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QUANTUM MECHANICS OF STATIONARY STATES OF PARTICLES

IN A SPACE–TIME OF CLASSICAL BLACK HOLES

M. V. Gorbatenko∗† and V. P. Neznamov∗‡

We consider interactions of scalar particles, photons, and fermions in Schwarzschild, Reissner–Nordström,

Kerr, and Kerr–Newman gravitational and electromagnetic fields with a zero and nonzero cosmological

constant. We also consider interactions of scalar particles, photons, and fermions with nonextremal ro-

tating charged black holes in a minimal five-dimensional gauge supergravity. We analyze the behavior

of effective potentials in second-order relativistic Schrödinger-type equations. In all cases, we establish

the existence of the regime of particles “falling” on event horizons. An alternative can be collapsars with

fermions in stationary bound states without a regime of particles “falling.”
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1. Introduction

For a closed system of “a particle in an external force field,” quantum mechanics admits the existence of
stationary states with certain particle energies. Stationary states include both states of a discrete spectrum
(bound states) and states of a continuous spectrum (scattering states). In this case, the particle wave
function is written in the form

ψ(r, t) = ψ(r)e−iEt, (1)

where E is real energy of the particle. Here and hereafter, we use the system of units with � = c = 1.
Here, we consider interactions of scalar particles (S = 0), photons (S = 1), and fermions (S =

1/2) with Schwarzschild, Reissner–Nordström, Kerr, and Kerr–Newman black holes with a zero and a
nonzero cosmological constant. For the listed metrics, we separate the variables in the Klein–Gordon
and Maxwell equations. We bring the equations for the radial functions to the form of second-order
relativistic Schrödinger-type equations with effective potentials. An analogous procedure was performed
using a second-order self-adjoint equation with a spinor wave function for fermions [1]. In addition, we
analyze the behavior of effective potentials in neighborhoods of event horizons. We similarly analyze
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interactions of scalar particles, photons, and fermions with nonextremal rotating charged black holes in a
minimal five-dimensional gauge supergravity.

The existence of a regime of particles “falling” [2], [3] on event horizons was established for all considered
metrics and for particles with different spins. Separate states of the considered particles with the energy
Eext for extremal black holes and degenerate bound states with Est for fermions are an exception [4]–[6].

For the Schwarzschild, Painlevé–Gullstrand and Kerr metrics, representation (1) was previously used
in many papers to prove the existence of nonstationary solutions of the Klein–Gordon and Dirac equations
corresponding to bound states of spin and spinless particles with complex energies decaying in time (see,
e.g., [7]–[17]). On the other hand, the absence of physically meaningful stationary solutions (with real
energy) of the Dirac equation in classical Schwarzschild, Reissner–Nordström, Kerr, and Kerr–Newman
fields was proved in [18]–[21].

The presented results are easily explained by the existence of a regime of particles “falling” on event
horizons for all classical black holes, which we proved. As an alternative, the existence of composite systems,
collapsars with fermions in degenerate stationary bound states, is possible [4]–[6].

This paper is organized as follows. In Sec. 2, for convenience of analysis, we supplement the quantum
mechanical hypothesis of cosmic censorship, previously practically introduced in [22], with numerical char-
acteristics. In more detail, we reveal the content of the regime of a particle “falling” on a singular center,
unacceptable for quantum theory. We show that the quantum mechanical hypothesis of cosmic censorship
holds in the example of the problem “Z>137 catastrophe” in hydrogen-like atoms [23]. In Secs. 3 and 4,
we study the interaction of scalar particles with Schwarzschild, Painlevé–Gullstrand, Reissner–Nordström,
Kerr, and Kerr–Newman black holes with a zero and a nonzero cosmological constant. In Sec. 5, we study
this problem for five-dimensional anti-de Sitter black holes. In Secs. 6 and 7, we discuss our results.

We choose the metric signature of the Minkowsky space–time equal to ηαβ = diag[1,−1,−1,−1].

2. Quantum mechanical hypothesis of cosmic censorship

In classical physics, the hypothesis of cosmic censorship, proposed by Penrose [24], forbids the existence
in Nature of singularities not covered by event horizons. A quantum mechanical hypothesis of cosmic
censorship was practically proposed in [22], in the introduction of which the authors wrote, “. . . we will say
that a system is nonsingular when the evolution of any state is uniquely defined for all time. If this is not
the case, then there is some loss of predictability and we will say that the system is singular.” By analogy
with Penrose [24], we must add that such singular systems cannot exist in Nature.

We present some numerical characteristics of singular and nonsingular systems. For second-order radial
equations brought to the form of Schrödinger-type equations with effective potentials Ueff(ρ), the behavior
of these potentials in neighborhoods of event horizons is important. For all considered metrics, the behavior
of effective potentials in neighborhoods of event horizons often has the form of an infinitely deep potential
well:

Ueff(ρ)|ρ→ρ± = − K1

(ρ − ρ±)2
. (2)

If K1 ≥ 1/8, then the so-called mode of a particle “falling” on the event horizon occurs [2]–[6]. In this case,
the system is singular. The radial function of a Schrödinger-type equation behaves as

R(ρ)|ρ→ρ± ∼ (ρ − ρ±)1/2 sin(
√

K2 log(ρ − ρ±) + δ), (3)

where K2 = 2(K1 − (1/8)). As ρ → ρ±, the radial functions R(ρ) of stationary states of the discrete and
continuous spectra have an infinite number of zeros, and discrete energy levels appear and “dive” beyond
the permitted domains of the functions R(ρ). At ρ = ρ±, the functions R(ρ) have no definite values.
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The system is also singular if the exponent in the denominator in (2) exceeds two. In this case,

Rs(ρ)|ρ→ρ± ∼ (ρ − ρ±)s/4 sin
(

2
s − 2

√
K1

(ρ − ρ±)s−2
+ δs

)
. (4)

In formulas (3) and (4), δ and δs are arbitrary phases (0 ≤ δ, δs < π), and s > 2 is the exponent in the
expression for the effective potential Ueff(ρ)|ρ→ρ± = −K1/(ρ − ρ±)s.

If K1 < 1/8 and s = 2, then the system is nonsingular. In this case, the existence of stationary bound
states of particles with ε < 1 is possible.

In the Hamiltonian formalism, the mode of particle “falling” on an event horizon corresponds to the fact
that the Hamiltonian H has nonzero deficiency indices [25]–[27]. To eliminate this mode, we must choose
additional boundary conditions on event horizons. A self-adjoint extension of the Hermitian operator H is
defined by this choice.

In the history of quantum mechanics, there is an example confirming the quantum mechanical hypoth-
esis of cosmic censorship. For hydrogen-like atoms, the Sommerfeld formula for the fine structure of energy
levels has the form

ε =
(

1 +
α2

fsZ
2

n − |κ| +
√

κ2 − α2
fsZ

2

)−1/2

, (5)

where αfs is the electromagnetic fine structure constant, n is the principal quantum number, κ is the
quantum number of the Dirac equation,

κ = ∓1,∓2, · · · =

⎧
⎪⎪⎨

⎪⎪⎩

−(l + 1), j = l +
1
2
,

l, j = l − 1
2
,

and j and l are the quantum numbers of the total and orbital angular momentum of a spin-1/2 particle.
For Z > 137|κ|, expression (5) becomes complex (the “Z>137 catastrophe”).

We consider solutions of a Schrödinger-type equation with an effective potential for fermions in a
Coulomb field [28]. The asymptotic formula for the effective potential as ρ → 0 has the form

UC
eff |ρ→0 = − (Zαfs)

2 − (3/4) + (1 − κ2)
2ρ2

. (6)

We can distinguish three typical domains depending on Z in asymptotic formula (6). As an example, we
consider these domains for the bound states 1S1/2 (κ = −1) and 2P1/2 (κ = +1). In the first domain
1 ≤ Z <

√
3/2αfs, there exists a positive barrier ∼ 1/ρ2 followed by potential well as ρ → 0. The potential

barrier disappears at Z = Zcr =
√

3/2αfs ≈ 118.7, and the potential well −K/ρ2 persists for Z > Zcr as
ρ → 0. In the second domain 119 ≤ Z < 137, we have the coefficient K < 1/8, which admits the existence
of fermionic stationary bound states [2], [3]. In the third domain Z ≥ 137, there exists a potential well with
K ≥ 1/8 as ρ → 0, which indicates the realization of a regime of “falling” on the center [2], [3]. We show
the dependences Ueff(ρ) for κ = −1(1S1/2) in Fig. 1 for Z = 1, 119, 140. We also show the dependences of
the Coulomb potential V (ρ) = −(Zαfs/ρ) for comparison.

In the third domain with (Zαfs)
2 ≥ κ2, the system “fermion in a Coulomb field” is singular. To

eliminate the mode of “falling” on the center, it was proposed to take the finite dimensions of an atomic
nucleus into account [29]–[32]. As a result, a cutoff of either the Coulomb or the effective potential occurs
at characteristic lengths of the nucleus size (see Fig. 1b). There are now about 30 such cutoff methods (see,
e.g., [33]).

The system “an electron in a Coulomb field of an atomic nucleus of finite size” is nonsingular.
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Fig. 1. Dependences Ueff(ρ) and V (ρ).

3. Metrics with a zero cosmological constant

3.1. Brief characteristics of General Relativity solutions and the notation used in the
paper.

3.1.1. Schwarzschild metric. In the spherical coordinates (t, r, θ, ϕ), the Schwarzschild metric has
the form

ds2 = fS dt2 − dr2

fS

− r2 (dθ2 + sin2 θ dϕ2), (7)

where fS = 1 − (r0/r), r0 = 2GM/c2 is the gravitational radius (event horizon), G is the gravitation
constant, M is the mass of the gravitational field of a pointlike source, and c is the speed of light.

3.1.2. Painlevé–Gullstrand metric. We write the coordinates as (T, r, θ, ϕ). The coordinate trans-
formation of the Schwarzschild metric in spherical coordinates has the form

dT = dt −
√

r0

r

dr

1 − r0/r
. (8)

The interval squared is defined as

ds2 = fS dT 2 − 2
√

r0

r
dT dr − dr2 − r2(dθ2 + sin2 θ dϕ2). (9)

3.1.3. Reissner–Nordström metric. The static Reissner–Nordström metric is characterized by a
pointlike source with a mass M and a charge Q:

ds2 = fRN dt2 − dr2

fRN

− r2(dθ2 + sin2 θ dϕ2), (10)
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where fRN = 1 − r0/r + r2
Q/r2 and rQ =

√
GQ/c2.

If r2
0 > 4r2

Q, then

fRN =
(

1 − (r+)RN

r

)(
1 − (r−)RN

r

)
, (11)

where (r±)RN are the radii of the outer and inner event horizons,

(r±)RN =
r0

2
±

√
r2
0

4
− r2

Q. (12)

The case r2
0 = 4r2

Q corresponds to an extremal Reissner–Nordström field with a single event horizon
(r+)RN = (r−)RN = r0/2.

The case r2
0 < 4r2

Q corresponds to a naked singularity. In this case, fRN > 0.

3.1.4. Kerr and Kerr–Newman metrics. The stationary Kerr–Newman metric is characterized
by a pointlike source with the mass M and charge Q rotating with the angular momentum J = Mca. The
Kerr metric is the uncharged Kerr–Newman metric (Q = 0).

