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Using the split Casimir operator, we find explicit formulas for the projectors onto invariant subspaces of

the ad⊗2 representation of the algebras so(N) and sp(2r). We also consider these projectors from the

standpoint of the universal description of complex simple Lie algebras using the Vogel parameterization.
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1. Introduction

The Yang–Baxter equation is one of the most important objects of study in modern theoretical and
mathematical physics. This equation appeared in the works of McGuire [1] and Yang [2] and plays a key
role in studying quantum integrable systems [3], [4]. In particular, in the framework of the quantum inverse
scattering method [5], structures appeared that led to creating the theory of quantum groups [6], [7] (also
see the references therein) describing symmetries of quantum integrable systems (see, e.g., [8]–[10]). We
note that the Yang–Baxter equations are used for both formulating quantum groups and studying their
properties [11]–[13]. An important class of solutions of the Yang–Baxter equations comprises solutions
that are invariant under the action of a Lie group G (or its Lie algebra A) in a particular representation
T . Let V be the representation space of T . In this case, a solution of the Yang–Baxter equation (the
R-matrix) is an operator in the space V ⊗ V of the representation T ⊗ T . Let the representation T ⊗ T be
completely reducible and decompose into irreducible representations Tλ as T ⊗T =

∑
λ Tλ, where the index

λ enumerates the irreducible representations. Then the sought solutions of the Yang–Baxter equation can
be expanded as a sum of the projectors onto the invariant subspaces Vλ ⊂ V ⊗ V of the representations Tλ

with some coefficients that are functions of spectral parameters. To find such solutions, it is useful to have
explicit expressions for the projectors onto the subspaces Vλ.
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In the case where T = ad is the adjoint representation, constructing the projectors onto invariant
subspaces of the representation T ⊗T = ad⊗ad has one more significance. It is related to the notion of the
universal Lie algebra, which was introduced by Vogel in [14] (also see [15], [16]). The universal Lie algebra
by supposition is a model of all complex simple Lie algebras A. For example, many quantities characterizing
an algebra A in different representations Tλ (in this case, possibly reducible) in the decomposition ad⊗k =
∑

λ Tλ, where k ≥ 1, are expressed by analytic functions of three Vogel parameters (see their definition in
Sec. 5). These parameters take specific values for each complex simple Lie algebraA (see, e.g., [17] and Sec. 5
below). In particular, it was shown that in terms of the Vogel parameters, we can express the dimensions
of the representations Tλ in the cases where k = 2, 3 [14], the dimension of an arbitrary representation Tλ′

with the highest weight λ′ = kλad, where λad is the highest root of a Lie algebra A [18], and also values of
the higher Casimir operators in the adjoint representation of a Lie algebra A [17]. Moreover, it was shown
in [19] that the universal description of complex simple Lie algebras allows formulating some types of knot
polynomials as a single function simultaneously for all simple Lie algebras. Here, we also demonstrate a
particular example of the universal description of Lie algebras: the projectors onto invariant subspaces of
the tensor product of two adjoint representations of the Lie algebra so(N, C) for N ≥ 3 and sp(N, C) for
N = 2r ≥ 2 are written in a unified form, illustrating a correspondence between some structures related to
so(N, C) and sp(N, C) Lie algebras under the substitution N → −N . These results expressed in terms of
the Vogel parameters completely agree with the conclusions obtained in [14], [17], [18].

2. A definition of the algebras so(N, C) and sp(N, C)

For a unified description of the Lie algebras so(N, C) and sp(N, C), we let VN denote the space of
their defining representations and introduce the metric ||cij ||i,j=1,...,N on VN defined as the N×N identity
matrix IN in the so(N, C) case and as the antisymmetric N×N matrix

‖cij‖ =

(
0 Ir

−Ir 0

)

(2.1)

in the sp(N, C) case, where N = 2r is even. Hence, we have cij = εcji, where the parameter ε takes the value
+1 in the so(N, C) case and −1 in the sp(N, C) case (whence we obtain ε2 = 1). The matrix c̄ ij inverse to
the metric c is defined as c̄ ikckj = δi

j . Using c and c̄ , we can raise and lower indices: zi1
j2j3... = ci1j1z

j1j2j3...

and zj1
i2i3... = c̄ j1i1zi1i2i3....

Using the matrix identities (es
r)i

k = δr
kδi

s, which form a basis of the algebra of linear operators on VN ,
we can write bases of so(N, C) and sp(N, C) in the defining representation. Lowering the index r yields
(esr)i

k = crkδi
s. We can express the generators of so(N, C) and sp(N, C) in these terms as

Mij = eij − εeji, (2.2)

(Mij)k
l = cjlδ

k
i − εcilδ

k
j = 2δk

[icj)l, (2.3)

where [ij) denotes antisymmetrization in the so(N, C) case and symmetrization in the sp(N, C) case. The
commutation relations of both algebras are given by

[Mij , Mkl] = cjkMil − εcikMjl − εcjlMik + cilMjk = Xij,kl
mnMmn, (2.4)

whence we obtain the structure constants of the considered algebras in basis (2.2) in the form

Xij,kl
mn = cjkδ

[m
i δ

n)
l − εcikδ

[m
j δ

n)
l − εcjlδ

[m
i δ

n)
k + cilδ

[m
j δ

n)
k . (2.5)
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We can write them concisely in the form

Xi1i2,j1j2
k1k2 = 4Symε

1↔2(ci2j1δ
k1
i1

δk2
j2

), (2.6)

where Symε
1↔2 denotes (anti)symmetrization over the index pairs (i1, i2), (j1, j2), and (k1, k2). For example,

Symε
1↔2(xi1i2) ≡ xi1i2 − εxi2i1 . In what follows, we also use the notation gε

N as a unified description of
so(N, C) (if ε = +1) and sp(N, C) (if ε = −1).

We note that (anti)symmetrized index pairs (i1, i2), (j1, j2), and (k1, k2), as indices of the basis vectors
Mi1i2 of the algebra gε

N , can also serve as coordinate indices in the space of the adjoint representation of
gε

N .

