
Theoretical and Mathematical Physics, 206(1): 84–96 (2021)

EXPONENTIALLY CONFINING POTENTIAL WELL

A. D. Alhaidari∗

We introduce an exponentially confining potential well that can be used as a model to describe the structure

of a strongly localized system. We obtain an approximate partial solution of the Schrödinger equation

with this potential well where we find the lowest energy spectrum and the corresponding wavefunctions.

We use the tridiagonal representation approach as the method for obtaining the solution as a finite series

of square-integrable functions written in terms of Bessel polynomials.
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1. Introduction

Confining potentials are used as models to describe the structure of bound systems with strong local-
ization. The harmonic oscillator potential, which is treated in most textbooks on quantum mechanics, is the
most popular (see, e.g., [1]). Other models include the linear potential, which is sometimes used to describe
the confinement of quarks inside hadrons [2], [3]. These two models respectively describe confinement of a
quadratic and linear strength. In addition to the infinite square well and the quartic potentials, there is
rarely any treatment in the literature of potentials with extreme confinement strength including those of
the exponential type. If there is interest in models with extreme confinement but without infinitely hard
boundaries (to allow for some level of wall penetration and nonvanishing of the wave function tail into
the walls), then the infinite square well potential cannot be used, and a confinement with greater than
power-law strength is needed.

Here, we provide a one-dimensional model over the whole real line with a confinement strength that
grows exponentially. Specifically, we propose the potential model

V (x) =
λ2

2

(
1
4
e−2λx − A−e−λx + A+eλx

)
, (1)

where −∞ < x < +∞ and we use the atomic units � = M = 1. The scale parameter λ is real with the
dimension inverse length, which is a measure of the range of the potential. The parameters A± are real
and dimensionless with A+ > 0. We plot this potential in Fig. 1 for a fixed A+ and several values of A−.
Changing the sign of λ causes a reflection of the plot with respect to the vertical axis. Zooming out along
the vertical axis in the figure (i.e., for large energies), the potential mimics an infinite square well.
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Fig. 1. Potential (1) for λ = 1, A+ = 2, and several values of A−: the six curves from the top down

correspond to A− = −4, 0, 4, 6, 8, 10.

The Schrödinger equation with potential function (1) is not exactly solvable using any of the conven-
tional solution methods unless A+ = 0, in which case (1) becomes the Morse potential. Such conventional
methods include factorizations, a point canonical transformation, supersymmetry, shape invariance, the
Darboux transformation, second quantization, the asymptotic iteration method, group theory, the path
integral transformation, the Nikiforov–Uvarov method, etc. (see, e.g., [4]–[11] for a description of these
methods). Nevertheless, we here show that the newly introduced algebraic solution method called the
tridiagonal representation approach (TRA) [12] yields a quasi-exact solution of this problem in the form
of a bounded series of square-integrable functions. The expansion coefficients of the series are orthogonal
polynomials in the energy and physical parameter space.

We start by writing the solution of the Schrödinger equation with potential (1) as the series

ψ(x) =
∑

n

fnφn(x), (2)

where {φn(x)} is a complete set of square-integrable functions that vanish at infinity and {fn} are the
expansion coefficients. After a coordinate transformation to the dimensionless variable y(x) = eλx, the
resulting time-independent Schrödinger equation suggests that we choose the basis set with the elements

φn(x) = Gnyαe−β/yJμ
n (y), (3)

where Jμ
n (y) is the Bessel polynomial whose properties are given in Appendix A. The parameter μ is

negative such that μ < −N −1/2, where N is a nonnegative integer and n = 0, 1, . . . , N . The dimensionless
real parameters α and β are determined below, and the normalization constant is conveniently chosen as
Gn =

√
(−(2n + 2μ + 1))/(n! Γ(−n − 2μ)).

Our choice of a basis of form (3) is suggested by the TRA requirement. We could not find an alternative
basis set that results in a tridiagonal matrix representation for the wave operator with potential (1).
Unfortunately, this basis set is incomplete. Physically, completeness of a discrete basis set means that, first,
its size is infinite; second, it is defined over the whole configuration space of the physical problem; third, it
satisfies the boundary conditions. The last requirement usually implies that the basis elements are square
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integrable. Rigorously, we should also require that the basis set be dense over the whole configuration space.
For example, deleting some finite subset of the infinite basis makes it incomplete. On the other hand, a
finite basis set can in fact give a faithful physical representation of the system if the system has a finite
spectrum and the size of the basis is not less than the size of the spectrum. We confirm this observation
below in the case of potential (1) with A+ = 0, where it becomes the Morse potential with a finite spectrum.

