concept explaining the nature of
dark energy and the gravitational potential. This is the simplest modified theory generalizing Einstein’s
GR [2]. In [3], theories of f(R) gravity were studied in the framework of the Palatini approach which agrees
with observations of accelerated expansion of the Universe. In [4], cylindrically symmetric solutions were
studied in a space with the metric of f(R) gravity where the set of the modified Einstein equations were
reduced to a single differential equation; it was shown how exact solutions corresponding to different models
of f(R) gravity can be constructed. Nojiri and Odintsov [5] considered a classical generalization of GR as a
unified explanation of inflation of the Universe at early times and later gravitational acceleration, studying
the structure and cosmological properties of various modified theories and investigating differences in their
representations and the relations between them. In [6], a review of the literature of the last decade can
be found, devoted to some standard problems and recent achievements of modified gravity, such as f(R),
f(G), and f(T ) theories in cosmology, and bouncing cosmology; the emphasis in this case is on the era of
inflation and the epoch of acceleration at late times.

In [7], a solution of an f(R) theory of gravity in a cylindrically symmetric Gödel space–time was
discussed, and the results of solutions of higher-order field equations and the Einstein field equations
with a cosmological constant were also compared. In [8], cylindrically symmetric vacuum solutions were
investigated using the Weyl metric in the context of modified f(T ) gravity, where T is the torsion scalar.
In [9], cylindrically symmetric solutions for a type of Gauss–Bonnet gravity were studied in detail, and the
existence of some families of exact solutions was shown using three viable models. Also in that paper, the
null energy condition was checked, and the existence of a cylindrical wormhole was predicted. In [10], static
cylindrically symmetric solutions of the Einstein field equations were investigated in the vacuum case, and
not only the well-known locally flat conic solution but also the space–time coefficients as powers of the
radial coordinate were found.

Expanding and collapsing solutions using a nonstatic cylindrically symmetric space–time in the frame-
work of f(R, T ) theory were discussed in [11]; an auxiliary solution of the Einstein–Maxwell field equations
was used. An expansion scalar was found whose positive and negative values ensure the respective expansion
and collapse. In [12], cylindrical solutions were investigated in the framework of the so-called mimetic grav-
ity, and a theorem that exact solutions with a nonzero cosmological constant are impossible for this theory
was proved. An exact static cylindrically symmetric black-hole solution in a locally conformal Weyl gravity
was presented in [13]; a solution containing a linear term that can yield a potential increasing linearly at
large distances was found. In [14], a cylindrically symmetric Weyl space–time was studied, and a solution
was found similar to the solution of Azadi et al. [4] for R = 0 and R = const �= 0. In [15], the Einstein field
equations were derived for a static cylindrically symmetric space–time in the presence of elastic matter,
and analytic and numerical solutions satisfying the dominant energy condition were found. In [16] in the
framework of f(R, T ) gravity, exact solutions were investigated for a cylindrically symmetric space–time
taking two different classes of models and then evaluating the energy densities and corresponding functions
f(R, T ) in each case.

2. Field equations in f(R) gravity

In this section, we briefly describe the modified field equations. We consider the Lagrangian [8]

L = R +
N∑

n=2

anRn, (1)
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where R is the Ricci scalar and the an are arbitrary coefficients. We use this Lagrangian to modify the
Einstein field equations such that gravitational waves are reducible to a conformally invariant form by an
appropriate choice of the arbitrary coefficients. Using the variational principle, from action (1), we obtain
the field equations [17]

Rij −
1
2
gijR +

N∑

n=2

nanRn−1

[(
Rij −

1
2n

gijR − n − 1
R

(R ;i;j − gij �R)
)
−

− (n − 1)(n − 2)
R2

(R ;iR ;j − gijR ;αR ;α)
]

= κTij. (2)

In the vacuum case, we can write these equations as

MRij −
1
2
gijL − M;i;j + gij �M = 0, (3)

where

M = 1 +
N∑

n=2

nanRn−1, L = R +
N∑

n=2

anRn. (4)

Writing Eqs. (3) in a contracted form, we obtain the relation between M and R

MR − 2L + 3 �M = 0. (5)

Taking this relation into account, we write modified Einstein equations (3) in the form

MRij − M;i;j

gij
=

1
4
(MR − �M). (6)

Below, we use them to simplify the field equations.