We can represent the Kerr–Newman metric in the Boyer–Lindquist coordinates (t, r, θ, ϕ) [34] in the
form

ds2 =
(

1 −
r0r − r2

Q

r2
K

)
dt2 +

2a(r0r − r2
Q)

r2
K

sin2 θ dt dϕ − r2
K

ΔKN

dr2 − r2
K dθ2 −

−
(

r2 + a2 +
a2(r0r − r2

Q)
r2
K

sin2 θ

)
sin2 θ dϕ2, (13)

where r2
K = r2 + a2 cos2 θ and ΔKN = r2fKN = r2(1 − r0/r + (r2

Q + a2)/r2).

If r0 > 2
√

a2 + r2
Q, then

fKN =
(

1 − (r+)KN

r

)(
1 − (r−)KN

r

)
, (14)

where (r±)KN are the radii of the outer and inner event horizons of the Kerr–Newman field,

(r±)KN =
r0

2
±

√
r2
0

4
− a2 − r2

Q. (15)

The case r0 = 2
√

a2 + r2
Q, (r+)KN = (r−)KN = r0/2 corresponds to an extremal Kerr–Newman field.

The case r0 < 2
√

a2 + r2
Q corresponds to a naked singularity of the Kerr–Newman field. In this case,

fKN > 0.
For Q = 0, the Kerr–Newman metric becomes the Kerr metric with

ΔK = r2fK = r2

(
1 − r0

r
+

a2

r2

)
. (16)

If r2
0 > 4a2, then

fK =
(

1 − (r+)K

r

)(
1 − (r−)K

r

)
, (17)

where (r±)K = r0/2 ±
√

r2
0/4 − a2.

For r0 = 2a, we have (r+)K = (r−)K = r0/2. This case corresponds to an extremal Kerr field.
The case r0 < 2a corresponds to a naked singularity of the Kerr field. In this case, fK > 0.
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In what follows, we write second-order equations for particles with the energy E, mass m, and electric
charge q in space–time of metrics (7), (9), (10), and (13) in the dimensionless variables

ρ =
r

lC
, ε =

E

mc2
, α =

r0

2lC
=

GMm

�c
=

Mm

M2
P

,

αQ =
rQ

lC
=

√
GQm

�c
=

√
αfs

MP

m
Q

e
, αa =

a

lC
, αem =

qQ

�c
= αfs

qQ

e2
,

(18)

where lC = �/mc is the particle Compton wavelength, MP =
√

�c/G = 2.2 · 10−5 g (1.2 · 1019 GeV) is the
Planck mass, αfs = e2/�c ≈ 1/137 is the electromagnetic fine structure constant, α and αem are the gravi-
tational and electromagnetic coupling constants, and αQ and αa are dimensionless constants characterizing
the electromagnetic field source with the charge Q and the ratio of the angular momentum J to the mass
M in the Kerr and Kerr–Newman metrics.

For the Kerr–Newman metric, the quantities ρ2
K and ΔKN in the dimensionless variables have the forms

ρ2
K = ρ2 + α2

a cos2 θ, (19)

ΔKN = ρ2fKN = ρ2

(
1 − 2α

ρ
+

α2
a + α2

Q

ρ2

)
. (20)

In the presence of outer and inner event horizons, α2 > α2
a + α2

Q
, and

(ρ±)KN = α ±
√

α2 − α2
a − α2

Q
. (21)

For an extremal Kerr–Newman field, α2 = α2
a + α2

Q
, (ρ+)ext

KN = (ρ−)ext
KN = α, and

f ext
RN =

(ρ − α)2

ρ2
. (22)

For α2 < α2
a + α2

Q, the case of a naked singularity of the Kerr–Newman field is realized.
For the Kerr field in formulas (20) and (21), αQ = 0. For the Reissner–Nordström field in (19)–(21),

αa = 0.

3.2. Motion of a scalar particle. For uncharged particles with zero spin, the second-order equation
in a curved space–time has the form

(−g)−1/2 ∂

∂xμ

[
(−g)1/2gμν ∂

∂xν
Φ

]
+ m2Φ = 0, (23)

where g is the determinant of the metric. After separation of variables, the equation for the radial function
R(ρ) becomes

d2R

dρ2
+ A(ρ)

dR

dρ
+ B(ρ)R = 0, (24)

where ρ = r/lC.
We bring Eq. (24) to the form of a Schrödinger equation with the effective potential Ueff(ρ):

Rl(ρ) = R(ρ) exp
[
1
2

∫
A(ρ′) dρ′

]
, (25)

d2R(ρ)
dρ2

+ 2(ESchr − Ueff(ρ))R(ρ) = 0, (26)

Ueff(ρ) = ESchr +
1
4

dA

dρ
+

1
8
A2 − 1

2
B, (27)

ESchr =
1
2
(ε2 − 1). (28)
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The term ESchr given by (28) is distinguished in Eq. (26) and at the same time added to (27). This is done,
on one hand, to give Eq. (26) the form of a Schrödinger-type equation and, on the other hand, to ensure
the classical asymptotic form of the effective potential as ρ → ∞.

3.2.1. Kerr and Kerr–Newman metrics. In this section, we use results in [35], where variables
in Eq. (23) were separated for the Kerr and Kerr–Newman metrics and for uncharged scalar particles.

In dimensionless variables (18), the wave function has the form

ΦKN(ρ, t) = RKN(ρ)S(θ)e−iεteimϕϕ, (29)

where S(θ) are oblate spheroidal harmonic functions Slmϕ(ic, cos θ), c2 = α2
a(ε2 − 1), and l and mϕ are the

quantum numbers of the orbital momentum and its projection (|mϕ| ≤ l).
The equations for the radial functions have the form [35]

d

dρ

(
ΔKN

dRKN

dρ

)
+

1
ΔKN

[
ε2(ρ2 + α2

a)2 − 2(2αρ − α2
Q)εαamϕ + m2

ϕα2
a −

− (ε2α2
a + ρ2 + λKN

lmϕ
)ΔKN

]
RKN = 0, (30)

where λKN
lmϕ

(αa, ε) is the separation constant for Eq. (23). In accordance with (24)–(28), for Eq. (30), we
can write

AKN =
2(ρ − α)

ΔKN

,

BKN =
[ε(ρ2 + α2

a) − αamϕ]2 − (ε2α2
a − 2εαamϕ)ΔKN − (ρ2 + λKN

lmϕ
)ΔKN

Δ2
KN

.

(31)

In explicit form, the effective potential UKN
eff (ρ) in the Schrödinger-type equation with (27) and (31)

taken into account is

UKN
eff (ρ) =

1
2
(ε2 − 1) +

1
2ΔKN

+
ε2α2

a − 2εαamϕ

2ΔKN

+
ρ2

2ΔKN

+
λKN

lmϕ

2ΔKN

− (ρ − α)2

2Δ2
KN

−

− 1
2Δ2

KN

[ε(ρ2 + α2
a) − αamϕ]2. (32)

3.2.2. Asymptotic behavior of the effective potential. As ρ → ∞, we have

UKN
eff |ρ→∞ =

α

ρ
(1 − 2ε2) + O

(
1
ρ2

)
. (33)

As ρ → 0,
UKN

eff |ρ→0 → constKN + O(ρ). (34)

As ρ → (ρ±)KN,

UKN
eff |ρ→(ρ±)KN

= − 1
(ρ − (ρ±)KN)2

{
1
8

+
[ε((ρ±)2KN + α2

a) − αamϕ]2

2((ρ+)KN − (ρ−)KN)2

}
. (35)

For the Kerr metric, asymptotic formulas (33)–(35) hold with αQ = 0. The asymptotic formulas for the
Reissner–Nordström metric can be obtained from (33) and (35) with αa = 0. The asymptotic formulas
for the Schwarzschild metric are obtained from (33) and (35) with αa = 0 and αQ = 0. Asymptotic
formula (35) indicates that the systems “a scalar particle in Kerr, Kerr–Newman, Reissner–Nordström, and
Schwarzschild fields” are singular.
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3.2.3. Painlevé–Gullstrand metric in the coordinates (T, r, θ, ϕ). The stationary Eddington–
Finkelstein [36], [37] and Painlevé–Gullstrand [38], [39] metrics and the nonstationary Lemaitre–Finkel-
stein [40], [37] and Kruskal–Szekeres [41], [42] metrics were previously obtained by coordinate transforma-
tions of Schwarzschild metric (7) to eliminate the singularity on the event horizon r0. But in quantum
mechanics, the singularity for all mentioned metrics is manifested in the final results. In [43], this was
shown in the example of a spin-1/2 particle, and the equivalence of the Schwarzschild metric and metrics
indicated above was shown for the regular solution ε = 0. In this section, for the Painlevé–Gullstrand
metric, we see the same behavior of the effective potential in a neighborhood of ρ = 2α and ρ → ∞ as for
the Schwarzschild metric in Sec. 3.2.2 (see (33), (35) for αa = 0 and αQ = 0).

In accordance with (9),
√−g = r2 sin θ,

g00 = 1, g01 = g10 = −
√

r0

r
, g11 = −fS, g22 = − 1

r2
, g33 = − 1

r2 sin2 θ
.

We represent the wave function ΦPG(r, T ) for stationary states in the form

ΦPG(r, T ) = Pl(r)Ylmϕ (θ, ϕ)e−iET . (36)

After separation of variables in (23) and substitution (36), the equations for the radial functions Pl(r)
become

d2Pl

dr2
+

(
1
r2

(2r − r0) − i2
√

r0

r
E

)
1
fS

dPl

dr
+

+
[
E2 − m2

fS

− l(l + 1)
r2fS

− iE

r2fS

√
r0

r

(
2r − r0

2

)]
Pl = 0. (37)

By analogy with Eq. (24), after passing to dimensionless variables (18), we define

APG =
1
fS

(
2(ρ − α)

ρ2
− i2ε

√
2α

ρ

)
,

BPG =
1
fS

(ε2 − 1) − 1
ρ2fS

l(l + 1) − iε
1

ρ2fS

√
2α

ρ
(2ρ − α).

(38)

Further, we bring Eq. (37) to the form of a Schrödinger equation with the effective potential UPG
eff (ρ):

Pl(ρ) = Pl(ρ) exp
[
1
2

∫
APG(ρ′) dρ′

]
,

d2Pl(ρ)
dρ2

+ 2(ESchr − UPG
eff (ρ))Pl(ρ) = 0,

UPG
eff (ρ) = ESchr +

1
4

dAPG

dρ
+

1
8
A2

PG − 1
2
BPG,

ESchr =
1
2
(ε2 − 1).

(39)

An explicit formula for UPG
eff (ρ) is given in Appendix A. Equalities (37)–(39) are complex. But analysis of

the asymptotic behavior of UPG
eff (ρ) shows that the leading singularities are on the real axis and completely

coincide with the singularities for the Schwarzschild metric. Therefore, the system “a scalar particle in a
Painlevé–Gullstrand field” is singular. Obviously, we can also draw the same conclusion for the stationary
Eddington–Finkelstein metric [36], [37].

1499



3.2.4. Extremal Kerr and Kerr–Newman fields. In the case of the extremal Kerr and Kerr–
Newman fields, there exists a single event horizon ρ = α. Moreover, α2 = α2

a + α2
Q

and ΔKN = (ρ − α)2.

