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INTEGRABLE SYSTEM OF GENERALIZED RELATIVISTIC

INTERACTING TOPS

I. A. Sechin∗† and A. V. Zotov∗

We describe a family of integrable GL(NM) models generalizing classical spin Ruijsenaars–Schneider

systems (the case N = 1) on one hand and relativistic integrable tops on the GL(N) Lie group (the case

M = 1) on the other hand. We obtain the described models using the Lax pair with a spectral parameter

and derive the equations of motion. To construct the Lax representation, we use the GL(N) R-matrix in

the fundamental representation of GL(N).

Keywords: elliptic integrable system, spin Ruijsenaars–Schneider model, integrable interacting tops

DOI: 10.1134/S0040577920100049

1. Introduction

This paper continues a series of articles [1]–[3] extending known integrable systems and their related
structures using quantum R-matrices (in the fundamental representation of GL(N) Lie groups) interpreted
as matrix generalizations of the Kronecker function. At the very beginning, it is convenient to give its explicit
form in the rational, trigonometric, and elliptic cases because the identities that we use hold separately in
each of these cases:
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All the variables and functions are complex valued. Therefore, the trigonometric and hyperbolic cases are
essentially the same. In (1) in all three cases, we give definitions of the first Eisenstein function E1(z) and
the Weierstrass ℘-function. They appear in the expansion of φ(z, q) near its simple pole (with the residue
equal to unity) at z = 0:

φ(z, q) = z−1 + E1(q) +
z(E2

1(q) − ℘(q))
2

+ O(z2). (2)
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The definitions and properties of elliptic functions can be found in [4] (also see the appendix in [3]).
In each of the three cases, the Kronecker function satisfies the summation formula, the genus-1 Fay

identity,
φ(z1, q1)φ(z2, q2) = φ(z1 − z2, q1)φ(z2, q1 + q2) + φ(z2 − z1, q2)φ(z1, q1 + q2), (3)

and also its degenerations corresponding to equal arguments,

φ(z, q1)φ(z, q2) = φ(z, q1 + q2)(E1(z) + E1(q1) + E1(q2) − E1(q1 + q2 + z)), (4)

φ(z, q)φ(z,−q) = ℘(z) − ℘(q). (5)

Fay identity (3) can be regarded as a particular scalar case of the associative Yang–Baxter equation [5]:

Rz
12(q12)Rw

23(q23) = Rw
13(q13)Rz−w

12 (q12) + Rw−z
23 (q23)Rz

13(q13), qab = qa − qb. (6)

Here, we use R-matrix notation of the quantum inverse scattering method, for example,

Rz
12(q) =

N∑

i,j,k,l=1

Rij,kl(z, q)Eij ⊗ Ekl ⊗ 1N ,

Rz
13(q) =

N∑

i,j,k,l=1

Rij,kl(z, q)Eij ⊗ 1N ⊗ Ekl,

(7)

where Eij is the standard matrix basis in Mat(N, C), 1N is the identity matrix, and Rij,kl(z, q) is a set
of functions of z and q. The normalization of the matrix operator Rz

ab(qab) is chosen such that with
N = 1, it reduces to the scalar function φ(z, q) given by (1). In this respect, Eq. (6) is a noncommutative
generalization of (3), and the operator R is a noncommutative generalization of the Kronecker function.

In addition to (6), we can require the properties of antisymmetry and unitarity (the latter is a matrix
analogue of (5)):

Rz
12(q) = −R−z

21 (−q), Rz
12(q)R

z
21(−q) = 1N ⊗ 1N (℘(z) − ℘(q)). (8)

Then such an R-operator satisfies the quantum Yang–Baxter equation

R�

12(z12)R�

13(z13)R�

23(z23) = R�

23(z23)R�

13(z13)R�

12(z12). (9)