3. The split Casimir operator

In this section, we describe a general procedure for constructing the projectors onto invariant subspaces
of the representation ad⊗2(A) of a complex simple Lie algebra A using the split Casimir operator Ĉ of the
algebra. We also find explicit formulas for the operator Ĉ in the representation ad⊗2(A) in the cases where
A = so(N, C) and A = sp(N, C).

3.1. The split Casimir operator in highest-weight representations. Let A be a simple Lie
algebra with the basis elements Xa and the structure relations

[Xa, Xb] = Cd
abXd, (3.1)

where Cd
ab are the structure constants. The Cartan–Killing metric is standardly defined as

gab ≡ Cd
ac Cc

bd = tr(ad(Xa) · ad(Xb)), (3.2)

and the structure constants Cabc ≡ Cd
ab gdc are antisymmetric under permutations of the indices (a, b, c).

The universal enveloping algebra of A is denoted by U(A). We consider the operator

Ĉ = gabXa ⊗ Xb ∈ A⊗A ⊂ U(A) ⊗ U(A), (3.3)

where the matrix ‖gab‖ is inverse to ‖gab‖, which in turn defines Cartan–Killing metric (3.2):

gabgbc = δa
c . (3.4)

The operator Ĉ is called the split (or polarized) Casimir operator of the Lie algebra A. This operator is
related to the usual quadratic Casimir operator

C(2) = gabXa · Xb (3.5)

by the formula
Δ(C(2)) = C(2) ⊗ I + I ⊗ C(2) + 2Ĉ, (3.6)

where Δ is the comultiplication
Δ(Xa) = (Xa ⊗ I + I ⊗ Xa). (3.7)

Let T1 and T2 be two irreducible representations whose highest weights are λ1 and λ2 and which act
on the spaces V1 and V2. Using formula (3.6) and the decomposition

V1 ⊗ V2 =
∑

λ

Vλ (3.8)
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where Vλ are the spaces of the irreducible representations Tλ with the highest weights λ, we can then derive
the relations

T (Ĉ) · (V1 ⊗ V2) =
1
2

∑

λ

(c(λ)
2 − c

(λ1)
2 − c

(λ2)
2 )Vλ ⇐⇒ T (Ĉ) · Vλ =

1
2
(c(λ)

2 − c
(λ1)
2 − c

(λ2)
2 )Vλ, (3.9)

where we use the notation T (Ĉ) := (T1 ⊗ T2)Ĉ and the equalities1

Δ(C(2))
∑

λ

Vλ =
∑

λ

c
(λ)
2 Vλ, (C(2) ⊗ I + I ⊗ C(2))V1 ⊗ V2 = (c(λ1)

2 + c
(λ2)
2 )V1 ⊗ V2.

Here, c
(λ)
2 is the value of the quadratic Casimir operator in the representation with the highest weight λ,

c
(λ)
2 = (λ, λ + 2δ), δ =

r∑

f=1

λ(f) =
1
2

∑

α>0

α, (3.10)

where λ(f) are the fundamental weights of the rank-r Lie algebra A, α are the roots of A, and the summation
ranges the positive roots (α > 0). The metric on the root space is given by matrix (3.4). We also note that
formula (3.9) can be used to derive the characteristic identity

∏

λ

′
(

T (Ĉ) − 1
2
(c(λ)

2 − c
(λ1)
2 − c

(λ2)
2 )

)

= 0, (3.11)

where the product
∏′ is only over the weights λ in (3.8) corresponding to different eigenvalues cλ

2 .
In the following sections, we find the explicit form of the split Casimir operator T (Ĉ) = (T1 ⊗ T2)(Ĉ)

for orthogonal and symplectic Lie algebras in the case where T1 and T2 are adjoint representations: T1 =
T2 = ad. In this case, characteristic identity (3.11) is rewritten in the form

∏

λ

′
(

ad⊗2(Ĉ) − 1
2
(c(λ)

2 − 2c
(λad)
2 )

)

= 0, (3.12)

where λad is the highest weight of the adjoint representation of A. Further, using characteristic iden-
tity (3.12), we explicitly construct the projectors (for orthogonal and symplectic Lie algebras) onto the
invariant subspaces Vλ of the irreducible representations Tλ in the decomposition of the representation
ad⊗2.

3.2. The split Casimir operator of the algebras so(N, C) and sp(N, C) in the tensor prod-
uct of adjoint representations. We show that the components of split Casimir operator (3.3) in the
adjoint representation ad of the algebras so(N, C) and sp(N, C) is written in terms of the components of
the same operator in the defining representation.

The Cartan–Killing metric of algebra (2.4) with structure constants (2.5) is given by the expression [20]

gi1i2,j1j2 = Xi1i2,�1�2
k1k2Xj1j2,k1k2

�1�2 = 2(N − 2ε)(ci2j1cj2i1 − εci1j1cj2i2). (3.13)

Correspondingly, the inverse Cartan–Killing metric has the form

gi1i2,j1j2 =
1

8(N − 2ε)
(εc̄ i1j2 c̄ i2j1 − c̄ i1j1 c̄ i2j2). (3.14)

1The first of those equalities is a consequence of the fact that for each U ∈ U(A), (T1 ⊗ T2)Δ(U) commutes with the
projectors Pλ, which distinguish the irreducible subrepresentations of (T1 ⊗ T2) and are hence ad-invariant operators.
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In the adjoint representations of so(N, C) and sp(N, C), the operator Ĉ given by (3.3) is written as
ad⊗2(Ĉ) ≡ Ĉad, and in basis (2.4) with structure constants (2.5), we have

(Ĉad)k1k2k3k4
j1j2j3j4

= gi1i2i3i4 Xi1i2,j1j2
k1k2Xi3i4,j3j4

k3k4 =

= 16gi1i2i3i4Symε
1↔2(ci2j1δ

k1
i1

δk2
j2

)Symε
3↔4(ci4j3δ

k3
i3

δk4
j4

), (3.15)

where Symα↔β as before denotes the (anti)symmetrizator over the index pairs (iα, iβ), (jα, jβ), and (kα, kβ).
In these expressions, the first two indices correspond to the first copy of the algebra gε

N , and the third and
fourth indices correspond to the second copy of gε

N (in accordance with the fact that the basis elements of
so(N, C) and sp(N, C) each have two indices and are embedded into VN ⊗ VN as vector spaces).