The expression for effective potential (32) becomes

U ext
eff =

1
2
(ε2 − 1) +

ρ2

2(ρ − α)2
+

λext

2(ρ − α)2
+

ε2α2
a − 2εαamϕ

2(ρ − α)2
−

− (ρ2 + α2
a)2

2(ρ − α)4

(
ε − αamϕ

ρ2 + α2
a

)2

. (40)

As ρ → ∞, the asymptotic formula for U ext
eff remains as in (33). As ρ → 0, we must take the equality

α2 = α2
a + α2

Q
into account in constKN in asymptotic formula (34). As ρ → α and under the condition that

ε 
= εext = αamϕ/(α2 + α2
a), the effective potential has the form

U ext
eff |ρ→α = − (α2 + α2

a)2

2(ρ − α)4
(ε − εext)2 + O

(
1

(ρ − α)2

)
. (41)

As ρ → α and for ε = εext, we can write the expression for U ext
eff as

U ext
KN (ε = εext)|ρ→α =

1
2(ρ − α)2

[Cext + λext + α2 − Ω2], (42)

where

Cext = εextαa(εext − 2αmϕ), Ω =
2ααamϕ

α2 + α2
a

. (43)

If

Cext + λext + α2 − Ω2 > 0 (44)

in (42), then there exists a potential barrier on the event horizon. If Cext + λext + α2 −Ω2 ≥ 3/4, then the
barrier becomes quantum mechanically impenetrable.

If

− 1
4

< Cext + λext + α2 − Ω2 < 0, (45)

then there exists a potential well near the event horizon, and in this case, the stationary bound state of
scalar particles with ε = εext can exist in domains of the wave functions ρ ∈ [α,∞) and ρ ∈ (0, α].

If

Cext + λext + α2 − Ω2 ≤ −1
4
, (46)

then the regime of particle “falling” on the event horizon is realized.

For ε 
= εext, in accordance with asymptotic formula (41), the systems “a scalar particle in an extremal
Kerr and Kerr–Newman field” are singular. For ε = εext, the systems are singular if inequality (46) is
satisfied.

3.3. Photon in gravitational and electromagnetic fields of asymptotically flat vacuum
solutions of General Relativity.
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3.3.1. Photon in a Kerr field. Teukolsky [45] separated the variables in the Maxwell equations in
a Kerr space–time [44] (also see (13), (16), (17)). The function ψ of the master equation was represented
in the form

ψ = e−iωteimϕS(θ)R(r). (47)

The function ψ in [45] is related to the components of the electromagnetic field tensor convoluted with
components of the Kinnersley tetrad [46] in the Newman–Penrose formalism [47]. For our analysis, the
Teukolsky separation of variables has a significant disadvantage: the equation for the radial function R(r)
and hence also the effective potential in the Schrödinger equation are complex.

Lunin [48] introduced new more complicated relation of ansatz (47) to the components of the electro-
magnetic field potential Aμ(r, t). As a result, a separation of variables with a real equation for the radial
function R(r) was produced. In the Lunin terminology, variables are separated for the “electrical polar-
ization” and for the “magnetic polarization” (Teukolsky did not separate the variables for the “magnetic
polarization”). For a better understanding, we write the final formulas in [48].

The electrical polarization is described by the relations

lμ±A(e)
μ = ± r

1 ± iμr
l̂±Ψ, mμ

±A(e)
μ = ∓ iacθ

1 ± iμacθ
m̂±Ψ, Ψ = e−iωt+imϕR(r)S(θ),

Eθ

sθ

d

dθ

[
sθ

Eθ

d

dθ
S

]
+

{
− 2ζ

Eθ
+ (aωcθ)2 −

m2

s2
θ

− C

}
S = 0,

Er
d

dr

[
ΔK

Er

d

dr
R

]
+

{
2ζ

Er
+ (ωr)2 +

(am)2

ΔK

+
r0rω

2Δ0

ΔK

− 2r0arωm

ΔK

+ C

}
R = 0,

(48)

where Er = 1 + (μr)2, Eθ = 1 − (μacθ)2, ΔK = r2 + a2 − r0r, Δ0 = r2 + a2, sθ, cθ = sin θ, cos θ,
ζ = aμ[m − aω + ω/aμ2], C = −ζ − 2amω + (aω)2, μ is the separation constant,

lμ+ = lμ, lμ− = −2ρ2
knμ/ΔK,

mμ
+ =

√
2 ρmμ, mμ

− =
√

2 ρ∗m∗μ, ρ = r + ia cos θ,

lμ± ∂μ = ∂r ±
[
r2 + a2

ΔK

∂t +
a

ΔK

∂ϕ

]
, mμ

± ∂μ = ∂θ ±
[
ia sin θ ∂t +

i

sin θ
∂ϕ

]
,

(49)

lμ, nμ, mμ, and m∗μ are components of the Kinnersley tetrad vectors [46] with lμnμ = −1 and mμm∗μ = 1.
The magnetic polarization is described by the formulas

lμ±A(m)
μ = ± ia

1 ± iμa
l̂±Ψ, mμ

±A(m)
μ = ∓ 1

cθ ∓ μ
m̂±Ψ, Ψ = e−iωt+imϕR(r)S(θ),

Mθ

sθ

d

dθ

[
sθ

Mθ

d

dθ
S

]
+

{
−m2

s2
θ

− 2ζ

Mθ
+ (aωcθ)2 − C

}
S = 0,

Mr
d

dr

[
ΔK

Mr

d

dr
R

]
+

{
−2ζa2

Mr
+

(am)2

ΔK

+ (rω)2 +
r0rω

2Δ0

ΔK

− 2r0arωm

ΔK

+ C

}
R = 0,

(50)

where Mr = r2 + μ2a2, Mθ = c2
θ − μ2, ζ = μ[−aω + m + aωμ2], and C = ζ/μ2 − aω[−aω + 2m].

Asymptotic behavior of the effective potential UK

eff (r). We can obtain Schrödinger-type equa-
tions for the functions R(e)(r) and R(m)(r) with the effective potentials U

(e)
eff (r) and U

(m)
eff (r) from the

equations for the radial function R(r) in (48) and (50).
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The asymptotic formulas for the potentials U
(e)
eff (r) and U

(m)
eff (r) are the same as r → ∞, r → 0, and

r → (r±)K. We further analyze U
(e)
eff (r):

U
(e)
eff =

1
2
ω2 +

1
2ΔK

− 2μ2

E2
r

(1 − μ2r2) − μ2r(2r − r0)
2ErΔK

+
1
2

μ4r2

E2
r

− ζ

ErΔK

− C

2
−

− 1
8

(2r − r0)2

Δ2
K

− [ω(r2 + a2) − am]2 − (ω2a2 − 2ωam)ΔK

2Δ2
K

. (51)

We have

U
(e)
eff |r→∞ = −ω2r0

r
(52)

as r → ∞,
U

(e)
eff |r→0 = const + O(ρ) (53)

as r → 0, and

U
(e)
eff |r→(r±)K = − 1

(r − (r±)K)2

[
1
8

+
(ω2((r±)2K + a2) − am)2

2((r+)K − (r−)K)2

]
+ O

(
1

|r − (r±)K|

)
(54)

as r → (r±)K.
For the asymptotic effective potentials U

(e)
eff (r) and U

(m)
eff (r) in Schrödinger-type equations, the regime

of particle “falling” on event horizons is realized (see (54)):

R(e)|r→(r±)K , R(m)|r→(r±)K ∼ (r − (r±)K)1/2 sin θ(
√

K log(r − (r±)K) + ϕ0), (55)

where ϕ0 is an arbitrary phase.
Functions (55) have an unbounded number of zeros as r → (r±)K. It can be seen from the relations

in (48) and (50) that the electromagnetic potentials A
(e)
μ (r, t) and A

(m)
μ (r, t) also oscillate in neighborhoods

of event horizons as do the radial functions R(e)(r) and R(m)(r) in (55). We can conclude that the system
“a photon in the Kerr gravitational field” is singular after quantization of the electromagnetic field.

3.3.2. Photon in a Kerr–Newman field. Variables in the Maxwell equations in a Kerr–Newman
space–time can be separated using Lunin’s work [48] for the Kerr geometry. For fermions, Chandrasekhar’s
paper [49] was similarly generalized previously for the Kerr geometry by Page [50].

We must first change
ΔK → ΔKN = r2 + a2 − (r0r − r2

Q) (56)

in the components of the Kinnersley tetrad in (49). Following the Lunin formalism, we can then obtain
formulas (48) and (50) and the effective potential U

(e)
KN (r) given by (51) with the changes ΔK → ΔKN and

r0r → (r0r − r2
Q) in them. In this case, the angular equations in (48) and (50) remain unchanged.

The asymptotic formulas for U
(e)
KN (r) and U

(m)
KN (r) are the same for r → ∞, r → 0, and r → (r±)KN.

We have

U
(e)
KN |r→∞ = −ω2r0

r
(57)

as r → ∞,
U

(e)
KN |r→0 = (const)KN + O(ρ) (58)

as r → 0, and

U
(e)
KN |r→(r±)KN

= − 1
(r − (r±)KN)2

[
1
8

+
(ω((r±)2KN + a2) − am)2

2((r+)KN − (r−)KN)2

]
+ O

(
1

|r − (r±)KN|

)
(59)
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as r → (r±)KN. In (59), the radii of the outer and inner event horizons of the Kerr–Newman metric are
defined in (15). In accordance with (59), repeating the arguments in Sec. 3.3.1, we can conclude that the
system “photon in a Kerr–Newman field” is singular after quantization of the electromagnetic field. The
singularity of the system “a photon in Reissner–Nordström and Schwarzschild fields” also follows from (54)
and (59).

3.3.3. Extremal Kerr–Newman field. In this case, there exists a unique event horizon with r =
r0/2. Moreover, a2 + r2

Q = r2
0/4 and Δext

KN = (r − (r0/2))2.

The effective potential U ext
KN (r) in a Schrödinger-type equation for the radial function R

(e)
KN(r) has the

form

U ext
KN =

1
2
ω2 − 2μ2(1 − μ2r2)

E2
r

− μ2r

E2
r (r − (r0/2))

+
1
2

μ4r2

E2
r

− ζ

Er(r − (r0/2))2
−

− [ω(r2 + a2) − am]2

2(r − (r0/2))4
+

ω2a2 − ωam

2(r − (r0/2))2
. (60)

The asymptotic formulas for U ext
KN as r → ∞ and as r → 0 remain as in (57) and (58) with the equality

a2 + r2
Q = r2

0/4 taken into account in (58).
In a neighborhood of the unique event horizon,

U ext
KN |r→r0/2 = − [ω((r2

0/4) + a2) − am]2

2(r − (r0/2))4
. (61)

For ω 
= am/((r2
0/4) + a2), the system “a photon in an extremal Kerr–Newman field” is singular. For

ωext = am/((r2
0/4) + a2), the leading singularity of the potential in a neighborhood of the event horizon

with r = r0/2 has the form

U ext
eff |r→r0/2 =

1
2(r − (r0/2))2

[
− a2m2r2

0

((r2
0/4) + a2)2

+
a4m2

((r2
0/4) + a2)2

− a2m2

(r2
0/4) + a2

− 2ζ

Er

]
=

=
Next

2(r − (r0/2))2
. (62)

If Next > 0, then there exists a potential barrier on the event horizon. If Next ≥ 3/4, then this barrier is
impenetrable. If −1/4 < Next < 0, then there exists a potential well with possible realization of stationary
photon states. If Next ≤ −1/4, then the regime of a photon “falling” on the event horizon is realized.

Extremal Kerr and Reissner–Nordström fields can be easily analyzed analogously.

3.4. Spin-1/2 particle in Schwarzschild, Reissner–Nordström, Kerr, and Kerr–Newman
gravitational fields. Stationary states of spin-1/2 particles were studied in [4]–[6] using second-order
equations with effective potentials. Below, we briefly present the results of this research.