Therefore, we must conclude that we can use a finite basis set to give an approximate representation
of a physical system with an infinite spectrum like potential (1) and that the approximation improves as
the size of the basis increases. Below, we unfortunately find that the size of our basis set is constrained by
physical requirements and cannot be arbitrarily increased. On the other hand, it might be possible that a
finite basis set gives an exact representation for a part of the infinite spectrum whose size does not exceed
the size of the basis set. Such a solution is said to be quasi-exact. By definition, a quasi-exact solution is
a partial exact solution where part (not all) of the energy spectrum is obtained (see, e.g., [13]). If the size
of the basis is equal to the size of the quasi-exact solutions, then the representation is diagonal and not
tridiagonal, i.e., the basis elements are in fact the eigenvectors of the associated Hamiltonian in the finite
quasi-exact subspace.

In the atomic units, the time-independent Schrödinger equation for potential (1) is written in terms of
the dimensionless variable y as

[
y2 d2

dy2
+ y

d

dy
− U(y) + ε

]
ψ(y) = 0, (4)

where

U(y) =
2V (x)

λ2
=

1
4y2

− 1
y
A− + A+y, ε =

2E

λ2
.

If we write this wave equation as Ĵψ(y) = 0 and substitute ansatz (2), then finding the solution requires
evaluating the action of the wave operator on the basis elements, Ĵφn(y). The TRA dictates that this
action must have the tridiagonal structure [12]

Ĵφn(y) = ω(y)[cnφn(y) + bn−1φn−1(y) + bnφn+1(y)], (5)

where ω(y) is a nonzero analytic function on the whole real line and the coefficients cn and bn are y-
independent and such that b2

n > 0 for all n.
Substituting (2) into (4) and using (5), we convert the problem into finding a solution of the discrete

algebraic equation
zPn = anPn + bn−1Pn−1 + bnPn+1, (6)

where cn = an−z and fn = f0Pn and hence P0 = 1. Equation (6) is a three-term recurrence relation whose
solution (because b2

n > 0) is an orthogonal polynomial in z if we require that the expansion coefficients an

and bn be independent of z [14], [15].
It turns out that the polynomial argument z depends on the energy and/or physical parameters of the

problem. It was previously shown that all physical properties of the system (the energy spectrum of bound
states, the shift of the scattering phase, the density of states, etc.) can be obtained from the properties
of the orthogonal polynomial Pn(z) (its weight and generating functions, structure of zeros, asymptotic
behavior, etc.) [12], [16], [17]. It was also shown that the positive-definite weight function of Pn(z) is equal
to f2

0 (z).
In the next section, we use the TRA tools to obtain recurrence relation (6) associated with potential

function (1) and attempt to find the corresponding orthogonal polynomial Pn(z), whence we obtain the
physical properties of the system.
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2. The TRA solution

Using basis elements (3), after several differential manipulations, we obtain

Ĵφn(y) = Gnyαe−β/y

{
y2 d2

dy2
+ [y(2α + 1) + 2β]

d

dy
+

1
y
β(2α − 1) +

β2

y2
+ α2 − U(y) + ε

}
Jμ

n (y). (7)

Applying the differential equation of the Jacobi polynomial (see Eq. (A.4) in Appendix A), we bring this
equation to the form

Ĵφn(y) = Gnyαe−β/y

{[
2y

(
α − μ − 1

2

)
+ 2β − 1

]
d

dy
+

1
y
β(2α − 1) +

+
β2

y2
+ α2 − U(y) + n(n + 2μ + 1) + ε

}
Jμ

n (y). (8)

Choosing α = μ + 1/2 and β = 1/2 as the basis parameters, we eliminate the derivative term and bring
this equation to the simple form

Ĵφn(y) = Gnyμ+1/2e−1/2y

[
μ

y
+

1
4y2

+
(

n + μ +
1
2

)2

− U(y) + ε

]
Jμ

n (y). (9)

The compatibility of TRA conditions (5) and the properties of the Bessel polynomial in Appendix A now
means that the expression in the square brackets must be a linear function of y. Terms that are not linear
must be eliminated by counterterms in U(y). Therefore, the most general form of U(y) preserving the
tridiagonal structure of (5) is

U(y) =
1

4y2
+

U0

y
+ U1y, (10)

in which case we choose the basis parameter μ = U0 and U1 is an arbitrary real parameter. In fact, this
is exactly potential (1) presented above with U0 = −A− and U1 = A+. We note that any constant in the
potential function U(y) can be absorbed into the energy ε by a simple redefinition.