3. Vacuum solution for a Weyl space–time

We start with the general form of the metric in the cylindrical Weyl coordinates (t, r, φ, z) [4]

ds2 = −e2k−2u dt2 + e2k−2u dr2 + w2e−2u dφ2 + e2u dz2, (7)

where w = w(r), k = k(r), and u = (r). The corresponding scalar curvature is

R = −2(wk′′ − wu′′ − u′w′ + wu′ 2 + w′′)
e2k−2uw

, (8)

where the prime denotes the derivative with respect to the radial coordinate. From Eq. (6), we see that
the combination Ai ≡ (MRii − M;i;i)/gii (with fixed indices) is independent of the index i and therefore
Ai = Aj for all i and j. We can then write the independent field equations

−M ′′ + 2M ′(k′ − u′) + M

(
−−2k′w′

w
+

w′′

w
+ 2u′ 2

)
= 0, (9)

M ′(k′w2 − ww′) + Mw2

(
−−k′w′

w
+

w′′

w
− k′′

)
= 0, (10)

M ′(wk′ − 2u′w) + Mw

(
−k′′ + 2u′′ − −k′w′

w
+

2w′u′

w

)
= 0, (11)
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corresponding to At = Ar, At = Aφ, and At = Az. Differentiating Eq. (10) with respect to r, we obtain

M ′′ =
1

w(wk′ − w′)
(k(3) ×

× Mw2 + 3Mwk′′w′ − wk′M ′w′ + Mwk′w′′ + Mk′w′ 2 + M ′w′ 2 − Mw(3)w − Mw′w′′). (12)

From Eq. (11), we obtain the value of M ′:

M ′ =
M

w(k′ − 2u′)
(wk′′ + k′w′ − 2wu′′ − 2u′w′). (13)

Substituting the values of M ′ and M ′′ in Eq. (9) and the value of M ′ in Eq. (10), we now obtain

M

w(k′ − 2u′)(wk′ − w′)
[−w′ 3(k′ − 2u′) + ww′ 2(2k′u′ − 4u′2 − k′′ + 2u′′)+

+ w3
(
2k′ 2(k′′ − 2u′′ + u′ 2) + 2k(3)u′ − k′(k(3) + 2u′(k′′ − 2u′′) + 4u′ 3)

)
−

− w2(k′ − 2u′)(4k′′w′ + 2k′u′w′ − 2u′′w′ + 2u′2w′ − w(3))] = 0 (14)

and
M

w(k′ − 2u′)
[ww′(k′′ − 2u′′) + k′(w′ 2 + w)(2wu′′ − w′′) − 2u′(w′ 2 + w2k′′ − ww′′)] = 0. (15)

It is easy to see from the obtained equations that M = 0, and this gives

1 + 2a2R + 3a3R
2 + · · · + nanRn−1 = 0. (16)

This relation exactly coincides with the result obtained in [7] in the context of exact solutions of the modified
field equations. Here, we emphasize that it relates k(r), u(r), and w(r). Relation (16) depends only on
the arbitrary constants introduced in Hilbert Lagrangian (1) to compensate the additional gravitational
potential in the gravitational wave equation [18].

We present several examples of exact solutions of the field equations. Equation (16) for n = 2 gives
1 + 2a2R = 0. Substituting expression (8) for the Ricci scalar R in this relation, we obtain

we2k−2u − 4a2(wk′′ − wu′′ − u′w′ + wu′ 2 + w′′) = 0. (17)

This is a complicated nonlinear second-order differential equation with three unknowns. We start with the
simplest case w(r) = 1 to restrict the two parameters k(r) and u(r). We further assume that k(r) and u(r)
are linearly dependent on each other, k(r) = ξu(r), where ξ is a constant. Simplifying Eq. (17), we obtain

1 − 4a2e
2(ξ−1)k(r)[ξ2(k′(r))2 − (ξ − 1)k′′(r)] = 0. (18)

We write a solution of the differential equation with ξ = 1 as

k(r) = c1 ±
r

2
√

a2
, (19)

where c1 is an integration constant. In this case, metric (8) becomes

ds2 = −dt2 + dr2 + e
−2(c1± r

2√a2
)
dφ2 + e

2(c1± r
2√a2

)
dz2, a2 �= 0. (20)

112



This is an interesting singularity-free solution of the modified field equations with the constant Ricci scalar
R = −1/2a2.