3.4.1. Asymptotic behavior of the effective potential. As ρ → ∞ for the most general Kerr–
Newman metric,

UKN
eff |ρ→∞ = (1 − 2ε2)

α

ρ
+

αemε

ρ
+ O

(
1
ρ2

)
. (63)

For the Kerr and Schwarzschild metrics in (63), αem = 0.
As ρ → 0,

US
eff |ρ→0 =

5
32ρ2

(64)
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for the Schwarzschild metric,

URN
eff |ρ→0 =

3
8ρ2

(65)

for Reissner–Nordström metric, and

UK
eff |ρ→0 = const, UKN

eff |ρ→0 = const (66)

for the Kerr and Kerr–Newman metrics.
In the presence of an event horizon, for the Kerr–Newman metric and ε 
= εst

KN,

UKN
eff (ε 
= εst

KN)|ρ→(ρ±)KN
= − 1

(ρ − (ρ±)KN)2

[
1
8

+
(ε − εst

KN)2((ρ±)2KN + α2
a)2

2[(ρ+)KN − (ρ−)KN]2

]
, (67)

where

εst
KN =

αamϕ + αem(ρ±)KN

α2
a + (ρ±)2KN

. (68)

From (67), (68), and (19)–(21), we obtain the asymptotic formula in a neighborhood of the event horizon
for the Kerr metric with αQ = 0, for the Reissner–Nordström metric with αa = 0, and for the Schwarzschild
metric with αQ = 0 and αa = 0.

For the extremal Kerr–Newman field with a unique event horizon (ρ+)KN = (ρ−)KN = α,

U ext
eff (ε 
= εext

KN )|ρ→α = − (α2
a + α2)2(ε − εext

KN )2

2(ρ − α)4
, (69)

where
εext
KN =

αmϕ + αemα

α2
a + α2

. (70)

We can obtain analogous asymptotic formulas for extremal Kerr and Reissner–Nordström fields from (69)
and (70).

It was proved in [4]–[6] that there exist stationary bound states of spin-1/2 particles in the considered
gravitational fields.

For the Kerr–Newman metric in the presence of event horizons (ρ±)KN, the stationary state energies
are given by expression (68). We have

εst
K =

αamϕ

2α(ρ±)KN

(71)

for the Kerr metric,
εst
RN =

αem

(ρ±)KN

(72)

for the Reissner–Nordström metric, and
εst
S = 0 (73)

for the Schwarzschild metric. The energy of a stationary bound state for the extremal Kerr–Newman field
is given by expression (70). We have

εext
K =

mϕ

2α
(74)

for the Kerr metric and
εext
RN =

αem

α
(75)
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for the Reissner–Nordström metric. For all considered metrics, the asymptotic effective potential in a
neighborhood of event horizons with energies of stationary states (68) and (71)–(73) has the same form

Ueff(ε = εst)|ρ→ρ± = − 3
32

1
(ρ − ρ±)2

. (76)

Asymptotic formula (76) admits the existence of stationary bound states of spin-1/2 particles. Ex-
pression (67) does not coincide with asymptotic formula (76) as ε → 0. For their coincidence, in the
expressions for Ueff (see Appendix B), terms that are insignificant at a finite ε but noticeably contribute to
the coefficient with the leading singularity as ε → 0 must be taken into account.

For the metrics of the Kerr, Kerr–Newman, and Reissner–Nordström extremal fields, the asymptotic
effective potential as ρ → α with energies of stationary bound states (70), (74), and (75) has the form

U ext
eff (ε = εext

KN )|ρ→α = − 1
2(ρ− α)2

[
1
4
− (λ2 + α2 − α4Ω2)

]
+ O

(
1

|ρ − α|

)
, (77)

where

Ω = −mϕαa + αemα

α2 + α2
a

2α2
a

α3
+

2mϕαa

α3
+

αem

α2

and λ(ε, αa, j, mϕ) is the separation constant in the Chandrasekhar–Page equations [49], [50].
We can write the condition for the existence of a potential well in potential (77) and the condition for

the existence of stationary bound states with energies (70), (74), and (75) in it as

0 < λ2 + α2 − α4Ω2 <
1
4

(Kerr–Newman metric), (78)

0 < λ2 + α2 − m2
ϕ <

1
4
, Ω =

mϕ

α2
a

(Kerr metric), (79)

0 < κ2 + α2 − α2
em <

1
4
, λ = κ, Ω =

αem

α2
(Reissner–Nordström metric). (80)

Therefore, for all considered metrics, if ε 
= εst, then systems “a spin-1/2 particle in gravitational fields
with event horizons” are singular. This statement also holds for extremal fields if ε 
= εext.

There also exist regular stationary solutions ε = εst given by (68) and (71)–(73) for metrics with event
horizons and ε = εext given by (70) and (74), (75) under conditions (78)–(80) for extremal fields with a
unique event horizon. Solutions ε = εst correspond to square-integrable wave functions vanishing on event
horizons. Particles in stationary bound states are located near event horizons (over outer and under inner
event horizons) with a high probability. The probability density maximums for detecting particles are
separated from event horizons by fractions of the Compton wavelength of bound fermions.

3.5. Discussion of the results in this section. We present the final results for the leading singu-
larities of the effective potentials Ueff(r) in neighborhoods of event horizons. The results for photons are
given in natural units.
Schwarzschild field:

• scalar particle and fermion with ε 
= εst
S (see (35)),

US
eff |ρ→2α = − 1

(ρ − 2α)2

(
1
8

+ 2α2ε2

)
,

• photon (see (59)),

US
eff |r→r0 = − 1

(r − r0)2

(
1
8

+
r2
0ω

2

2

)
,
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• fermion with ε = εst
S = 0 (see (76)),

US
eff |ρ→2α = − 3

32
1

(ρ − 2α)2
.

Reissner–Nordström field:

• charged scalar particle and fermion with ε 
= εst
RN(see (35)),

Ueff |ρ→(ρ±)RN = − 1
(ρ − (ρ±)RN)2

[
1
8

+
(ε − αem/(ρ±)RN)2(ρ±)4RN

2[((ρ+)RN − (ρ−)RN)]2

]
,

• photon (see (59)),

Ueff |r→(r±)RN = − 1
(r − (r±)RN)2

[
1
8

+
ω2(r±)4RN

2[(r+)RN − (r−)RN]2

]
,

• fermion with ε = εst
RN = αem/(ρ±)RN (see (76)),

Ueff |ρ→(ρ±)RN = − 3
32

1
(ρ − (ρ±)RN)2

.

Kerr and Kerr–Newman fields:

• uncharged scalar particle (see (35)),

UKN
eff |ρ→(ρ±)KN

= − 1
(ρ − (ρ±)KN)2

[
1
8

+
[ε((ρ±)2KN + α2

a) − αamϕ]2

2((ρ+)KN − (ρ−)KN)2

]
,

• photon (see (59)),

UKN
eff |ρ→(ρ±)KN

= − 1
(r − (r±)KN)2

[
1
8

+
(ω − amϕ/((r±)2KN + a2))2((r±)2KN + a2)2

2((r+)KN − (r−)KN)2

]
,

• fermion with ε 
= εst
KN (see (67)),

UKN
eff (ε 
= εst

KN)|ρ→(ρ±)KN
= − 1

(ρ − (ρ±)KN)2

[
1
8

+
(ε − εst

KN)2((ρ±)2KN + α2
a)2

2[(ρ+)KN − (ρ−)KN]2

]
,

• fermion with ε = εst
KN = [αamϕ + αem(ρ±)KN]/(α2

a + (ρ±)2KN) (see (76)),

UKN
eff |ρ→(ρ±)KN

= − 3
32

1
(ρ − (ρ±)KN)2

.

Reissner–Nordström extremal field:

• charged scalar particle with ε 
= εext
RN and fermion with ε 
= εext

RN (see (41)),

U ext
RN |ρ→α = − (ε − εext)2α4

2(ρ − α)4
,
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• photon (see (61)),

U ext
RN |r→r0/2 = − ω2r4

0

25(r − (r0/2))4
,

• charged scalar particle with ε = εext
RN = αem/α

U ext
RN |ρ→α = − 1

2(ρ− α)2
[−l(l + 1) − α2 + α2

em],

• fermion with ε = εext
RN = αem/α (see (77), (80)),

U ext
RN |ρ→α = − 1

2(ρ − α)2

[
1
4
− κ2 − α2 + α2

em

]
.

Kerr and Kerr–Newman extremal fields:

• uncharged scalar particle with ε 
= εext and fermion with ε 
= εext (see (41)),

U ext
KN |ρ→α = − (α2 + α2

a)2(ε − εext)2

2(ρ − α)4
,

• photon with ω 
= ωext (see (61)),

U ext
KN |r→r0/2 = − (r2

0/4 + α2)2(ω − ωext)2

2(r − (r0/2))4
,

• uncharged scalar particle with ε = εext = αamϕ/(α2 + α2
a) (see (42), (43)),

U ext
KN |ρ→α = − 1

2(ρ − α)2
[Ω2 − α2 − λext − Cext],

• fermion with ε = εext = (αamϕ + αemα)/(α2 + α2
a) (see (77)),

U ext
KN |ρ→α = − 1

2(ρ − α)2

[
1
4
− (λ2

ext + α2 − α4Ω2)
]
,

• photon with ω = ωext = mϕα/[(r2
0/4) + α2] (see (62)),

U ext
KN |r→r0/2 =

Next

2(r − (r0/2))2
.

For scalar particles, the final results can be supplemented with the Eddington–Finkelstein and Painlevé–
Gullstrand metrics (see Sec. 3.2.3), for which the leading singularity in a neighborhood of the event horizon
stays on only the real axis and is the same as for the Schwarzschild metric.

In addition, it was shown in [43] for the Schwarzschild metric in isotropic coordinates and for the
Eddington–Finkelstein, Painlevé–Gullstrand, Lemaitre–Finkelstein, and Kruskal–Szekeres metrics that in
the case of a stationary bound state εst = 0, leading singularity (76) in a neighborhood of the event horizon
has the same form as for the initial Schwarzschild metric (7).
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4. Metrics with a nonzero cosmological constant

4.1. Kerr–Newman–(anti-)de Sitter geometry. The stationary Kerr–Newman metric is charac-
terized by a pointlike source with the mass M and charge Q rotating with the angular momentum J = Mca.

We can write the Kerr–Newman–(anti-)de Sitter metric in the Boyer–Lindquist coordinates (t, r, θ, ϕ)
in the form [51]–[55]

ds2 =
ΔKN

r

Ξ2r2
K

(dt − a sin2 θ dϕ)2 − r2
K

ΔKN
r

dr2 − r2
K

Δθ
dθ2 − Δθ sin2 θ

Ξ2r2
K

(a dt − (r2 + a2) dϕ)2, (81)

Δθ = 1 +
a2Λ
3

cos2 θ, Ξ = 1 +
a2Λ
3

, (82)

ΔKN
r =

(
1 − Λ

3
r2

)
(r2 + a2) − r0r + r2

Q, (83)

r2
K = r2 + a2 cos2 θ, (84)

where Λ is the cosmological constant, r0 = 2GM/c2 is the gravitational radius, and rQ =
√

G Q/c2.
For Λ > 0 (the de Sitter solution) in the presence of event horizons, we can represent ΔKN

r given by (83)
in the form

ΔKN
r = −Λ

3
(r − r+)(r − r−)(r − r+

Λ )(r − r−Λ ), (85)

where r± are the radii of the outer and inner event horizons and r+
Λ is the cosmological horizon.