With the above form of U(y), Eq. (9) becomes

Ĵφn(x) = Gnyμ+1/2e−1/2y

[
−A+y +

(
n + μ +

1
2

)2

+ ε

]
Jμ

n (y), (11)

where μ = −A−. The first term −A+y is evaluated using the recurrence relation (A.2) in Appendix A, and
we obtain

Ĵφn(x) = ω(x)
{[

−2μ

(n + μ)(n + μ + 1)
− 4

A+

(
n + μ +

1
2

)2

− 4ε

A+

]
φn(x) −

− n

(n + μ)(n + μ + 1/2)
Gn

Gn−1
φn−1(x) +

n + 2μ + 1
(n + μ + 1)(n + μ + 1/2)

Gn

Gn+1
φn+1(x)

}
, (12)

where ω(x) = −A+/4. This equation coincides with (5) if we set

cn =
−2μ

(n + μ)(n + μ + 1)
− 4

A+

(
n + μ +

1
2

)2

− 4ε

A+
, (13)

bn = − 1
n + μ + 1

√
−(n + 1)(n + 2μ + 1)

(n + μ + 1/2)(n + μ + 3/2)
. (14)
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We note that because the range of μ is bounded by the inequality μ < −N − 1/2, the radicand in (14)
is always positive, which gives b2

n > 0 for n = 0, 1, . . . , N − 1. If cn = an − z = an − 4ε/A+, then we obtain
three-term recurrence relation (6) for the polynomial Pn(4ε/A+). To find this orthogonal polynomial, which
contains all physical properties of the system, we first bring the recurrence relation to a standard form.
We define the polynomial Bμ

n(z; γ) by the equality Pn(z) = (Gn/G0)Bμ
n(z; γ), where γ = −4/A+ and the

normalization constant Gn is given below Eq. (3). As a result, we have the recurrence relation for Bμ
n(z; γ)

zBμ
n(z; γ) =

[
−2μ

(n + μ)(n + μ + 1)
+ γ

(
n + μ +

1
2

)2 ]
Bμ

n(z; γ) −

− n

(n + μ)(n + μ + 1/2)
Bμ

n−1(z; γ) +
n + 2μ + 1

(n + μ + 1)(n + μ + 1/2)
Bμ

n+1(z; γ). (15)

Using it with Bμ
−1(z; γ) = 0 and Bμ

0 (z; γ) = 1, we obtain the explicit form of all polynomials Bμ
n(z; γ) for

n = 0, 1, . . . , N − 1. We note that (15) differs significantly from relation (A.2) for the Bessel polynomials
because the term (n + μ + 1/2)2 is present in the diagonal term of the recursion. But if we choose γ = 0,
then we have Bμ

n(z; 0) = Jμ
n (z/4).

All our attempts to match Bμ
n(z; γ) with known polynomials failed. We tried using the table of

recurrence relations in [14] and the properties of the hypergeometric orthogonal polynomials in [18]. We
also looked at the chapter on orthogonal polynomials in the Digital Library of Mathematical Functions [19]
and compared with the information available in CAOP - Computer Algebra & Orthogonal Polynomials [20].
Moreover, we tried using computer algebra systems (such as rec2ortho or retode [21]), where polynomials
can be obtained from their recurrence relations. Consequently, we were forced to resort to numerical analysis
to extract the physical information from Bμ

n(z; γ); we present the results in Sec. 3.