Similarly, we can construct a solution for n = 2, w(r) = r, and ξ = 1, which yields the metric

ds2 = − dt2 + dr2 + r2 exp
{
−2

(
±

√
a2(a2 + r)

a2
+ log(

√
a2(a2 + r) ± a2) + c2

)}
dφ2 +

+ exp
{

2
(
±

√
a2(a2 + r)

a2
+ log(

√
a2(a2 + r) ± a2) + c2

)}
dz2, (21)

where c2 is an integration constant. This metric belongs to the same class as (20).
As the next step, we consider n = 3, Eq. (16) for the Ricci scalar then becomes quadratic, and we have

two roots

R =
−a2 ±

√
a2
2 − 3a3

3a3
. (22)

We can also construct some solutions in this case. We note that all these solutions represent cylindrically
symmetric space–times with a constant Ricci scalar [4]. More importantly, we can obtain many significant
cosmological solutions by choosing different parameters n and ξ.

We now discuss some other solutions. Transforming Eqs. (14) and (15), we obtain

−w′ 3(k′ − 2u′) + ww′ 2(2k′u′ − 4u′2 − k′′ + 2u′′)+

+ w3
(
2k′ 2(k′′ − 2u′′ + u′ 2) + 2k(3)u′ − k′(k(3) + 2u′(k′′ − 2u′′) + 4u′ 3)

)
−

− w2(k′ − 2u′)(4k′′w′ + 2k′u′w′ − 2u′′w′ + 2u′2w′ − w(3)) = 0, (23)

and
ww′(k′′ − 2u′′) + k′(w′ 2 + w)(2wu′′ − w′′) − 2u′(w′ 2 + w2k′′ − ww′′) = 0. (24)

For simplicity, we set w(r) = 1, and these equations then reduce to

2k′ 2(k′′ − 2u′′ + u′ 2) + 2k(3)u′ − k′(k(3) + 2u′(k′′ − 2u′′) + 4u′ 3) = 0 (25)

and
k′u′′ − u′k′′ = 0. (26)

The last equation is a linear second-order differential equation. Solving (26), we obtain

u(r) = d2 + d1k(r), (27)

where d1 and d2 are integration constants. Substituting u(r) in Eq. (25), we obtain a differential equation
in the terms of k(r):

2d2
1k

′ 4 − 2(d1 − 1)k′ 2k′′ + 2k′′ 2 − k′k(3) = 0. (28)

It has different solutions with different d1. For simplicity, we choose d1 = 1, and then

2k′ 4 + 2k′′ 2 − k′k(3) = 0. (29)

The solution of this equation has the form

k(r) = d5 ± erf−1

(
±2e−d3/4(d4 + r)√

π

)
, (30)
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Fig. 1. The dependence k(r) for different d3, d4, and d5.

where d3, d4, and d5 are integration constants. The metric coefficient k(r) is expressed in terms of the
inverse error function [19]–[26], which is odd [27], and we can therefore write solution (30) as

k(r) = d5 + erf−1

(
2ed3/4(d4 + r)√

π

)
. (31)

The behavior of k(r) for several values of d3, d4, and d5 is shown in Fig. 1.
Using Eq. (31), we obtain the other metric coefficient

u(r) = d2 + d5 + erf−1

(
2e−d3/4(d4 + r)√

π

)
. (32)

Consequently, the metric for the solution becomes

ds2 = − e−2c2 dt2 + e−2c2 dr2 + exp
{
−2

(
c2 + c5 + erf−1

(
2e−c3/4(c4 + r)√

π

))}
dφ2 +

+ exp
{

2
(

c2 + c5 + erf−1

(
2e−c3/4(c4 + r)√

π

))}
dz2. (33)

Such a space–time has a nonconstant Ricci scalar

R = −2 exp
{
−2 erf−1

(
2e−c3/4(c4 + r)√

π

)2

+ 2c2 −
c3

2

}
. (34)

We note that relation (16) yields a family of solutions with a constant Ricci scalar and we have an interesting
solution in this case for which the Ricci scalar is not constant.