The split Casimir operator Ĉ in the defining representation T⊗2
f (Ĉ) ≡ Ĉf : VN ⊗ VN → VN ⊗ VN in

basis (2.2) with structure constants (2.5) has the form

(Ĉf )k1k3
j1j3

= gi1i2i3i4(Mi1i2)
k1

j1(Mi3i4)
k3

j3 = 4gi1i2i3i4(δk1
[i1

ci2)j1)(δ
k3
[i3

ci4)j3). (3.16)

From expressions (3.15) and (3.16), we see that

(Ĉad)k1k2k3k4
j1j2j3j4

= 4Symε
1↔2,3↔4

(
(Ĉf )k1k3

j1j3
δk2
j2

δk4
j4

)
, (3.17)

where Symε
1↔2,3↔4 denotes (anti)symmetrization over the four index pairs (j1, j2), (k1, k2), (j3, j4), and

(k3, k4). Here, the indices are interpreted as indices of vectors in the space VN of the defining representation
of so(N, C) or sp(N, C). Correspondingly, the split Casimir operator acts on the space V ⊗2

N in the defining
representation and on the space V ⊗4

N in the adjoint representation. Here, the first and the last pair of spaces
VN in V ⊗4

N are antisymmetrized in the so(N, C) case and symmetrized in the sp(N, C) case. We introduce
the operator of (anti)symmetrization of the ath and bth spaces:

Pε
ab =

1
2
(I − εPab), (3.18)

where a �= b, a, b = 1, . . . , 4, and Pab : V ⊗4
N → V ⊗4

N is the permutation operator acting on the ath and the
bth spaces (e.g., P13 has the components (P13)i1i2i3i4

j1j2j3j4 = δi1
j3

δi3
j1

δi2
j2

δi4
j4

). For the space Vad of the adjoint
representation and also for V ⊗2

ad , we then obtain

Vad = Pε
12V

⊗2
N , Vad ⊗ Vad = Pε

12Pε
34V

⊗4
N .

Moreover, we can write relation (3.17) between the Casimir operators in the defining and the adjoint
representations in the form

Ĉad = 4Pε
12Pε

34(Ĉf )13Pε
12Pε

34. (3.19)

In (3.19), we use the known expression for the split Casimir operator in the defining representation (see,
e.g., [20])

(Ĉf )13 =
1

2(N − 2ε)
(P13 − εK13), (3.20)

which is derived from (3.16). Here, the operators (Ĉf )13, K13, and P13 act nontrivially only on the first
and third spaces VN in V ⊗4

N , the operator K13 has the components Ki1i2i3i4
j1j2j3j4 = c̄ i1i3cj1j3δ

i2
j2

δi4
j4

, and
the operator P13, as previously noted, exchanges the first and the third spaces in V ⊗4

N . For Ĉad, we finally
obtain

Ĉad =
2

N − 2ε
Pε

12Pε
34(P13 − εK13)Pε

12Pε
34. (3.21)
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4. Decomposition of ad⊗2(gε
N) into irreducible representations

In this section, we use the split Casimir operator in the adjoint representation to construct projectors
onto invariant subspaces of the representation ad⊗2(gε

N ). Taking the presence of the “accidental” isomor-
phisms so(3) ∼= sl(2) ∼= sp(2), so(4) ∼= sl(2) + sl(2), so(5) ∼= sp(4), and so(6) ∼= sl(4) into account, we
consider the cases of those algebras except so(5) ∼= sp(4) at the end of the section (the case of so(5) ∼= sp(4)
fits the general picture and does not need additional discussion).

4.1. Characteristic identity for the operator Ĉ in the adjoint representation of so(N, C)
and sp(N, C). We define the spaces V ε

ad of the adjoint representation of so(N) and sp(N) as V ε
ad =

P(ε)
12 V ⊗2

N . The algebra gε
N coincides with V ε

ad as a vector space. We introduce the operators acting in
V ε

ad ⊗ V ε
ad ⊂ V ⊗4

N :
I = P(ε)

12 P(ε)
34 ≡ P(ε)

12,34, P = P(ε)
12,34P13P24P(ε)

12,34,

K = P(ε)
12,34K13K24P(ε)

12,34,

(4.1)

for which we have the relations

I = IP12P34 = P12P34I, P = P12P34I = IP13P24,

P2 = I, KP = PK = K, K2 =
N(N − ε)

2
K,

(4.2)

and
ĈadP = PĈad, ĈadK = KĈad = −K. (4.3)

Operators (4.1) are obviously ad-invariant under the adjoint action of gε
N . In what follows, we use the

notation M ≡ εN , which allows rewriting the last relation in (4.2) in the form

K2 =
M(M − 1)

2
K. (4.4)

To find the characteristic identity, it is convenient to introduce the symmetric and antisymmetric projectors
Ĉ+ and Ĉ− of the operator Ĉad:

Ĉ± =
1
2
(I ± P)Ĉad, (4.5)

which satisfy the relations

Ĉ±Ĉ∓ = 0, PĈ± = ±Ĉ±, KĈ+ = Ĉ+K = −K. (4.6)

Substituting (3.21) in (4.5) yields explicit formulas for the antisymmetric and the symmetric parts of Ĉad:

(Ĉ−)12,34 =
1

N − 2ε
P(ε)

12,34(P24 − ε)K13P(ε)
12,34, (4.7)

(Ĉ+)12,34 =
1

N − 2ε
P(ε)

12,34(2P24 − P24K13 − εK13)P(ε)
12,34. (4.8)

By direct calculations using formula (4.7), we can find the characteristic identity for Ĉ−:

Ĉ2
− = −1

2
Ĉ− ⇐⇒ Ĉ−

(

Ĉ− +
1
2

)

= 0. (4.9)
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We also note a useful consequence of relation (4.9):

Ĉk
− =

(

−1
2

)k−1

Ĉ−, k ≥ 1. (4.10)

Analogously, using the explicit formula (4.8) for Ĉ+, we find an expression for Ĉ2
+:

Ĉ2
+ =

1
(M − 2)2

(I + P + K) − 1
M − 2

Ĉ+ +
M − 8

2(M − 2)2
P(ε)

12,34K13(1 + εP24)P(ε)
12,34. (4.11)

If M = 8, then the last term in (4.11) is zero, and the identity for Ĉ+ becomes

Ĉ2
+ = −1

6
Ĉ+ +

1
36

(I + P + K). (4.12)

If M �= 8, then multiplying (4.11) by Ĉ+, we obtain a third-degree identity:

Ĉ3
+ = −1

2
Ĉ2

+ − M − 8
2(M − 2)2

Ĉ+ +
M − 4

2(M − 2)3
(I + P − 2K). (4.13)

Because identity (4.12) for Ĉ+ with M = 8 is of the second and not the third degree, the case M = 8
is exceptional and is considered separately in Sec. 4.2. We also note that if M = 4, then the last term
in (4.13) vanishes, and identity (4.13) in the so(4, C) case is hence characteristic for the operator Ĉ+ and
has the explicit form

Ĉ3
+ = −1

2
Ĉ2

+ +
1
2
Ĉ+. (4.14)

To obtain characteristic identities for Ĉ+ with M �= 4, 8, we eliminate the operators P and K in
formula (4.13). Multiplying it by C+ and using (4.6), we express K in terms of Ĉ+:

M − 4
(M − 2)3

K = Ĉ4
+ +

1
2
Ĉ3

+ +
M − 8

2(M − 2)2
Ĉ2

+ − M − 4
(M − 2)3

Ĉ+. (4.15)

We substitute K given by (4.15) in (4.13) and obtain the identity (which turns out to also hold in the case
M = 4, as can be verified by direct calculation)

Ĉ4
+ +

3
2
Ĉ3

+ +
(M + 1)(M − 4)

2(M − 2)2
Ĉ2

+ +
M2 − 12M + 24

2(M − 2)3
Ĉ+ − M − 4

2(M − 2)3
(I + P) = 0. (4.16)

Multiplying (4.16) by Ĉ+ once more, we obtain the characteristic identity for Ĉ+

Ĉ5
+ +

3
2
Ĉ4

+ +
(M + 1)(M − 4)

2(M − 2)2
Ĉ3

+ +
M2 − 12M + 24

2(M − 2)3
Ĉ2

+ − M − 4
(M − 2)3

Ĉ+ = 0, (4.17)

which we can also rewrite in the form

Ĉ5
+ = −3

2
Ĉ4

+ − (M + 1)(M − 4)
2(M − 2)2

Ĉ3
+ − M2 − 12M + 24

2(M − 2)3
Ĉ2

+ +
M − 4

(M − 2)3
Ĉ+. (4.18)

For subsequent calculations, we also need an expression for Ĉ6
+, which can be obtained by multiplying

identity (4.18) by Ĉ+ and substituting the known polynomial for Ĉ5
+ given by (4.18):

Ĉ6
+ =

7M2 − 30M + 44
4(M − 2)2

Ĉ4
+ +

3M3 − 17M2 + 30M − 24
4(M − 2)3

Ĉ3
+ +

+
3M2 − 32M + 56

4(M − 2)3
Ĉ2

+ − 3(M − 4)
2(M − 2)3

Ĉ+. (4.19)
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We now use the obtained expressions to find the characteristic polynomial for the split Casimir operator
Ĉad = Ĉ+ + Ĉ−. We seek this expression in the form of a sixth-degree polynomial in Ĉad with arbitrary
coefficients αi:

Ĉ6
ad + α5Ĉ

5
ad + α4Ĉ

4
ad + α3Ĉ

3
ad + α2Ĉ

2
ad + α1Ĉad + α0. (4.20)

We find the αi for which expression (4.20) vanishes. It follows from formula (4.6) that Ĉk = Ĉk
+ + Ĉk

−.
Hence, the vanishing of polynomial (4.20) yields the equation

Ĉ6
+ + α5Ĉ

5
+ + α4Ĉ

4
+ + α3Ĉ

3
+ + α2Ĉ

2
+ + α1Ĉ+ +

+ Ĉ6
− + α5Ĉ

5
− + α4Ĉ

4
− + α3Ĉ

3
− + α2Ĉ

2
− + α1Ĉ− + α0 = 0.

Substituting the expressions for Ĉ5,6
+ in terms of Ĉ4,3,2,1

+ according to formulas (4.18) and (4.19) and the
expressions for Ĉ6,5,4,3,2

− in terms of Ĉ− according to formula (4.10) and then setting the coefficients of
those operators to zero, we obtain the values of αi:

α0 = 0, α1 = − M − 4
2(M − 2)3

,

α2 =
M2 − 16M + 40

4(M − 2)3
, α3 =

M3 − 3M2 − 22M + 56
4(M − 2)3

,

α4 =
5M2 − 18M + 4

4(M − 2)2
, α5 = 2.

The characteristic identity for Ĉad hence has the form

Ĉ6
ad + 2Ĉ5

ad +
5M2 − 18M + 4

4(M − 2)2
Ĉ4

ad +
M3 − 3M2 − 22M + 56

4(M − 2)3
Ĉ3

ad +

+
M2 − 16M + 40

4(M − 2)3
Ĉ2

ad − M − 4
2(M − 2)3

Ĉad = 0. (4.21)

We can find the roots of Eq. (4.21) explicitly:

a1 = 0, a2 = −1
2
, a3 = −1, a4 =

1
M − 2

,

a5 = − 2
M − 2

, a6 =
4 − M

2(M − 2)
.

(4.22)

We note that for the following values of M , we have degenerate roots (we immediately discard M =
0, 1, 2 because they do not correspond to semisimple Lie algebras):

M = 4 =⇒ a1 = a6 = 0, a3 = a5 = −1, (4.23)

M = 6 =⇒ a2 = a5 = −1
2
, (4.24)

M = 8 =⇒ a5 = a6 = −1
3
. (4.25)

Hence, we see that if M = 4, 6, 8, then the characteristic polynomials are not of degree six, as in the general
case, but of the respective degrees 4, 5, 5 (this is manifested in the differences between identities (4.16)
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and (4.13) for M = 4 and identities (4.12) and (4.13) for M = 8). We consider the cases M = 4, 6 in more
detail at the end of this section and the case M = 8 in Sec. 4.2, as noted above.