The solution of the Schrödinger equation with potential (1) as a partial sum has the form

ψ(x) =

√
ρ

(
4ε

A+

) N−1∑
n=0

Bμ
n

(
4

A+
;− 4ε

A+

)
φn(x), (16)

where the basis functions φn(x) are given by (3) with μ = −A−, α = μ + 1/2, and β = 1/2. The function
ρ(z) is the positive-definite weight function for the polynomial Bμ

n(z; γ). We note that it follows from the
condition μ < −N − 1/2 that the number of bound states N obtained by the TRA is the largest integer
not exceeding A− − 1/2. But the actual number of bound states associated with this confining potential is
obviously infinite. Therefore, our solution of the problem obtained using the TRA is (at best) quasi-exact.
In the next section, we calculate the lowest bound state energies and construct the corresponding wave
functions.

3. Results and discussion

The first direct and almost trivial result occurs for A+ = 0. As can be seen from Eq. (11), in this case, we
obtain a diagonal (not tridiagonal) representation, and the energy spectrum becomes εn = −(n+μ+1/2)2,
in other words,

En = −1
2
λ2

(
n − A− +

1
2

)2

, n = 0, 1, . . . , A− − 1
2
. (17)

It hence follows that bound states exist only for A− ≥ 1/2. This is the well-known result for the Morse
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potential in one dimension [9], [22]. The corresponding bound-state wave function is

ψn(x) = φn(x) = Gny−A−+1/2e−1/2yJ−A−
n (y).

Using orthogonality property (A.3) of Bessel polynomials, we easily find that ψn(x) is orthonormal,

〈ψn|ψm〉 = λ

∫ +∞

−∞
φn(x)φm(x) dx =

= GnGm

∫ ∞

0

y−2A−e−1/yJ−A−
n (y)J−A−

m (y) dy = δnm. (18)

Therefore, the finite incomplete basis set whose elements are given by Eq. (3) does give a faithful physical
representation for a finite number of bound states of the system whose potential function is given by Eq. (1)
with A+ = 0.

As a result of applying the TRA in the general case A+ �= 0, we now obtain Bμ
n(4ε/A+;−1/A+), which

contains all physical properties of the system [12]. Unfortunately, as noted above, we failed to find analytic
properties of this polynomial in the mathematical literature. This remains an open problem in orthogonal
polynomials along with other similar problems presented in [23]–[25]. We note that the weak spot in our
analysis is that recurrence relation (15) gives the polynomials of any degree in explicit, although not closed,
form starting with Bμ

0 (z; γ) = 1. Nevertheless, we derive a very stable and convergent numerical result.
For example, the Hamiltonian representation in “Bessel basis” (3) is an N×N tridiagonal symmetric

matrix, which is obtained from the three-term recurrence relation for Pn(4ε/A+) and has the elements

Hn,m =
λ2

8
A+(anδn,m + bn−1δn,m+1 + bnδn,m−1), n, m = 0, 1, . . . , N − 1, (19)

where an and bn are obtained from (13) and (14). Diagonalizing this matrix gives the energy spectrum of
the lowest bound states.

We list the bound-state energies for several values of A− and fixed A+ = 2 in Table 1, and we fix
A− = 6 and vary A+ in Table 2. The second column in Table 2 (for A+ = 0) is given to verify the accuracy
of our calculations; in it, we reproduced the well-known energy spectrum (17) of the Morse potential.

Table 1
n A− = 8 A− = 6 A− = 4

0 −28.053627 −15.025220 −5.960092

1 −21.029931 −9.975990 −2.808535

2 −14.992219 −5.880414 −0.106373

3 −9.927105 −2.662228

4 −5.801982 0.418853

5 −2.518657

6 0.948521

The lowest bound-state energies (in atomic
units) corresponding to A+ = 2 for several
values of A− with λ = 1.
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Table 2

n A+ = 0 A+ = 4 A+ = 8 A+ = 12

0 −15.125000 −14.925872 −14.728422 −14.532562

1 −10.125000 −9.828860 −9.539719 −9.256701

2 −6.125000 −5.645103 −5.195514 −4.765950

3 −3.125000 −2.229669 −1.374691 −0.509143

4 −1.125000 2.004504 5.213347 8.439356

The lowest bound-state energies (in atomic units) correspond-
ing to A− = 6 for several values of A+ with λ = 1. The sec-
ond column with A+ = 0 reproduces the well-known energy
spectrum of the Morse potential.

But we repeat that our obtained solution is at best quasi-exact and not exact, i.e., we obtained only
a finite part of the energy spectrum and not the whole infinite spectrum (except, of course, in the case
A+ = 0, where the spectrum is finite). Moreover, because the size of Hamiltonian matrix (19) is bounded
(because (n, m) ≤ N − 1), we expect that the accuracy of our results is substantially reduced at higher
energy levels.