For Λ < 0 (the anti-de Sitter solution), the equation ΔKN
r = 0 has two real and two complex-conjugate

roots. We can represent ΔKN
r in the form

ΔKN
r = (r − r+)(r − r−)β(r), (86)

where β(r) is a real function.

4.1.1. Motion of scalar particles. For particles with zero spin, the mass m, and the charge q, the
Klein–Gordon–Fock equation in a curved space–time has the form

(−g)−1/2

(
∂

∂xμ
− iqAμ

)[
(−g)1/2gμν

(
∂

∂xν
− iqAν

)
Φ

]
+ m2Φ = 0. (87)

For the Kerr–Newman–(anti-)de Sitter metric, Eq. (87) admits separation of variables [55]. If we set

Φ(r, t) = R(r)S(θ)eimϕϕe−iEt, (88)

then we can write the equation for the radial function R(r) in the form

d2R

dr2
+

(ΔKN
r )′

ΔKN
r

dR

dr
+

[
Ξ2

(
K − qQr

Ξ

)2 1
(ΔKN

r )2
− mr2 1

ΔKN
r

− Klmϕ

1
ΔKN

r

]
R = 0, (89)

where (ΔKN
r )′ = (d/dr)ΔKN

r , K = E(r2+a2)−amϕ, Klmϕ is the separation constant, E is the particle energy,
l = 0, 1, 2, . . . is the quantum number of the particle orbital momentum, and mϕ = −l,−l + 1, . . . , l − 1, l

is orbital momentum projection.
We set

A =
(ΔKN

r )′

ΔKN
r

, B = Ξ2

(
K − qQr

Ξ

)2 1
(ΔKN

r )2
− mr2 1

ΔKN
r

− Klmϕ

1
ΔKN

r

. (90)
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We bring Eq. (89) to the form of the Schrödinger equation with the effective potential Ueff(r):

R(r) = R(r) exp
[
1
2

∫
A(r′) dr′

]
, (91)

d2R(r)
dr2

+ 2(ESchr − Ueff(r))R(r) = 0, (92)

Ueff(r) = ESchr +
1
4

dA

dr
+

1
8
A2 − 1

2
B, (93)

ESchr =
1
2
(E2 − m2). (94)

We can write effective potential (93) in the explicit form

Ueff(r) =
1
2
(E2 − m2) +

1
4

(ΔKN
r )′′

ΔKN
r

− 1
8

(ΔKN′
r )2

(ΔKN
r )2

− Ξ2

(
K − qQr

Ξ

)2 1
2(ΔKN

r )2
+

mr2

2ΔKN
r

+
Klmϕ

2ΔKN
r

. (95)

It can be seen from representations (85) and (86) that the leading singularities ∼ 1/(r−r+)2, 1/(r−r−)2, and
1/(r−r+

Λ )2 near the horizons r+, r−, and r+
Λ are contained in the third and fourth terms in expression (95).

The asymptotic formulas for effective potential (95) have the same structure near horizons. For exam-
ple, as r → r+,

Ueff |r→r+ = − 1
(r − r+)2

{
1
8

+
Ξ2(K − qQr/Ξ)2

2[(r+ − r−)(r+ − r+
Λ )(r+ − r−Λ )]2

}
(96)

for the de Sitter solution (Λ > 0) and

Ueff |r→r+ = − 1
(r − r+)2

{
1
8

+
Ξ2(K − qQr/Ξ)2

2[(r+ − r−)ϕ(r+)]2

}
(97)

for the anti-de Sitter solution (Λ < 0). It can be seen from asymptotic formulas (96) and (97) that for any
scalar particle energy, near both sides of the horizons in potential (95), there are infinitely deep potential
wells ∼ K+

1 /(r − r+)2, K−
1 /(r − r−)2, and KΛ

1 /(r − r+
Λ )2 with coefficients K+,−,Λ

1 ≥ 1/8.
By criteria used in Sec. 2, the system “a scalar particle in a Kerr–Newman–(anti-)de Sitter field” is

singular.
As horizons are approached, the radial function of a Schrödinger-type equation has an unbounded

number of zeros. For example, as r → r+,

R|r→r+ ∼ (r − r+)1/2 sin
(√

L+
1 log(r − r+) + δ

)
,

where δ (0 ≤ δ < π) is an arbitrary phase and L+
1 = 2(K+

1 − (1/8)).

4.1.2. Photon in a Kerr–Newman–(anti-)de Sitter field. Lunin [48] separated the variables
for the Kerr–(anti-)de Sitter metric in the form given in [53]. The function ψ in the master equation was
represented in the form

ψ = e−iωteimϕS(θ)R(r). (98)

In the notation in [53] and with the signature of ds2 as in Sec. 4.1, we have (see (81))

ds2 = −g̃tt dt2 − r2 + a2

Ξ
sin2 θ

[
dϕ̃ − Λ

3
a dt

]2

− r0r

r2
K

[
dt − a sin2 θ dϕ̃

Ξ

]2

− r2
K

[
dr2

ΔK
r

+
dθ2

Δθ

]
, (99)
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where g̃tt = −Δθ(1 − Λr2/3)/Ξ and ΔK
r = (1 − Λr2/3)(r2 + a2) − r0r. The coordinate ϕ̃ has the standard

periodicity (0 ≤ ϕ̃ < 2π), but to simplify some formulas, the angular coordinate

ϕ =
√

Ξϕ̃, 0 ≤ ϕ < 2π
√

Ξ, (100)

was introduced in [48]. Just as in Sec. 3.3.2, we can separate the variables in the Maxwell equations in the
Kerr–Newman–(anti)-de Sitter space–time using Lunin’s results [48] for the Kerr–(anti-)de Sitter geometry.
For fermions, Chandrasekhar’s paper [49] was previously similarly generalized for the Kerr geometry by
Page [50].

We must first change

ΔK → ΔKN
r =

(
1 − Λ

3
r2

)
(r2 + a2) − r0r + r2

Q (101)

in the components of the Kinnersley tetrad. Further, following the Lunin formalism, we can separate the
variables with ansatz (98) and obtain formulas (2.72) in [48] for angular and radial equations with the
changes ΔK

r → ΔKN
r and r0r → (r0r − r2

Q) in them.
We emphasize that ansatz (98) contains the angle coordinate ϕ with nonstandard periodicity (100).

Therefore, m is not integer in the angular and radial equations, but it takes discrete values as before.
We can write the radial equation for R(r) in the form (see (2.72) in [48])

d2R

dr2
+

(
(ΔKN

r )′

ΔKN
r

− D′
r

Dr

)
dR

dr
+

[
(ω(r2 + a2) − am)2

(ΔKN
r )2

+
(

2ζ

Dr
− ζ

)
1

ΔKN
r

]
R = 0, (102)

where (ΔKN
r )′ = dΔKN

r /dr, D′
r = dDr/dr, Dr = 1 + (μr)2 and ζ = aμ[m − aω + ω/aμ2] for the “electrical

polarization,” Dr = 1 + r2/(μa)2 and ζ = (1/μ)[aω − m − aωμ2] for the “magnetic polarization,” and μ is
the separation constant.

We set

A(r) =
(ΔKN

r )′

ΔKN
r

, B(r) =
(ω(r2 + a2) − am)2

(ΔKN
r )2

+
(

2ζ

Dr
− ζ

)
1

ΔKN
r

. (103)

We can then bring Eq. (102) to the form of a Schrödinger-type equation with the effective potential Ueff(r)
(see (91)–(94)). Explicitly,

Ueff =
1
2
ω2 +

1
4

(
(ΔKN

r )′′

ΔKN
r

− D′′
r

Dr

)
+

3
8

D′2
r

D2
r

− 1
4

(ΔKN
r )′

ΔKN
r

D′
r

Dr
− 1

8
(ΔKN′

r )2

(ΔKN
r )2

−

− (ω(r2 + a2) − am)2

(ΔKN
r )2

−
(

2ζ

Dr
− ζ

)
1

2ΔKN
r

. (104)

It follows from representations (85), (86) that the leading singularities ∼ 1/(r− r+)2, 1/(r− r−)2, and
1/(r− r+

Λ )2 near the horizons r+, r−, and r+
Λ are contained in the fifth and sixth terms in expression (104).

Near the horizons, the asymptotic formulas for effective potential (104) have the same structure. For
example, as r → r+,

Ueff |r→r+ = − 1
(r − r+)2

{
1
8

+
(ω(r2 + a2) − am)2

2[(r+ − r−)(r+ − r+
Λ )(r+ − r−Λ )]2

}
(105)

for the de Sitter solution (Λ > 0) and

Ueff |r→r+ = − 1
(r − r+)2

{
1
8

+
(ω(r2 + a2) − am)2

2[(r+ − r−)β(r+)]2

}
(106)
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for the anti-de Sitter solution (Λ < 0).
It follows from asymptotic formulas (105) and (106) that for any energy ω on both sides of the horizons

in potential (104), there are infinitely deep potential wells ∼ K+
2 /(r−r+)2, K−

2 /(r−r−)2, and KΛ
2 /(r−r+

Λ )2

with the coefficients K+,−,Λ
2 ≥ 1/8. As a result, the regime of a particle “falling” is realized on the

corresponding event horizons, which is unacceptable in quantum theory.
As the horizons are approached, the radial function of the Schrödinger-type equation has an unbounded

number of zeros. For example, as r → r+,

R(r)|r→r+ ∼ (r − r+)1/2 sin
(√

L+
2 log(r − r+) + δ

)
, (107)

where L+
2 = 2(K+

2 − (1/8)).
In the Lunin formalism, the function ψ in (98) is related to the electromagnetic field potential Aμ(r, t)

by the components of the Kinnersley tetrad.
The components Aμ(r, t) of the potential also behave as R(r) in (107) in a neighborhood of horizons.

Obviously, we can conclude that the system “a photon in a Kerr–Newman–(anti-)de Sitter field” is singular
after quantization of the electromagnetic field.

4.1.3. Fermion in a Kerr–Newman–(anti-)de Sitter field. Variables were separated in the Dirac
equation in the Kerr–Newman–(anti-)de Sitter space–time in paper [56]. Below, we use the form of the
Kerr–Newman–(anti-)de Sitter metric and the notation in Sec. 4.1 (see (81)–(86)).

In fact, the Chandrasekhar ansatz [49]

ψ(r, t) =

⎛

⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

1
r − ia cos θ

R(−)(r)S(−)(θ)

1
√

ΔKN
r

R(+)(r)S(+)(θ)

1
√

ΔKN
r

R(+)(r)S(−)(θ)

− 1
r + ia cos θ

R(−)(r)S(+)(θ)

⎞

⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

e−iEt+imϕϕ (108)

was used to separate the variables for the wave function ψ of the Dirac equation with the mass m and
charge q in [56], where the system of radial equations was obtained,

√
ΔKN

r

dR(−)

dr
−

[
iΞ(E(r2 + a2) − mϕa) − iqQr

√
ΔKN

r

]
R(−)(r) = (λ + imr)R(+)(r), (109)

√
ΔKN

r

dR(+)

dr
+

[
iΞ(E(r2 + a2) − mϕa) − iqQr

√
ΔKN

r

]
R(+)(r) = (λ − imr)R(−)(r). (110)

Here λ is the separation constant. It follows from (109) and (110) that R(−)(r) = R(+)∗(r). We introduce
the real functions

g(r) = R(−)(r) + R(+)(r), f(r) = −i(R(−)(r) − R(+)(r)). (111)

Adding (109) and (110) and subtracting (110) from (109), we obtain

√
ΔKN

r

df(r)
dr

+ λf(r) −
(

Ξ(E(r2 + a2) − mϕa) − qQr
√

ΔKN
r

+ mr

)
g(r) = 0,

√
ΔKN

r

dg(r)
dr

− λg(r) +
(

Ξ(E(r2 + a2) − mϕa) − qQr
√

ΔKN
r

− mr

)
f(r) = 0.