Solutions (20), (21), and (33) correspond to the class of cylindrical solutions already discussed by
Bronnikov [23], [24]; these solutions are given as

ds2 = −e2δ dt2 + e2λ dr2 + e2β dφ2 + e2χ dz2, (35)

where δ = δ(r), λ = λ(r), χ = χ(r), and β = β(r). In particular, solutions with χ = −β, as in our case,
can be applied to soliton-like configurations, for which two conditions are implied: the existence of a spatial
asymptotic form according to which our system is regarded as an isolated cylindrically symmetric source
of gravity or a cosmic string; the global regularity of the space–time and the fields [25].
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4. Vacuum solutions for a Gödel space–time

We consider the cylindrically symmetric Gödel metric of general form [21]

ds2 = (dt + xdφ)2 − dr2 − y2 dφ2 − dz2, (36)

where x = x(r) and y = y(r) are arbitrary parameters to be determined. The Ricci scalar curvature for
space–time (36) is

R =
4yy′′ − x′ 2

2y2
. (37)

From Eq. (6), we again introduce the notation Aij = (MRij − M;i;j)/gij . We can then write the field
equations

M(x′ 2 − yy′′) − M ′′y2 = 0, (38)

M ′(xx′y − y2y′) + M(xx′′y − xx′y′ − y2y′′ + x′ 2y) = 0, (39)

Mx′ 2 = 0, (40)

M(x′y′ − x′′y) − M ′x′y = 0, (41)

corresponding to Att = Arr, Att = Aφφ, Att = Azz , and Att = Atφ. Differentiating Eq. (41) with respect
to r, we obtain

M ′′ =
Mx′y′′ − 2M ′x′′y − Mx(3)y

x′y
. (42)

From Eq. (39), we obtain

M ′ =
M [Y (xx′′ + x′ 2) − xx′y′ − y2y′′]

y(yy′ − xx′)
. (43)

Substituting the expressions for M ′ and M ′′ in (39) and (41), we derive the corresponding equations

M

[
x′ 2 +

x(3)y2

x′ +
2yx′′(xx′y′ − y(xx′′ + x′ 2) + y2y′′)

x′(xx′ − yy′)
− 2yy′′

]
= 0, (44)

My(yx′′y′ − x′(yy′′ + y′ 2) + x′ 3) = 0. (45)

It can be seen that M = 0 follows from Eqs. (40), (44), and (45), and we again obtain exactly the same
relation (16) as for the cylindrically symmetric Weyl space–time. By virtue of Eq. (37), it determines a
relation between x(r) and y(r) and depends on arbitrary constants.

We discuss several examples. We set n = 2, and then 1 + 2a2R = 0 in simplest case. Substituting the
scalar curvature R in this relation, we obtain an equation for two functions x(r) and y(r):

y2 + a2(4yy′′ − x′ 2) = 0. (46)

We assume that the relation between x(r) and y(r) is defined as x(r) = ψy(r), where ψ is a constant. With
this taken into account, the solution of Eq. (46) becomes

y(r) = 24/βer/
√

a2β
[
a2β(μ1e

(r/2)
√

β/a2 − μ2)2
]−2/β

, (47)
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where β = ψ2 − 4 and μ1 and μ2 are integration constants. Consequently, metric (36) is written as

ds2 =
(
dt + 24/βψer/

√
a2β

[
a2β(μ1e

(r/2)
√

β/a2 − μ2)2
]−2/β

dφ
)2 − dr2 −

−
(
24/βer/

√
a2β

[
a2β(μ1e

(r/2)
√

β/a2 − μ2)2
]−2/β)2

dφ2 − dz2. (48)