Taking values (4.22) of the roots of the polynomial in the left-hand side of (4.21) into account, we can
write characteristic identity (4.21) in the factored form

Ĉad

(

Ĉad +
1
2

)

(Ĉad + 1)
(

Ĉad − 1
M − 2

)(

Ĉad +
2

M − 2

)(

Ĉad +
M − 4

2(M − 2)

)

= 0. (4.26)

Form (4.26) of the characteristic identity allows constructing the projectors onto the invariant subspaces in
Vad ⊗ Vad. These projectors are given by the standard formula

Pj ≡ Paj =
6∏

i=1,
i�=j

Ĉ − aiI
aj − ai

, (4.27)

where ai are roots (4.22) of characteristic equation (4.26). Using identities (4.6) and also formulas (4.10),
(4.13), (4.16), and (4.18), we obtain expressions for projectors (4.27) in terms of the operators I, P, K, Ĉ+,
and Ĉ−:

P1 =
1
2
(I − P) + 2Ĉ−,

P2 = −2Ĉ−,

P3 =
2K

(M − 1)M
,

P4 =
2
3
(M − 2)Ĉ2

+ +
M

3
Ĉ+ +

(M − 4)(I + P)
3(M − 2)

− 2(M − 4)K
3(M − 2)(M − 1)

,

P5 = −2(M − 2)2

3(M − 8)
Ĉ2

+ − (M − 2)(M − 6)
3(M − 8)

Ĉ+ +
(M − 4)(I + P)

6(M − 8)
+

2K
3(M − 8)

,

P6 =
4(M − 2)
M − 8

Ĉ2
+ +

4
M − 8

Ĉ+ − 4(I + P)
(M − 2)(M − 8)

− 8(M − 4)K
M(M − 2)(M − 8)

.

(4.28)

We note that the projectors P5 and P6 are formally undefined for M = 8. This is a consequence of the
factor a5 − a6 = (M − 8)/2(M − 2) in the denominators of these projectors in (4.27). Nevertheless, if we
substitute formula (4.11) for Ĉ2

+ in the expressions for P5 and P6, then the pole at M = 8 cancels. As a
result, for P5, we have the expression

P5 =
1
6
(1 − ε(P14 + P23 + P13 + P24) + P13P24)P(ε)

12,34, (4.29)

which is independent of M and coincides with the total antisymmetrizer on V ⊗4
N in the so(N, C) case

(ε = +1) or with the total symmetrizer on V ⊗4
N in the sp(N, C) case (ε = −1). For the projector P6, we

have

P6 =
4

M − 2
P(ε)

12,34K13

[
1
2
(1 + εP24) −

1
M

K24

]

P(ε)
12,34. (4.30)

Both operators P5 and P6 are well defined at M = 8. Nevertheless, because identity (4.12) differs
from (4.13), we consider the so(8, C) case separately (see Sec. 4.2).

The dimensions of the eigensubspaces Vai of Ĉad in the space Vad ⊗ Vad are equal to the traces of the
corresponding projectors. To find them, we calculate the auxiliary traces

tr I =
M2

4
(M − 1)2, trP =

M

2
(M − 1), trK =

M

2
(M − 1),

tr Ĉ+ =
M

4
(M − 1), tr Ĉ2

+ =
3M

8
(M − 1), tr Ĉ− = −M

4
(M − 1).

(4.31)
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We hence obtain

dim(Va1) = tr P1 =
1
8
M(M − 1)(M + 2)(M − 3),

dim(Va2) = tr P2 =
1
2
M(M − 1),

dim(Va3) = tr P3 = 1,

dim(Va4) = tr P4 =
1
12

M(M + 1)(M + 2)(M − 3),

dim(Va5) = tr P5 =
1
24

M(M − 1)(M − 2)(M − 3),

dim(Va6) = tr P6 =
1
2
(M − 1)(M + 2).

(4.32)

We note that the sum of these traces

6∑

i=1

tr Pi =
M2

4
(M − 1)2 = tr I (4.33)

coincides with the dimension of gε
N ⊗ gε

N , as it should.
For M = 4, 6, the characteristic identities, as already noted in the discussion after (4.13) and also after

formulas (4.23)–(4.25), have the corresponding degrees four and five. Nevertheless, all operators (4.28) are
well defined for M = 4, 6, are constructed from the ad-invariant operators I, P, K, Ĉ+, Ĉ2

+, and Ĉ−, and
satisfy the relations

PiPj = δijPi,
6∑

i=1

Pi = I, i, j = 1, . . . , 6, (4.34)

i.e., they form a full system of projectors onto the invariant subspaces of the representations ad⊗2(so(4))
and ad⊗2(so(6)). We can easily find a decomposition of the representation ad⊗2(so(4)) into irreducible sub-
representations if we use the isomorphism so(4) ∼= sl(2)+sl(2) and the known decomposition ad⊗2(sl(2)) =
1 + 3 + 5, and we can use, for example, the program LieART [21] for a decomposition of ad⊗2(so(6)):

ad⊗2(so(4)) ≡ 6 ⊗ 6 = 1 + 1 + 3 + 3 + 5 + 5 + 9 + 9, (4.35)

ad⊗2(so(6)) ≡ 15 ⊗ 15 = 1 + 15 + 15 + 20 + 45 + 45′ + 84. (4.36)

Comparing representation dimensions (4.35) and invariant subspace dimensions (4.32), we see that in the
so(4, C) case, of projectors (4.28), only P1, P6, P3, and P5 are primitive, of which the first two project
onto ten-dimensional subspaces and the second two project onto one-dimensional subspaces. The operator
P2 projects onto the sum of two three-dimensional subspaces, and P4 projects onto the sum of two five-
dimensional subspaces. In the so(6, C) case, comparing formulas (4.36) and (4.32) shows that all the
projectors except P1 are primitive and P1 projects onto the sum of two invariant subspaces, each of which
is 45-dimensional.