(112)
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We set fKN = ΔKN
r /r2 and introduce the functions FKN(r) = f(r)/r

√
fKN and GKN(r) = g(r)/r

√
fKN. As

a result, (112) yields equations for the real radial functions FKN(r) and GKN(r):

(
fKN

d

dr
+

1
r
− r0

2r
+

λ
√

fKN

r

)
FKN(r) −

−
(

Ξ
(

E

(
1 +

a2

r2

)
− mϕa

r2

)
− qQ

r
+ mr

√
fKN

)
GKN(r) = 0,

(
fKN

d

dr
+

1
r
− r0

2r
−

λ
√

fKN

r

)
GKN(r) +

+
(

Ξ
(

E

(
1 +

a2

r2

)
− mϕa

r2

)
− qQ

r
− mr

√
fKN

)
FKN(r) = 0.

(113)

For Ξ = 1 (Λ = 0), Eqs. (113) coincide with Eqs. (43) in [6], which were obtained in accordance with
the results in [57] using a more symmetric form of the Chandrasekhar–Page equations [49], [50] and using
Dirac matrices in the Dirac–Pauli representation.

Ansatz (108) becomes

ψ(r, t) =
1√
2
r
√

fKN

(
FKN(r)iσ3ξKN(θ)

GKN(r)ξKN(θ)

)

e−iEt+imϕϕ (114)

with the spinor ξKN(θ) =
(

S−(θ)
S+(θ)

)
, where S±(θ) are spheroidal harmonics for spin 1/2 satisfying the

Chandrasekhar–Page angular equations [49], [50].
Using the formalism in [6] and taking the structural similarity of Eqs. (113) and Eqs. (43) in [6]

into account, we can easily bring Eqs. (113) to the form of a Schrödinger-type equation with the effective
potential Ueff(ρ). The explicit form of the effective potential is given in Appendix B.

4.1.3.1. Asymptotic formulas for the effective potential. It follows from representations (85)
and (86) that effective potential (166) (see Appendix B) near the horizons r+, r−, and r+

Λ is singular with
the leading singularities ∼ 1/(r − r+)2, 1/(r − r−)2, and 1/(r − r+

Λ )2. The asymptotic formulas for the
effective potential have the same structure near event horizons. For example, as r → r+,

Ueff |r→r+ = − 1
(r − r+)2

{
1
8

+
Ω2

+

2[(r+ − r−)(r+ − r+
Λ )(r+ − r−Λ )]2

}
(115)

for the de Sitter solution (Λ > 0) and Ω+ 
= 0 and

Ueff |r→r+ = − 1
(r − r+)2

{
1
8

+
Ω2

+

2[(r+ − r−)ϕ(r+)]2

}
(116)

for the anti-de Sitter solution (Λ < 0) and Ω+ 
= 0, where

Ω+ = Ξ
(

E(r2
+ + a2) − mϕa − qQr+

Ξ

)
. (117)

The case Ω+ = 0 corresponds to a stationary state,

Est
+ =

mϕa + qQr+/Ξ
r2
+ + a2

. (118)
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This case is discussed in the next section.
Asymptotic formulas (115) and (116) show that for any energy E 
= Est, there are infinitely deep

potential wells ∼K+
3 /(r − r+)2, K−

3 /(r − r−)2, and KΛ
3 /(r − r+

Λ )2 with the coefficients K+,−,Λ
3 ≥ 1/8 in

potential (166). As a result, just as in the preceding sections, the regime of a particle “falling” on the
corresponding event horizons is realized, which is unacceptable in quantum theory, and we conclude that
for E 
= Est, the system “a fermion in a Kerr–Newman–(anti-)de Sitter field” is singular.

4.1.3.2. Fermion stationary states. We consider the case where either Ω+ = 0, Ω− = 0, or Ω+
Λ = 0.

The quantities Ω− and Ω+
Λ have form (117) with the change r+ → r− or r+ → r+

Λ . In these cases, the
fermion energy is equal to

Est
+,−,Λ+ =

mϕa + qQr+,−,Λ+/Ξ
r2
+,−,Λ+ + a2

. (119)

In a neighborhood of event horizons, the asymptotic formula for the effective potential is (166)

Ueff(Ω+,−,Λ+ = 0)|r→r+,−,Λ+ = − 3
32

1
(r − r+,−,Λ+)2

. (120)

Expressions (115) and (116) do not coincide with asymptotic formula (120) as Ω+ → 0. For their
coincidence, in expression (166) for Ueff , terms that are insignificant for a finite Ω+ but noticeably contribute
to the coefficient at the leading singularity as Ω+ → 0 must be taken into account. A similar remark also
holds for expression (166) for Ueff as Ω− → 0 or Ω+

Λ → 0.
Asymptotic formula (120) for |Est

+,−,Λ+ | < m admits the existence of stationary bound states of spin-
1/2 particles. Such states with a zero cosmological constant (Ξ = 1) were analyzed in [4]–[6]. Metrics with
Ξ 
= 1 can be analyzed similarly. Solutions of (119) with |Est

+,−,Λ+ | < m correspond to a Schrödinger-
type equation with square-integrable wave functions vanishing on event horizons. Particles in stationary
states are located near event horizons with a high probability. Probability density maximums for detecting
particles are separated from event horizons by fractions of the Compton wavelength of bound fermions.

4.2. Other geometries. Asymptotic formulas for effective potentials of a Schrödinger-type equation
for scalar particles, photons, and fermions were obtained for the most general Kerr–Newman–(anti-)de Sitter
metric in Sec. 4.1. Analogous asymptotic formulas retain their structure for other geometries (Kerr–(anti-
)de Sitter, Reissner–Nordström–(anti-)de Sitter, and Schwarzschild–(anti-)de Sitter).

4.2.1. Scalar particles. In asymptotic formulas (96) and (97),

ΔKN
r =

(
1 − Λ

3

)
(r2 + a2) − r0r + r2

Q, Q 
= 0,

KKN = E(r2 + a2) − amϕ, Ξ = 1 +
a2Λ
3

,

(121)

for the Kerr–Newman metric,

ΔK
r =

(
1 − Λ

3

)
(r2 + a2) − r0r, Q = 0,

KK = E(r2 + a2) − amϕ, Ξ = 1 +
a2Λ
3

,

(122)

for the Kerr metric,

ΔRN
r =

(
1 − Λ

3

)
r2 − r0r + r2

Q, Q 
= 0, KRN = Er2, Ξ = 1, (123)
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for the Reissner–Nordström metric, and

ΔS
r =

(
1 − Λ

3

)
r2 − r0r, Q = 0, r− = 0, KS = Er2, Ξ = 1, (124)

for the Schwarzschild metric.

4.2.2. Photon. In asymptotic formulas (105) and (106), numerators in the second terms are equal
to K2

KN with the change E → ω, mϕ → m (see (121)). It hence follows that we can pass to other metrics
in accordance with formulas (122)–(124) with the change E → ω, mϕ → m.

4.2.3. Fermion. The second terms in asymptotic formulas (115) and (116) for fermions coincide with
the second terms in asymptotic formulas (96) and (97) for scalar particles. It hence follows that we can
pass to other metrics in accordance with (122)–(124).

4.2.3.1. Stationary bound states of fermions. For the Kerr–Newman–(anti-)de Sitter metric, the
energy of a fermionic bound state is determined by expression (119) with the condition

∣∣
∣
∣
mϕa + qQr+,−,Λ+/Ξ

r2
+,−,Λ+ + a2

∣∣
∣
∣ < m. (125)

Correspondingly, for the Kerr metric with Q = 0, we have

(Est
+,−,Λ+)K =

mϕa

r2
+,−,Λ+ + a2

(126)

with the condition ∣
∣
∣
∣

mϕa

r+,−,Λ+ + a2

∣
∣
∣
∣ < m. (127)

For the Reissner–Nordström metric with a = 0 and Q 
= 0, we have

(Est
+,−,Λ+)RN =

qQ

Ξr+,−,Λ+
(128)

with the condition ∣
∣∣
∣

qQ

Ξr+,−,Λ+

∣
∣∣
∣ < m. (129)

For the Schwarzschild metric with a = 0, Q = 0, and r− = 0, we have

(Est
+,Λ+)S = 0. (130)

5. Kerr–Newman–anti-de Sitter five-dimensional geometry

From the physical standpoint, the five-dimensional anti-de Sitter black hole is interesting for using the
Maldacena AdS/CFT correspondence. We represent the metric of a five-dimensional rotating charged Kerr–
Newman–anti-de Sitter black hole in the Boyer–Lindquist coordinates (t, r, θ, ϕ, γ) with the Chern–Simons
expression included in the form [58]

ds2 = gμν dxμ dxν = − Δr

Σ
X2 +

Σ
Δr

dr2 +
Σ
Δθ

dθ2 +

+
Δθ(a2 − b2) sin2 θ cos2 θ

p2Σ
Y 2 +

(
ab

rp
Z +

Qp

rΣ
X

)2

, (131)
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and the gauge potential has the form

A =
√

3Q
2Σ

X, (132)

where

X = dt − a sin2 θ

χa
dϕ − b cos2 θ

χb
dγ,

Y = dt − (r2 + a2)a
(a2 − b2)χa

dϕ − (r2 + b2)a
(b2 − a2)χb

dγ,

Z = dt − (r2 + a2) sin2 θ

aχa
dϕ − (r2 + b2) cos2 θ

bχb
dγ,

Δr = (r2 + a2)(r2 + b2)
(

1
r2

+
1
l2

)
− 2M +

Q2 + 2Qab

r2
, Δθ = 1 − p2

l2
,

Σ = r2 + p2, p =
√

a2 cos2 θ + b2 sin2 θ, χa = 1 − a2

l2
, χb = 1 − b2

l2
.

(133)

Here, the parameters (M, Q, a, b, l) depend on the mass, two independent black-hole angular momenta, and
the cosmological constant.

Event horizons are defined by the equality Δr = 0. For example, the outer event horizon is determined
by the largest root of the equation Δr+ = (r − r+)β(r+) = 0, where β(r+) 
= 0.