For a2 = −1/2, ψ =
√

2, μ1 = 23/4, and μ2 = 0, space–time (48) reduces to the Gödel metric [21]

ds2 = dt2 − dr2 +
e2r

2
dφ2 − dz2 + 2er dt dφ (49)

with the condition
1 + 4a2 + 12a3 + · · · + nan2n−1 = 0, (50)

which was also discussed in [7].
Similarly, for n = 3, metric (36) becomes

ds2 =
(

dt + ψf2 cosh
[√

β(8a2f1 + 12a3f1 + r)
2
√

4a2 + 6a3

]−4/β

dφ

)2

− dr2 −

−
(

f2 cosh
[√

β(8a2f1 + 12a3f1 + r)
2
√

4a2 + 6a3

]−4/β)2

dφ2 − dz2, (51)

where f1 and f2 are integration constants. Similar solutions for a Gödel-type universe were previously found
in the framework of a fourth-order theory of gravity in [28].

We find one more solution using Eqs. (44) and (45):

x′ 2 +
x(3)y2

x′ +
2yx′′(xx′y′ − y(xx′′ + x′ 2) + y2y′′)

x′(xx′ − yy′)
− 2yy′′ = 0, (52)

y(yx′′y′ − x′(yy′′ + y′ 2) + x′ 3) = 0. (53)

Solving differential equation (53), we obtain

y(r) = ±
√

2g2 − 2g1x + x2, (54)

where g1 and g2 are integration constants. We substitute y(r) in Eq. (52) and obtain a differential equation
in x(r):

(2g2
1 − 2g2 − 2g1x + x2)x′ 2

2g2 − 2g1x + x2
+

x(3)(2g2 − 2g1x + x2)
x′ − 2(2g2 − 2g1x + x2)x′′ 2

x′ 2 = 0. (55)

We found numerical solutions of this equation with g1 = 1 and g2 = 1/2; plots of the functions x(r) and
y(r) are shown in Fig. 2.

5. Results and conclusions

We have obtained the solution of the field equations for a higher-order theory of gravity obtained by
modifying the Einstein theory. This modification is based on the conformal invariance in the Weyl and
Gödel metrics. We considered a Lagrangian of form (1), which yields modified field equations (2) for a
higher-order theory of gravity. We solved these field equations in a cylindrically symmetric space–time in
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Fig. 2. Functions x(r) and y(r) with g1 = 1 and g2 = 1/2.

the vacuum case, where the energy–momentum tensor vanishes (Tij = 0) because ρ = 0 and p = 0. Using
the Weyl and Gödel metrics, we derived relation (16). Both space–times are solutions of the higher-order
field equations under condition (16). Our solution coincides with the solution of the Einstein field equations
with a cosmological constant found in [21]. Based on the obtained results, we conclude that a higher-order
theory of gravity yields a more suitable and realistic Universe than the Einstein field equations. Solving
the differential equations, we constructed plots of the metric coefficients.

We draw several conclusions:

• The coefficients of higher-order terms in the considered f(R) gravity yield a cumulative effect like the
cosmological constant in the Einstein theory of gravity [29]. In fact, constant-curvature solutions do
not correspond to the new class of solutions, which somehow belong to the family of solutions of GR.

• The metric coefficients k(r) and u(r) are expressed in terms of a function inverse to the error function
and therefore behave similarly to it. Different integration constants lead only to a shift and rescaling
of metric coefficients (31) and (32).

• The metric coefficients x(r) and y(r), which we found from Eq. (55) using numerical methods, increase
as the gravitational potential increases and increase weakly as the radial component increases. The
behavior of the metric coefficients indicates the massiveness of the Universe with a high gravitational
potential.
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universe in higher-derivative gravity?” Phys. Rev. D, 38, 1083–1086 (1988).

29. G. Cognola, E. Elizalde, S. Nojiri, S. D. Odintsov, and S. Zerbini, “One-loop f(R) gravity in de Sitter universe,”

JCAP, 0502, 010 (2005); arXiv:hep-th/0501096v3 (2005).

118


	Study of cylindrically symmetric solutions in an $f(R)$ gravity background
	Abstract
	1. Introduction
	2. Field equations in $f(R)$ gravity
	3. Vacuum solution for a Weyl space–time
	4. Vacuum solutions for a Gödel space–time
	5. Results and conclusions
	References