In Appendix B, we independently calculate the energy spectrum by diagonalizing the Hamiltonian
matrix in a complete square-integrable basis. For the numerical analysis in this case, we choose a relatively
large subset of this basis (i.e., a large matrix size) to produce numbers that are more accurate. We again
calculate using the physical parameters in Tables 1 and 2 and present the results in Tables 3 and 4.
Comparing these results confirms our supposition that the accuracy in Tables 1 and 2 is substantially
reduced at higher energy levels. This again emphasizes that it is important and urgent to obtain the
analytic properties of the orthogonal polynomial Bμ

n(z; γ) to be able to obtain an accurate quasi-exact
solution of the problem.

Table 3
n A− = 8 A− = 6 A− = 4

0 −28.053627 −15.025220 −5.960092

1 −21.029931 −9.975990 −2.809728

2 −14.992219 −5.880416 −0.410359

3 −9.927105 −2.667212 1.581097

4 −5.801990 −0.146643 3.496007

5 −2.530695 2.014391 5.470629

6 0.093216 4.103609 7.493054

7 2.391258 6.224812 9.682386

A reproduction of Table 1 using the procedure
outlined in Appendix B with the Hamiltonian
matrix size 100 × 100.
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Table 4
n A+ = 0 A+ = 4 A+ = 8 A+ = 12

0 −15.125000 −14.925872 −14.728422 −14.532562

1 −10.125000 −9.828860 −9.539720 −9.256705

2 −6.125000 −5.645149 −5.196474 −4.770689

3 −3.125000 −2.262598 −1.542214 −0.896463

4 −1.125000 0.549743 1.669961 2.607619

5 −0.125000 3.095928 4.694312 5.962793

A reproduction of Table 2 using the procedure outlined in
Appendix B with the Hamiltonian matrix size 100 × 100.

Finally, we can use expression (16) to calculate the bound-state wave functions. In Fig. 2, we plot the
nonnormalized wave functions corresponding to the lowest part of the spectrum {εm} in the first column
for A− = 8 in Table 3. For the calculations, we use

ψm(x) = e(−A−+1/2)λx exp
(
−1

2
e−λx

) ∑
n

GnB−A−
n

(
4εm

A+
;− 4

A+

)
J−A−

n (eλx). (20)

To see the features of the wave function, we superimposed the potential (not to scale) on the same plots
and indicated the corresponding energy level with a horizontal dotted line.

Interesting confinement features of the potential can be seen in the plots of the wave functions. First,
the wave function does not decrease abruptly at the walls of the potential well but exhibits some penetration
with a rapidly decaying tail, which is shorter on the left than on the right because the confinement e−2λx

on the left is stronger than eλx on the right. Second, the wave function for low energies apparently bunches
at the left side of the well, where it is deeper. Third, the particle at higher energies does not “feel” the
topography at the bottom of the well and oscillates, but at these higher energies, the particle still feels the
weaker right wall and tends to cluster there.

Appendix A: Bessel polynomials on the real line

Bessel polynomials on the real line are defined in terms of the hypergeometric or confluent hypergeo-
metric functions as (see Sec. 9.13 in [18])

Jμ
n (x) = 2F0

(
−n, n + 2μ + 1

—

∣∣∣∣ − x

)
= (n + 2μ + 1)n xn

1F1

(
−n

−2(n + μ)

∣∣∣∣ 1
x

)
, (A.1)

where n = 0, 1, . . . , N and N is a nonnegative integer. The real parameter μ is negative such that μ <

−N−1/2. The Pochhammer symbol (a)n (also called a shifted factorial) is defined as a(a+1)(a+2) · · · (a+
n − 1) = Γ(n + a)/Γ(a). The Bessel polynomial can also be written in terms of the associated Laguerre
polynomial with a discrete index as Jμ

n (x) = n! (−x)nL
−(2n+2μ+1)
n (1/x). The three-term recurrence relation

is

2xJμ
n (x) = − μ

(n + μ)(n + μ + 1)
Jμ

n (x) − n

(n + μ)(2n + 2μ + 1)
Jμ

n−1(x) +

+
n + 2μ + 1

(n + μ + 1)(2n + 2μ + 1)
Jμ

n+1(x). (A.2)
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Fig. 2. Nonnormalized wave functions ψn(x), n = 0, 1, . . . , 5, corresponding to the energies shown

in the first column of Table 3 where A+ = 2 and A− = 8: the potential function (dashed curve) is

superimposed on the same plot (not to scale), and the corresponding energy level is indicated by the

horizontal dotted line.