5.1. Motion of scalar particles. In [58], variables were separated in the five-dimensional massive
Klein–Gordon equation for a scalar field Φ(t, r, θ, ϕ, γ) with metric (131), (132). With the variable separation
ansatz Φ = R(r)S(p)ei(mϕ+kγ−ωt), the equation for the radial function R(r) has the form

1
r

∂r(rΔr ∂rR) +
{

1
r4Δr

[
(r2 + a2)(r2 + b2)ω − (r2 + b2)maχa −

− (r2 + a2)kbχb + Q(abω − mbχa − kaχb) −
√

3
2

qQr2

]2

−

− 1
r2

(abω − mbχa − kaχb)2 − μ2
0r

2 − λ2
0

}
R(r) = 0, (134)

where μ0 and q are the scalar particle mass and charge and λ0 is the separation constant. We can bring
Eq. (134) to the form

d2R

dr2
+ A

dR

dr
+

(
B2

1

Δ2
r

+
B2

Δr

)
R = 0, (135)

where

A =
1
r

+
Δ′

r

Δr
, (136)

B1 =
1
r2

[
(r2 + a2)(r2 + b2)ω − (r2 + b2)maχa −

− (r2 + a2)kbχb + Q(abω − mbχa − kaχb) −
√

3
2

qQr2

]
, (137)

B2 =
1
r2

(abω − mbχa − kaχb)2 − μ2
0r

2 − λ2
0. (138)
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Further, we can bring Eq. (135) to the form of a Schrödinger equation with the effective potential
Ueff(r):

R(r) = R(r) exp
[
1
2

∫
A(r′) dr′

]
, (139)

d2R

dr2
+ 2(ESchr − Ueff(r))R = 0, (140)

Ueff(r) = ESchr +
1
4

dA

dr
+

1
8
A2 − 1

2
B2

1

Δ2
r

− B2

2Δr
, (141)

ESchr =
1
2
(E2 − m2). (142)

The term ESchr is distinguished in (140) to give an equation of the Schrödinger type. On the other hand,
transferring this term into equality (141) ensures the classical asymptotic form of the effective potential as
r → ∞.

We consider asymptotic formula (141) in a neighborhood of the outer event horizon r+ . In this case,

Δr = (r − r+)β(r), β(r)|r→r+ 
= 0. (143)

The leading singularity of the expression (1/4) (dA/dr) + (1/8)A2 in (141) is equal to
(

1
4

dA

dr
+

1
8
A2

)∣
∣
∣
∣
r→r+

= − 1
8(r − r+)2

. (144)

The leading singularity of the effective potential Ueff(r) in a neighborhood of the outer event horizon is
equal to

Ueff |r→r+ = − 1
(r − r+)2

[
1
8

+
B2

1

2β(r+)2

]
. (145)

It can be seen from asymptotic formula (145) that for any scalar particle energy, there are infinitely deep
potential wells ∼ K+/(r − r+)2 with the coefficient K+ ≥ 1/8 on both sides of the outer event horizon.
In this case, the regime of a particle “falling” on the event horizon is realized, which is inconsistent with
quantum mechanics, and by the criteria used in Sec. 2, the system “a scalar particle in the field of a
five-dimensional Kerr–Newman–anti-de Sitter black hole” is singular.

As the event horizon r+ is approached, the radial function of a Schrödinger-type equation has an
unbounded number of zeros,

R|r→r+ ∼ (r − r+)1/2 sin
(√

L+ log(r − r+) + δ
)
, (146)

where δ (0 ≤ δ ≤ π) is arbitrary phase and L+ = 2(K+ − (1/8)).
The inner event horizon r− can be considered similarly.

5.2. Fermion in a five-dimensional Kerr–Newman–anti-de Sitter field. Variables were sep-
arated in the Dirac equation in the five-dimensional Kerr–Newman–anti-de Sitter black-hole space–time
with a Chern–Simons expression in [58] using the ansatz

√
r + ipγ5Ψ =

⎛

⎜
⎜
⎜⎜
⎝

R2(r)S1(p)

R1(r)S2(p)

R1(r)S1(p)

R2(r)S2(p)

⎞

⎟
⎟
⎟⎟
⎠

ei(mϕ+kγ−ωt) (147)

1516



to separate the variables for the wave function Ψ of the five-dimensional Dirac equation with the fermion
mass μ and the charge q. As a result, the system of equations for the radial functions R1(r), R2(r)

√
ΔrD−

r R1 =
[
λ + iμr − Q + ab

2r2
− i

r
(abω − mbχa − kaχb)

]
R2, (148)

√
ΔrD+

r R2 =
[
λ − iμr − Q + ab

2r2
+

i

r
(abω − mbχa − kaχb)

]
R1 (149)

was obtained, where λ is the separation constant and

D±
r = ∂r +

Δ′
r

4Δr
+

1
2r

± i
1

r2Δr

[
(r2 + a2)(r2 + b2)ω − (r2 + b2)maχa −

− (r2 + a2)kbχb + Q(abω − mbχa − kaχb) −
√

3
2

qQr2

]
.

It follows from Eqs. (148) and (149) that

R1(r) = R∗
2(r). (150)

We introduce the real functions

g(r) = R1(r) + R2(r), f(r) = −i(R1(r) − R2(r)). (151)

Adding (148) and (149) and subtracting (149) from (148), we obtain

√
Δr

d

dr
f +

(
Δ′

r

4
√

Δr

+
√

Δr

2r
− Q + ab

2r2
+ λ

)
f −

− 1
r2
√

Δr

[
(r2 + a2)(r2 + b2)ω − (r2 + b2)maχa − (r2 + a2)kbχb +

+ Q(abω − mbχa − kaχb) −
√

3
2

qQr2

]
g − 1

r
(abω − mbχa − kaχb)g + μrg = 0,

√
Δr

d

dr
g +

(
Δ′

r

4
√

Δr

+
√

Δr

2r
+

Q + ab

2r2
− λ

)
g +

+
1

r2
√

Δr

[
(r2 + a2)(r2 + b2)ω − (r2 + b2)maχa − (r2 + a2)kbχb +

+ Q(abω − mbχa − kaχb) −
√

3
2

qQr2

]
f +

1
r
(abω − mbχa − kaχb)f − μrf = 0.

(152)

We set fr = Δr/r2 and introduce the functions F (r) = f(r)/r
√

fr and G(r) = g(r)/r
√

fr. As a result,
the equations for the real radial functions F (r) and G(r) become

dF

dr
= A(r)F + B(r)G,

dG

dr
= C(r)F + D(r)G,

(153)
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where

A(r) = − 1
fr

[
2fr

r
+

3
4
f ′

r +
(

λ

r
− Q + ab

2r3

)√
fr

]
,

B(r) =
1
fr

[
B1(r)

r2
+ (−B3(r) + μ)

√
fr

]
,

C(r) = − 1
fr

[
B1(r)

r2
+ (B3(r) − μ)

√
fr

]
,

D(r) = − 1
fr

[
2fr

r
+

3
4
f ′

r −
(

λ

r
− Q + ab

2r3

)√
fr

]
,

B3(r) =
1
r2

(abω − mbχa − kaχb),

(154)

and the expression for B1(r) is given in (137). Further, if we make the transformations

ψF = gF F, ψG = gGG, gF = exp
(

1
2

∫ r

AF (r′) dr′
)

,

gG = exp
(

1
2

∫ r

AG(r′) dr′
)

,

AF (r) = − 1
B

dB

dr
− A − D, AG(r) = − 1

C

dC

dr
− A − D,

(155)

then we obtain self-adjoint Schrödinger-type equations for the functions ψF and ψG with the effective
potentials UF

eff(R) and UG
eff(R):

d2ψF

dr2
+ 2(ESchr − UF

eff(r))ψF = 0, (156)

d2ψG

dr2
+ 2(ESchr − UG

eff(r))ψG = 0, (157)

where ESchr = (ω2 − μ2)/2. The equation for particles corresponds to Eq. (156), and the equation for
antiparticles corresponds to Eq. (157).

For particles, the effective potential has the form

UF
eff(r) = ESchr +

3
8

(
1
B

dB

dr

)2

− 1
4

1
B

d2B

dr2
+

+
1
4

d

dr
(A − D) − 1

4
A − D

B

dB

dr
+

1
8
(A − D)2 +

1
2
BC. (158)

Explicit expression (158) has a cumbersome form. An expression for the effective potential in different
geometries of the four-dimensional space–time was previously given many times in our papers [4]–[6], where
a more detailed presentation of the used formalism was also given.

5.2.1. Asymptotic behavior of the effective potential. In the presence of outer and inner event
horizons,

Δr = r2fr = (r − r+)(r − r−)β1(r),

formulas (154) show that effective potential (158) is singular with the leading singularities ∼ 1/(r − r+)2

and 1/(r−r−)2. The asymptotic formulas for the effective potential have the same structure near the event
horizons. For example, in a neighborhood of the outer event horizon with B1(r+) 
= 0 as r → r+,

Ueff |r→r+ = − 1
(r − r+)2

{
1
8

+
B1(r+)2

2[(r+ − r−)β1(r+)]2

}
. (159)
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The case B1(r+) = 0 corresponds to stationary states with the energy

ωst
+ =

1
(r2

+ + a2)(r2
+ + b2) + Qab

×

×
[
(r2

+ + b2)maχa + (r2
+ + a2)kbχb + Q(mbχa + kaχb) +

√
3

2
qQr2

+

]
. (160)

This case is discussed in Sec. 5.2.2.
It follows from asymptotic formula (159) that for any fermion energy ω 
= ωst, there are infinitely deep

potential wells ∼ K+
1 /(r − r+)2 and K−

1 /(r − r−)2 with coefficients K±
1 ≥ 1/8 in potential (158). As a

result, just as for scalar particles, the regime of a fermion “falling” on the corresponding event horizons is
realized, which is unacceptable in quantum theory. Therefore, we can conclude that for ω 
= ωst, the system
“a fermion in the five-dimensional Kerr–Newman–anti-de Sitter field” is singular.

5.2.2. Stationary fermion states. We consider the case where either B1(r+) = 0 or B1(r−) = 0.
In these cases, the fermion energy is equal to

ωst
± =

1
(r2

± + a2)(r2
± + b2) + Qab

×

×
[
(r2

± + b2)maχa + (r2
± + a2)kbχb + Q(mbχa + kaχb) +

√
3

2
qQr2

±

]
. (161)

Asymptotic formula (158) for the effective potential has the form

UF
eff |r→r± = − 3

32
1

(r − r±)2
(162)

in a neighborhood of event horizons.
Expression (162) does not coincide with asymptotic formula (159) as B1(r±) → 0. For the coincidence,

terms that are insignificant for finite B1 but contribute noticeably to the coefficient for the leading singularity
as B1(r±) → 0 must be taken in account in the expression for UF

eff (see (158)).
Asymptotic formula (162) with |ωst

± | < m admits the existence of stationary bound states of spin-1/2
particles. Such states were analyzed in [4]–[6] for different space–time geometries with a zero cosmological
constant. Metrics with a nonzero cosmological constant, including the five-dimensional Kerr–Newman–
anti-de Sitter black hole, can be analyzed similarly.

Solutions with |ωst
± | < m correspond to square-integrable wave functions of a Schrödinger-type equation

vanishing on event horizons. Particles in stationary bound states are located near event horizons (above
the outer event horizon and under the inner event horizon) with a high probability. The probability density
maximums for detecting particles are separated from the event horizons by fractions of the Compton
wavelength of bound fermions.

5.3. Photon in a five-dimensional Kerr field (Myers–Perry geometry). Lunin [48] separated
variables for the Maxwell equations in the five-dimensional Myers–Perry geometry. In that paper, there is
also everything needed for separating variables for the Maxwell equations in the five-dimensional geometry
of a rotating charged black hole with a nonzero cosmological constant. But we have here showed that the
character of the behavior of effective potentials in neighborhoods of event horizons is unchanged in passing
from an uncharged to a charged rotating black hole. The same occurs in the case of taking and not taking
the cosmological constant into account in the metric. Therefore, for brevity below, we restrict ourself to
analyzing the behavior of the effective potential in a neighborhood of event horizons in the Myers–Perry
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geometry with an additional (fifth) dimension. In the notation in [48], the function Ψ of the master equation
is represented in the form

Ψ = e−iωt+imϕ+inγΦ(r)S(θ). (163)

Ansatz (163) leads to two types of solutions, which Lunin called “electrical” and “magnetic” polariza-
tions. The leading singularities of the effective potentials are the same for the two solution types. Below,
as an example, we consider the “electrical” solution.