We also consider the case of the algebra so(3, C) ∼= sl(2, C) ∼= sp(2, C) here, i.e., where M = 3 (the
algebra so(3, C)) or M = −2 (the algebra sp(2, C)). Although roots (4.22) of the characteristic polynomial
in the left-hand side of (4.21) differ, identity (4.26) is not in fact characteristic for the operator Ĉad if
M = 3 or M = −2. This is related to the fact that the projectors P1, P4, and P5 vanish for M = 3 and P1,
P4, and P6 vanish for M = −2 (because the quantities in (4.22) corresponding to the vanishing projectors
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are not eigenvalues of Ĉad in the considered representations). The remaining three projectors form a full
system of projectors and are primitive, as can be seen from the decomposition

ad⊗2(sl(2)) ≡ 3 ⊗ 3 = 1 + 3 + 5. (4.37)

Traces of those projectors in the cases M = 3 and M = −2 are equal to dimensions of the corresponding
invariant subspaces and agree with the isomorphisms so(3, C) ∼= sl(2, C) ∼= sp(2, C).

For illustration, we present dimensions (4.32) of irreducible representations in the decomposition of
ad⊗ ad for some of the simple Lie algebras so(N) and sp(N) and for several values of N in Tables 1 and 2.
The dimensions in these tables agree with the data presented in [22]. We also note that characteristic
identities (4.26) and dimensions (4.32) for so(N, C) and sp(N, C) turn into each other under the change
N → −N . This manifests a duality between the algebras so(N) and sp(N) (see [23] for more details).

Table 1
N dim1 dim2 dim3 dim4 dim5 dim6

5 35 10 1 35 5 14

7 189 21 1 168 35 27

9 594 36 1 495 126 44

10 945 45 1 770 210 54

11 1434 55 1 1144 330 65

Dimensions of irreducible representations for the algebra so(N).

Table 2
N dim1 dim2 dim3 dim4 dim5 dim6

4 35 10 1 14 35 5

6 189 21 1 90 126 14

8 594 36 1 308 330 27

10 1430 55 1 780 715 44

12 2925 78 1 1650 1365 65

Dimensions of irreducible representations for the algebra sp(N).

4.2. The case of the algebra so(8). To derive the characteristic identity for Ĉad in the so(8) case,
we use identities (4.9) and (4.12) for the operators Ĉ− and Ĉ+:

Ĉ2
− = −1

2
Ĉ−, Ĉ2

+ = −1
6
Ĉ+ +

1
36

(I + P + K). (4.38)

We multiply the second equality by Ĉ+ and then multiply the obtained identity by (Ĉ+ + 1) and use the
condition K(Ĉ+ + 1) = 0. As a result, we obtain

Ĉ+(Ĉ+ + 1)
(

Ĉ+ +
1
3

)(

Ĉ+ − 1
6

)

= 0.
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The characteristic identity for the split Casimir operator Ĉad = Ĉ+ + Ĉ− is now constructed analogously
to the general case so(M) by introducing indeterminate coefficients:

Ĉad

(

Ĉad +
1
2

)

(Ĉad + 1)
(

Ĉad +
1
3

)(

Ĉad − 1
6

)

= 0. (4.39)

Hence, the operator Ĉad has the eigenvalues a1 = 0, a2 = −1/2, a3 = −1, a4 = −1/3, and a5 = 1/6. We
write all the projectors onto the eigensubspaces of Ĉad (which follow from (4.39)) in terms of Ĉ+, Ĉ−, I,
P, and K:

P′
1 =

1
2
(I − P) + 2Ĉ− ≡ P1

∣
∣
∣
M=8

, dim = 350,

P′
2 = −2Ĉ− ≡ P2

∣
∣
M=8

, dim = 28,

P′
3 =

1
28

K ≡ P3

∣
∣
∣
M=8

, dim = 1,

P′
4 =

1
6
(I + P) − 2Ĉ+ − 1

12
K ≡ (P5 + P6)

∣
∣
∣
M=8

, dim = 105,

P′
5 =

1
3
(I + P) + 2Ĉ+ +

1
21

K ≡ P4

∣
∣
∣
M=8

, dim = 300,

(4.40)

where P′
k ≡ P′

ak
and the projectors Pi are defined in (4.28) and are written for M = 8 with identity (4.12)

taken into account. On the right in (4.40), we give the dimensions of the eigensubspaces calculated using
formulas (4.31).

It is known that ad⊗2(so(8)) decomposes into irreducible representations as [21]

ad⊗2(so(8)) = 1 + 28 + 35 + 35′ + 35′′ + 300 + 350. (4.41)

The subspaces on which each of the irreducible representations in (4.41) act are denoted by V1, V28, V35,
etc. Comparing the dimensions of the subrepresentations in (4.40) and (4.41) implies that P′

4 projects V ⊗2
ad

onto V35 + V35′ + V35′′ . We note that for the projector P′
4, we have the decomposition

P′
4 = P5|M=8 + P6|M=8, (4.42)

where P5 and P6 are defined in (4.29) and (4.30). Moreover, in accordance with (4.32), the dimension of
the space Va5 = P5|M=8(Vad ⊗ Vad) is 70, and the dimension of Va6 = P6|M=8(Vad ⊗ Vad) is 35. It hence
follows that Va6 is the space of one of the 35-dimensional irreducible representations of so(8) (e.g., V35′′)
and the space Va5 obtained by the action of total antisymmetrizer (4.29) must decompose into the sum
V35 + V35′ of the two remaining 35-dimensional irreducible representations.

To construct the projectors onto the invariant subspaces V35 and V35′ , we introduce an operator
E8 : V ⊗4

8 → V ⊗4
8 with the components

(E8)ii...i4
j1...j4 ≡ 1

4!
εii...i4

j1...j4 =
1
4!

cj1i5 · · · cj1i8ε
i1...i8 . (4.43)

Here, εi1...i8 is the totally antisymmetric invariant tensor: ε12345678 = 1. This operator, constructed from
the invariant tensors εi1...i8 and ci1i2 , is ad-invariant. Taking into account that we have ci1i2 = δi1i2 in the
so(8) case, we do not distinguish upper and lower indices.