We note that the constraints on μ and on the polynomial degree make this recursion definite (i.e., the signs
of the two recursion coefficients multiplying Jμ

n±1(x) are the same). Otherwise, these polynomials would be
orthogonal not on the real line but on the unit circle in the complex plane. The orthogonality relation is

∫ ∞

0

x2μe−1/xJμ
n (x)Jμ

m(x) dx = −n! Γ(−n− 2μ)
2n + 2μ + 1

δnm. (A.3)

The differential equation is

{
x2 d2

dx2
+ [1 + 2x(μ + 1)]

d

dx
− n(n + 2μ + 1)

}
Jμ

n (x) = 0. (A.4)
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The forward shift and the backward shift differential relations are

d

dx
Jμ

n (x) = n(n + 2μ + 1)Jμ+1
n−1 (x), (A.5)

x2 d

dx
Jμ

n (x) = −(2μx + 1)Jμ
n (x) + Jμ−1

n+1 (x). (A.6)

We can write Jμ−1
n+1 (x) in terms of Jμ

n (x) and Jμ
n±+1(x) as

2Jμ−1
n+1 (x) =

(n + 1)(n + 2μ)
(n + μ)(n + μ + 1)

Jμ
n (x) +

n(n + 1)
(n + μ)(2n + 2μ + 1)

Jμ
n−1(x) +

+
(n + 2μ)(n + 2μ + 1)

(n + μ + 1)(2n + 2μ + 1)
Jμ

n+1(x). (A.7)

Using this identity and recurrence relation (A.2), we can rewrite the backward shift differential relation as

2x2 d

dx
Jμ

n (x) = n(n + 2μ + 1)
[
− Jμ

n (x)
(n + μ)(n + μ + 1)

+
Jμ

n−1(x)
(n + μ)(2n + 2μ + 1)

+

+
Jμ

n+1(x)
(n + μ + 1)(2n + 2μ + 1)

]
. (A.8)

The generating function is

∞∑
n=0

Jμ
n (x)

tn

n!
=

22μ

√
1 − 4xt

(1 +
√
−4xt)−2μ exp

[
2t

1 +
√

1 − 4xt

]
. (A.9)

Appendix B: Alternative evaluation of the energy spectrum

In this appendix, we obtain an independent and more accurate numerical evaluation of the energy
spectrum associated with exponential potential well (1) by diagonalizing the Hamiltonian matrix in an
appropriate discrete square-integrable basis. We choose basis functions forming the so-called Laguerre
basis,

φn(x) = Anyαe−y/2Lν
n(y), (B.1)

where Lν
n(y) is the Laguerre polynomial and the normalization constant is An =

√
n!/Γ(n + ν + 1). We

transform the coordinate as y(x) = e−λx, the inverse to transformation (3) in the “Bessel basis.” The real
parameters α and ν are chosen below; here, we note that ν > −1. In the atomic units � = M = 1, the
Hamiltonian operator is

H = −1
2

d2

dx2
+ V (x) = −λ2

2

[
y2 d2

dy2
+ y

d

dy
− W (y)

]
, (B.2)

where

W (y) =
2V (x)

λ2
=

1
4
y2 − A−y + A+y−1.

Using the differential equation for the Laguerre polynomials

[
y

d2

dy2
+ (ν + 1 − y)

d

dy
+ n

]
Lν

n(y) = 0,
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we obtain the action of the operator H on the basis elements

− 2
λ2

H |φn〉 = Anyαe−y/2

[
(2α − ν)y

d

dy
+

y2

4
−

(
n + α +

1
2

)
y + α2 − W (y)

]
|Lν

n〉. (B.3)

Applying the differential formula for the Laguerre polynomials

y
dLν

n

dy
= nLν

n − (n + ν)Lν
n−1 (B.4)

and the explicit expression for W (y), we obtain

− 2
λ2

H |φn〉 =Anyαe−y/2

{
(ν − 2α)(n + ν)|Lν

n−1〉 +

+
[
α2 + n(2α − ν) −

(
n + α +

1
2
− A−

)
y − A+

y

]
|Lν

n〉
}

.