The equation for the radial function Φ(r) was given in formulas (4.31) in [48]. Further, we can obtain
a Schrödinger-type equation with an effective potential for the function Φ(r) in the standard way (see
Sec. 3.2). In Lunin’s notation, the leading singularities of the effective potential near the event horizons r±
have the form

Ueff |r→r± = − 1
(r − r±)2

{
1
8

+
Mr2

2R

[(r2 + a2)(r2 + b2)ω − (r2 + b2)ma − (r2 + a2)nb]2

[(r± − r∓)β1(r±)]2

}
, (164)

where R = (r2 + a2)(r2 + b2) and Δr = (r − r+)(r − r−)β1(r).
It follows from asymptotic formula (164) that for any energy ω in the effective potential on both sides of

the event horizons r±, there are infinitely deep potential wells ∼ K±
2 /(r− r±)2 with coefficients K±

2 ≥ 1/8.
As a result, the regime of a particle “falling” on event horizons is realized, which is unacceptable in quantum
theory.

As the event horizon is approached, the radial function Φ(r) of a Schrödinger-type equation has an
unbounded number of zeros. For example, as r → r+,

Φ(r)|r→r+ ∼ (r − r+)1/2 sin(
√

L+
2 log(r − r+) + δ), (165)

where L+ = 2(K+
2 − (1/8)).

In the Lunin formalism [48], the function Ψ in (163) is related to the electromagnetic field potentials
Aμ(t, r, θ, ϕ, γ) by the components of the generalized Kinnersley tetrad.

In a neighborhood of the event horizons, the oscillating behavior of Φ(r) in (165) is also present for
the components Aμ(t, r, θ, ϕ, γ). Obviously, after quantization of the electromagnetic field, we can conclude
that the system “a photon in a five-dimensional Myers–Perry field” is singular.

6. Discussion of results

Our analysis shows that for ε 
= εst and ε 
= εext in the space–time of the considered black holes, the
existence of stationary states of quantum particles is impossible. States of the systems “a particle in fields
of classical black holes with event horizons of zero thickness” are singular. The existence of stationary
discrete states with ε = εst and ε = εext does not change the preceding conclusion, because to attain the
values εst and εext, quantum transitions with emission or absorption of photons with a particular energy
are necessary, but quantum mechanical stationary states of photons with the real energy ω do not exist in
the considered gravitational and electromagnetic fields.

The universal character of the divergence of the effective potential near event horizons is typical for all
considered metrics and for particles with different spins. The discovered singularities do not allow applying
quantum theory in full, which leads to the necessity to change the formulation of the original physical
problem.

As a result of our research, two questions arise.
1. Can the solutions of general relativity that are quantum mechanically “ill-behaved” be cured?
The answer to this question seems to be negative. Indeed, the uniqueness theorem for black holes [59]

states that the most general asymptotically flat vacuum solution of the equations of general relativity is
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the Kerr metric with a monopole mass M and the angular momentum J . Any deviation from a spherically
symmetric mass distribution leads to the event horizon vanishing and the occurrence of several naked
singularities in its place (see static and stationary q-metrics in [60]–[62]).

If by analogy with the Coulomb potential for Z ≥ 137 (κ = −1), we match the outer vacuum solutions
of general relativity to inner solution variants with preserving the continuity of the metric tensor and its
first derivatives, then the event horizon vanishes, and the matching radius as a rule turns out to be greater
than the event horizon radius (see, e.g., [63]–[66]). Hence, in the considered case, we pass beyond the
concept of classical black holes with event horizons.

2. Can the solutions of general relativity that are quantum mechanically “ill-behaved” be used?
We answer this question positively and propose to supplement the gravitational collapse mechanism.
In the final stage of collapse, let the gravitational field capture spin-1/2 particles that after the formation

of event horizons are in stationary bound states with ε = εst both under the inner and above the outer
event horizons. For the subsequent fermions interacting with such composite systems, the self-consistent
gravitational and electromagnetic fields are determined both by the collapsar mass and charge and by the
masses and charges of the fermions in stationary bound states with ε = εst located near the event horizons.
Obviously, such a system can be nonsingular. For a rigorous proof, we need precise calculations of the self-
consistent gravitational and electromagnetic fields of the composite systems and a proof of the existence of
stationary states of quantum mechanical test particles in them. The discussed composite systems can be
building blocks for combining new particles and finally forming macroscopic objects. On the other hand,
these systems can be regarded as carriers of dark matter [4], [5].

7. Conclusion

For all considered metrics of classical black holes and for particles with different spins, we have estab-
lished the existence of the quantum mechanical regime of a particle “falling” on event horizons.

We used the Schwarzschild coordinates for the Schwarzschild and Reissner–Nordström metrics and
the Boyer–Lindquist coordinates for the Kerr and Kerr–Newman metrics. The transformation from the
Schwarzschild coordinates to Eddington–Finkelstein and Painlevé–Gullstrand coordinates does not elimi-
nate the problem of a particle “falling.”

The nonstationary Lemaitre–Finkelstein and Kruskal–Szekeres metrics lead to Hamiltonians depending
on the time coordinate [43]. In these cases, it is impossible to study stationary states with a representation
of the wave function in the coordinates of these metrics in form (1), namely, in the form ∼ ψ(R)e−iET for
the Lemaitre–Finkelstein metric and in the form ∼ ψ(u)e−iEv for the Kruskal–Szekeres metric.

Appendix A: Effective potential of a Painlevé–Gullstrund field in a
Schrödinger-type equation for a scalar particle

We have

UPG
eff (ρ) = −α(ε2 − 1)

ρ − 2α
− αρε2

(ρ − 2α)2
+

1
2(ρ − 2α)2

(
α2

ρ2
+

α

ρ
− 1

)
+

+
1

2ρ(ρ − 2α)

(
1 +

α

ρ

)
− 1

2ρ(ρ − 2α)
l(l + 1) + i

1
4

√
2α

ρ

ε

ρ
,

UPG
eff |ρ→∞ =

α

ρ
(1 − 2ε2), UPG

eff |ρ→0 = − 1
8ρ2

,

UPG
eff |ρ→2α = − 1

2(ρ− 2α)2

(
1
4

+ 4α2ε2

)
.
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Appendix B: Effective potentials of gravitational and electromagnetic fields
in Schrödinger-type equations for fermions

1. For the Kerr–Newman–(anti-)de Sitter field, in accordance with [6] and Eqs. (113),

UKN
eff = ESchr +

3
8

1
B2

KN

(
dBKN

dr

)2

− 1
4BKN

d2BKN

dr2
+

1
4

d

dr
(AKN − DKN) −

− 1
4

(AKN − DKN)
BKN

dBKN

dr
+

1
8
(AKN − DKN)2 +

1
2
BKNCKN, (166)

3
8

1
B2

KN

(
dBKN

dr

)2

=
3
8

{
fKN

ΩKN +
√

fKN

[
− 1

f2
KN

f ′
KN(ΩKN +

√
fKN) +

+
1

fKN

(
Ω′

KN +
f ′

KN

2
√

fKN

)]}2

, (167)

− 1
4

1
BKN

d2BKN

dr2
= −1

4
fKN

ΩKN +
√

fKN

[
2

f3
KN

(f ′
KN)2(ΩKN +

√
fKN) −

− 1
f2

KN

f ′′
KN(ΩKN +

√
fKN) − 2

f2
KN

f ′
KN

(
Ω′

KN +
f ′

KN

2
√

fKN

)
+

+
1

fKN

(
Ω′′

KN +
f ′′

KN

2
√

fKN

− (f ′
KN)2

4f
3/2
KN

)]
, (168)

1
4

d

dr
(A − D) =

λ

2

[
1
2

f ′
KN

rf
3/3
KN

+
1

r2f
1/2
KN

]
, (169)

− 1
4

A − D

B

dB

dr
=

λ

2rf
1/2
KN

(
−f ′

KN

fKN

+
1

ΩKN +
√

fKN

(
Ω′

KN +
f ′

KN

2
√

fKN

))
, (170)

1
8
(A − D)2 =

λ2

2fKNr2
,

1
2
BC = − 1

2f2
KN

(Ω2
KN − fKN), (171)

where

fKN =
(

1 − Λ
3

r2

)(
1 +

a2

r2

)
− r0

r
+

r2
Q

r2
,

f ′
KN ≡ dfKN

dr
= −2Λ

3
r − 2α2

3r3
+

r0

r2
−

2r2
Q

r3
,

f ′′
KN ≡ d2fKN

dr2
= −2Λ

3
− 2r0

r3
+

2α2 + 6r2
Q

r4
,

ΩKN = Ξ
[
E

(
1 +

α2

r2

)
− αmϕ

r2
− qQ

Ξr

]
,

Ω′
KN ≡ dΩKN

dr
= Ξ

[
−2Eα2

r3
+

2αmϕ

r3
+

qQ

Ξr2

]
,

Ω′′
KN ≡ d2ΩKN

dr2
= Ξ

[
6Eα2

r4
− 6αmϕ

r4
− 2qQ

Ξr3

]
.
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The arithmetic sum of the expressions ESchr = (E2 − m2)/2 and relations (167)–(171) results in an
expression for the effective potential UF

eff . For the remaining electromagnetic and gravitational fields con-
sidered here, the structure of the expressions for the effective potentials is unchanged. Only the expressions
for f , f ′, f ′′, Ω, Ω′, and Ω′′ change.

2. For the Kerr–(anti-)de Sitter field (Q = 0),

fK =
(

1 − Λ
3

r2

)(
1 +

a2

r2

)
− r0

r
, f ′

K = −2Λ
3

r − 2α2

3r3
+

r0

r2
,

f ′′
K = −2Λ

3
− 2r0

r3
+

2a2

r4
,

ΩK = Ξ
[
E

(
1 +

α2

r2

)
− αmϕ

r2

]
, Ω′

K = Ξ
[
−2Eα2

r3
+

2αmϕ

r3

]
,

Ω′′
K = Ξ

[
6Eα2

r4
− 6αmϕ

r4

]
.

3. For the Reissner–Nordström–(anti-)de Sitter field (a = 0),

fRN = 1 − Λ
3

r2 − r0

r
+

r2
Q

r2
, f ′

RN = −2Λ
3

r +
r0

r2
−

2r2
Q

r3
,

f ′′
RN = −2Λ

3
− 2r0

r3
+

6r2
Q

r4
,

ΩRN = ΞE − qQ

r
, Ω′

RN =
qQ

r2
, Ω′′

RN = −2qQ

r3
, λ = κ,

where κ is the separation constant,

κ = ∓1,∓2, · · · =

⎧
⎪⎪⎨

⎪⎪⎩

−(l − 1), j = l +
1
2
,

l, j = l − 1
2
,

and j and l are the quantum numbers of the total and orbital momenta of a spin-1/2 particle.
4. For the Schwarzschild–(anti) de Sitter field (Q = 0, a = 0),

fS = 1 − Λ
3

r2 − r0

r
, f ′

S = −2Λ
3

r +
r0

r2
, f ′′

S = −2Λ
3

− 2r0

r3
,

ΩS = ΞE, Ω′
S = Ω′′

S = 0, λ = κ.
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52. J. B. Griffiths and J. Podolský, Exact Spacetimes in Einstein’s General Relativity, Cambridge Univ. Press,

Cambridge (2009).

53. B. Carter, “Global structure of the Kerr family of gravitational fields,” Phys. Rev., 174, 1559–1571 (1968).
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