To construct the projectors onto the eigenspaces of the operator E8, we find the characteristic identity
for this operator. It is convenient to calculate in the more general case of the algebra so(2r), i.e., for the
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(2r)r-dimensional space V ⊗r
2r and the totally antisymmetric rank-2r tensor ε. The operator Er in this case

is defined as

(Er)ii...ir
j1...jr =

(−1)r/2

r!
εii...ir

j1...jr . (4.44)

We note that we have the relations

ArEr = ErAr = Er,

E2
r = Ar

⎫
⎬

⎭
=⇒ E3

r = Er, (4.45)

where Ar is the total antisymmetrizer in the space of all rank-r tensors. The components of Ar are

(Ar)i1...ir
k1...kr

=
1
r!

∑

σ∈Sr

(−1)p(σ)δ
iσ(1)

k1
· · · δiσ(r)

kr
=

1
(r!)2

εi1...irj1...jrεk1...krj1...jr , (4.46)

where the summation ranges all permutations σ ∈ Sr and p(σ) is the parity of σ. We can write characteristic
identity (4.45) for Er as

Er(Er − I)(Er + I) = 0, (4.47)

where I denotes the identity operator in V ⊗r
2r .

Using (4.47), we can construct the projectors P1, P2, and P3 onto the eigenspaces of Er:

P(bi) ≡ Pj =
3∏

i=1,
i�=j

Er − biI
bj − bi

, (4.48)

where b1 = 0, b2 = 1, and b3 = (−1) are the eigenvalues of Er. The concrete formulas are

P1 = −(Er − I)(Er + I) = I − Ar,

P2 =
1
2
Er(Er + I) =

1
2
(Ar + Er),

P3 =
1
2
Er(Er − I) =

1
2
(Ar − Er),

(4.49)

where we use the second formula in the braces in (4.45) to simplify the expressions.
In accordance with (4.49), we have P2 +P3 = Ar, and the images of the operators P2 and P3 belong to

the space V ∧r
2r of totally antisymmetric rank-r tensors. The operators P2 and P3 split the space V ∧r

2r into
two parts, called the spaces of self-dual and anti-self-dual tensors. The operator P1 = I − Ar acts trivially
on the space V ∧r

2r , and we therefore do not use P1 in what follows.
To calculate the traces of the second and the third projectors in (4.49) and find the dimension of the

corresponding subspaces, we use the auxiliary traces

tr Ar =
(

2r

r

)

=
(2r)!
(r!)2

, tr Er = 0. (4.50)

As a result, the traces of P2 and P3 have the form

tr P2 =
1
2

(2r)!
(r!)2

, tr P3 =
1
2

(2r)!
(r!)2

. (4.51)
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We now return to the algebra so(8) and substitute the value r = 4 in the expressions for traces (4.51):

tr P2|r=4 = 35, trP3|r=4 = 35 (4.52)

(in what follows, we use Pi instead of Pi|r=4 for simplicity). The dimensions of the subspaces P2 · V ∧4
8 and

P3 · V ∧4
8 thus coincide and are equal to 35. We recall that the projector P5 given by (4.29) is equal to the

total antisymmetrizer A4 for every M and, in particular P5|M=8 = A4. Hence,

P5|M=8 = P2 + P3, (4.53)

and the images of P2 and P3 belong to the subspace extracted by the projector P5|M=8 = A4. The values
of traces (4.52) allow stating that P2 and P3 are the projectors onto the two 35-dimensional invariant
subspaces of the representation ad⊗2(so(8)).

To write the projector P6|M=8 in terms of the operators E4 and A4, introduced in (4.44) and (4.46)
and in terms of the operators I, P, K, and Ĉ+, we use formula (4.42), the explicit form of the projector P′

4

given by (4.40), and also the fact that P5|M=8 = A4. As a result, we obtain

P6|M=8 = P′
4 − P5|M=8 =

1
6
(I + P) − 2Ĉ+ − 1

12
K− A4. (4.54)

Finally, we have the full system of mutually orthogonal and primitive projectors onto the spaces of the
irreducible subrepresentations in ad2(so(8)):

P′
1 =

1
2
(I − P) + 2Ĉ−, dim = 350,

P′
2 = −2Ĉ−, dim = 28,

P′
3 =

1
28

K, dim = 1,

P6|M=8 =
1
6
(I + P) − 2Ĉ+ − 1

12
K− A4, dim = 35,

P2 =
1
2
(A4 + E4), dim = 35,

P3 =
1
2
(A4 − E4), dim = 35,

P′
5 =

1
3
(I + P) + 2Ĉ+ +

1
21

K, dim = 300.

(4.55)

5. A connection between the eigenvalues of the operator Ĉ in
the adjoint representation of the Lie algebras so(N, C) and
sp(N, C) and the Vogel parameters

Many results in this paper, namely, construction of the projectors onto invariant subspaces of the rep-
resentation ad⊗2(gε

N ) in terms of the split Casimir operator and the calculation of the dimensions of these
subspaces, can also be obtained by using the so-called Vogel parameters [14], [18]. These parameters are
defined as three numbers (α, β, γ) modulo a common multiplier and an arbitrary permutation from the sym-
metric group S3 (and can hence be interpreted as coordinates in the space P2/S3). It is known [14], [15], [18]
that certain values of the Vogel parameters (or, equivalently, a certain point in the space P2/S3) correspond
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to each simple Lie algebra. For the simple Lie algebras of the classical series, the values of these parameters
are given in Table 3 [17], where t ≡ α + β + γ is the dual Coxeter number.

Table 3
Type Lie Algebra α β γ t

Ar sl(r + 1) −2 2 r + 1 r + 1

Br so(2r + 1) −2 4 2r − 3 2r − 1

Cr sp(2r) −2 1 r + 2 r + 1

Dr so(2r) −2 4 2r − 4 2r − 2

Vogel parameters for simple Lie algebras.