Let the integral measure be defined as λ
∫ +∞
−∞ ( · ) dx =

∫ ∞
0

( · )y−1 dy. Then the matrix elements of the
Hamiltonian in Laguerre basis (B.1) have the form

− 2
λ2

〈φm|H |φn〉 = AmAn(ν − 2α)(n + ν)〈Lν
m|y2α−1e−y|Lν

n−1〉 +

+ AmAn〈Lν
m|y2α−1e−y

[
α2 + n(2α − ν) −

(
n + α +

1
2
− A−

)
y − A+

y

]
|Lν

n〉. (B.5)

If we introduce

〈m|f(y)|n〉 = AmAn〈Lν
m|yνe−yf(y)|Lν

n〉 = AmAn

∫ ∞

0

yνe−yf(y)Lν
m(y)Lν

m(y) dy.

then we obtain

− 2
λ2

〈φm|H |φn〉 = (ν − 2α)
√

n(n + ν)〈m|y2α−ν−1|n − 1〉 +

+ 〈m|y2α−ν−1

[
α2 + n(2α − ν) −

(
n + α +

1
2
− A−

)
y − A+

y

]
|n〉. (B.6)

Using the orthogonality of the Laguerre polynomials,

AmAn

∫ ∞

0

yνe−yLν
m(y)Lν

n(y) dx = δm,n,

and choosing 2α = ν + 1, we obtain

− 2
λ2

〈φm|H |φn〉 = −
√

n(n + ν)δm,n−1 +
[
n +

1
4
(ν + 1)2

]
δm,n −

−
(

n +
ν

2
+ 1 − A−

)
〈m|y|n〉 − A+〈m|y−1|n〉. (B.7)

Applying the three-term recurrence relation for Laguerre polynomials

yLν
n = (2n + ν + 1)Lν

n − (n + ν)Lν
n−1 − (n + 1)Lν

n+1
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and their orthogonality relation, we obtain the tridiagonal symmetric matrix representation for 〈m|y|n〉:

〈m|y|n〉 = (2n + ν + 1)δm,n −
√

n(n + ν)δm,n−1 −
√

(n + 1)(n + ν + 1) δm,n+1 := Tm,n. (B.8)

On the other hand, we can use any approximation method to evaluate the integral 〈m|y−1|n〉. Applying
the Gauss method [26]–[29] for Laguerre polynomials, we obtain

〈m|y−1|n〉 ∼=
K−1∑
k=0

1
ξk

Λm,kΛn,k, (B.9)

where {ξk}K−1
k=0 is the set of eigenvalues of the K×K tridiagonal symmetric matrix T given by (B.8) and

{Λm,k}K−1
m=0 are the normalized eigenvectors corresponding to these eigenvalues.

To obtain a representation of the Hamiltonian H as a K×K matrix with elements (B.7), we now only
need to assign a value to the basis parameter ν for any given set {λ, A±} of potential parameters. We
assume that the physical results are independent of the choice of ν.

We choose a value for ν within a range, called the “stability plateau,” where the obtained results do
not significantly deviate (in the limits of the required accuracy) from the exactly known energy spectrum of
the Morse potential for A+ = 0. This plateau widens as the size of the matrix H increases, i.e., the range
from which we can choose a “good” value of ν increases as K increases. Ideally, the size of the plateau
becomes infinite as K → ∞. In other words, the results are independent of ν for ν > −1. Finally, we
choose ν = 0.

We also note that with 2α = ν + 1, the basis becomes orthonormalized (i.e., 〈φm|φn〉 = δm,n). We
could also obtain the energy spectrum with other relations between the basis parameters α and ν. For
example, we could choose 2α = ν or 2α = ν + 2 with the corresponding matrices 〈φm|φn〉 = 〈m|y−1|n〉 and
〈φm|φn〉 = 〈m|y|n〉. We choose 2α = ν + 1 because for the same basis size, the coincidence with the exact
energy spectrum of the Morse potential is closer in this case than with the other two variants.

We again calculated with the physical parameters in Tables 1 and 2, using the procedure described
above with 2α = ν + 1 and K = 100; we present the results in Tables 3 and 4.
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