The representation ad⊗2A of an arbitrary simple Lie algebra A decomposes into symmetric and anti-
symmetric parts. According to [14]–[16], the symmetric part (for all simple Lie algebras of classical series
except sl(2, C) ∼= sp(2, C) ∼= so(3, C), sl(3, C), and so(8, C)) in turn decomposes into four irreducible sub-
representations: a singlet T0 and three irreducible representations denoted by Y

(α)
2 , Y

(β)
2 , and Y

(γ)
2 , where

α, β, and γ are the Vogel parameters of the algebra A in Table 3. The dimensions of these four represen-
tations and the eigenvalues of the quadratic Casimir operator C(2) (defined in (3.5)) acting on the spaces
of these representations are [14], [18]

dimT0(A) = 1, c0
2 = 0,

dimY
(α)
2 (A) = − (3α − 2t)(β − 2t)(γ − 2t)t(β + t)(γ + t)

α2(α − β)β(α − γ)γ
, cα

2 = 2 − α

t
,

dimY
(β)
2 (A) = − (3β − 2t)(α − 2t)(γ − 2t)t(α + t)(γ + t)

β2(β − α)α(β − γ)γ
, cβ

2 = 2 − β

t
,

dimY
(γ)
2 (A) = − (3γ − 2t)(β − 2t)(α − 2t)t(β + t)(α + t)

γ2(γ − β)(β(γ − α)α
, cγ

2 = 2 − γ

t
,

(5.1)

where c0
2, cα

2 , cβ
2 , and cγ

2 are the eigenvalues of the operator C(2) acting in the respective representations
T0, Y

(α)
2 , Y

(β)
2 , and Y

(γ)
2 (here the upper index of c2 is chosen in accordance with the notation for the

corresponding representation and is not the highest weight, as in formula (3.10)).
The antisymmetric part decomposes into the direct sum of two representations, one of which is the

adjoint representation ad. The dimension of this representation and the value cad
2 of the quadratic Casimir

operator C(2) in it are expressed by the formulas

dim(ad) ≡ dimA =
(α − 2t)(β − 2t)(γ − 2t)

αβγ
, cad

2 = 1. (5.2)

The second antisymmetric subrepresentation is denoted by X2. Its dimension and the value cX
2 of the

operator C(2) in it are given by the formulas

dim(X2) =
1
2

dimA(dimA− 3), cX
2 = 2. (5.3)

Comparison of the dimensions [21] of the irreducible representations in ad⊗2 with dimensions (4.32) implies
that the representation X2 for the Lie algebras of the types Br, Cr , and Dr is irreducible. We note that
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the representation X2 for Lie algebras of the type Ar, r > 1, is reducible and decomposes into the sum of
two irreducible representations with the same dimensions.

The final decomposition of the representation ad⊗2(A), where A is a classical simple Lie algebra (except
the algebras sl(2, C) ∼= sp(2, C) ∼= so(3, C), sl(3, C) and so(8, C)), has the form

ad⊗2(A) = T0(A) + Y
(α)
2 (A) + Y

(β)
2 (A) + Y

(γ)
2 (A) + ad(A) + X2(A). (5.4)

Knowing values (5.1)–(5.3) for the quadratic Casimir operator C(2) in the six representations (in the
case where those representations are irreducible), we can calculate the values of the split Casimir operator
Ĉ (defined in (3.3)) in these representations using formula (3.9). The relation between the eigenvalues
of Ĉ and C(2) in any irreducible subrepresentation Tλ in the decomposition ad ⊗ ad can be found using
formula (3.9), where we must set λ1 and λ2 equal to the highest weight of an irreducible representation
of A. Because the value of the quadratic Casimir operator of any simple Lie Algebra A in the adjoint
representation is equal to unity (see, e.g., [20]), c

(λ1)
2 = c

(λ2)
2 = 1, and in accordance with (3.9), we have

ĉ(λ) =
1
2
c
(λ)
2 − 1. (5.5)

Further, we consider only the cases of the algebras so(N, C) and sp(N, C), to which our paper is
devoted. Substituting the values of α, β, γ, and t for so(N, C) and sp(N, C) from Table 3 in formulas (5.1)–
(5.3), we find that the dimensions of the six representations T0, Y

(α)
2 , Y

(β)
2 , Y

(γ)
2 , ad(gε

N ), and X2 coincide
with dimensions (4.32) of the invariant subspaces of the representations ad⊗2(gε

N ). Taking formula (5.5)
into account, we can show that the values of the split Casimir operator in each of those representations
coincide with roots (4.22) of the polynomial in the left-hand side of (4.26), which is the characteristic
polynomial of Ĉ in the representation ad⊗2(gε

N ). These coincidences allow concluding that the spaces of
the representations in the right-hand side of (5.4) uniquely correspond to the invariant subspaces obtained
using projectors (4.28). This correspondence is shown in Table 4, where all six projectors (4.28) are given
in the first row and the subrepresentations whose subspaces are extracted in Vad ⊗Vad by the projectors in
the first row are given in the second, third, and fourth rows.

Table 4
P1 P2 P3 P4 P5 P6

Br X2 ad(so(2r + 1)) T0 Y
(α)
2 Y

(β)
2 Y

(γ)
2

Cr X2 ad(sp(2r)) T0 Y
(β)
2 Y

(α)
2 Y

(γ)
2

Dr X2 ad(so(2r)) T0 Y
(α)
2 Y

(β)
2 Y

(γ)
2

Correspondence between the representations and the projectors.

We have thus shown that the values of the split Casimir operator in the irreducible subrepresentations in
ad⊗2 calculated in the preceding sections for the Lie algebras so(N, C) and sp(N, C) and also the dimensions
of the corresponding invariant subspaces can be written in terms of the Vogel parameters in complete
accordance with [14]–[16].

6. Conclusion

We have found explicit formulas for the projectors onto the spaces of the irreducible subrepresentations
of the tensor product of two adjoint representations for all complex simple Lie algebras so(N, C) for N ≥ 3,
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N �= 6 and sp(N, C) for N ≥ 2. In all the cases except the so(8) case, the construction was performed
by finding the characteristic identity for the split Casimir operator. In the separately considered so(8, C)
case, we used an additional invariant operator to construct the sought projectors. This operator allows
decomposing the totally antisymmetric rank-4 representation into self-dual and the anti-self-dual parts.
Further, we showed that dimensions of the irreducible representations obtained here and also the values
of the quadratic Casimir operator in these representations completely agree with the results in [14]–[16],
where these values were written in terms of the Vogel parameters.
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