In other words, a solution of (6) satisfying conditions (8) is a quantum R-matrix. We note that even in the
scalar case, condition (6) or (3) is very restrictive. At the same time, Eq. (9) is not restrictive at all because
the quantum Yang–Baxter equation holds identically in the scalar case. The class of R-matrices with
the listed properties includes the elliptic Baxter–Belavin R-matrix and also its trigonometric and rational
degenerations, which are equal to the function φ(z, q) in the scalar case. A more detailed description of
these R-matrices can be found in [6]–[8], where an application of this class of R-matrices to an integrable
system was given, a construction of integrable tops. The main idea goes back to Sklyanin’s paper [9], where
he suggested a Hamiltonian description of the classical Euler top using quadratic Poisson algebras obtained
in the classical limit of RLL relations. That is, the classical Euler top was described as the classical limit
of a spin chain with one site. This approach can be developed to obtain an explicit description of the Lax
pairs with spectral parameters constructed using the data of R-matrices satisfying (6) and (8). A detailed
derivation of the equations of motion together with the Hamiltonian description using the R-matrix data
was given in [6] and [7] in the respective nonrelativistic and relativistic cases.
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1.1. Relativistic integrable GLN -top. In the general case, the phase space of a GLN top is given
by the set of coordinate functions Sij , i, j = 1, . . . , N , on the Lie group GLN . They are unified into the
N×N matrix S =

∑
ij SijEij . The equations of motion then become the Euler–Arnold equations

Ṡ = [S, J(S)], (10)

where J(S) is a linear functional on S. It can be written as

J(S) =
N∑

i,j,k,l=1

Ji,j,k,l Eij Slk ∈ Mat(N, C) (11)

or, using the standard notation S1 = S ⊗ 1N and S2 = 1N ⊗ S,

J(S) = tr2(J12S2), J12 =
N∑

i,j,k,l=1

Ji,j,k,l Eij ⊗ Ekl, (12)

where tr2 is the trace over the second space in the tensor product. Below, we give the Lax pair of the
relativistic integrable top using the above notation (of course, Eq. (10) is not integrable in the general
case). For this, we consider the classical limit of the R-matrix

R�

12(z) =
1
�

1N ⊗ 1N + r12(z) +
�

2
(r12(z)2 − 1 ⊗ 1 ℘(z)) + O(�2), (13)

where r12(z) = −r21(−z) is the classical r-matrix and the �-order term follows from (8). Comparing this
expression with (2), we conclude that while the quantum R-matrix is a matrix analogue of the Kronecker
function, the classical r-matrix is a matrix analogue of the first Eisenstein function E1(z) given in (1).

We consider the expansions

R z
12(q) =

1
q
P12 + R

z,(0)
12 + O(q), r12(z) =

1
z
P12 + r

(0)
12 + O(z),

P12 =
N∑

i,j=1

Eij ⊗ Eji,

(14)

where P12 is the matrix permutation operator. Generally speaking, the existence of expansions of types (13)
and (14) is an additional nontrivial requirement for the R-matrix. Finally, we impose one more condition
on the R-matrix:

R z
12(q) = R q

12(z)P12. (15)

In the scalar case, it leads to the obvious equality φ(z, q) = φ(q, z). Using (15) and comparing (13) and (14),
we easily obtain

r12(z) = R
z,(0)
12 P12. (16)

We can now formulate the statement about the Lax pair of the relativistic top. Namely, for a pair of
matrices

L(z) = tr2(R
η
12(z)S2) = tr2(R z

12(η)P12S2),

M(z) = − tr2(r12(z)S2) = − tr2(R
z,(0)
12 P12S2),

(17)

the Lax equation
L̇(z) = [L(z), M(z)] (18)

is equivalent to the equation of motion of form (10), where

J12 = R
η,(0)
12 − r

(0)
12 . (19)
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1.2. Spin generalization of the Ruijsenaars–Schneider model. In integrable many-body sys-
tems, relativistic generalizations are known as Ruijsenaars–Schneider models [10]. We are interested in
their spin extensions. The dynamical variables comprise a set of coordinates and velocities of M particles
and also classical spin variables described in the matrix S ∈ Mat(M, C). The equations of motion have the
forms (for the diagonal and off-diagonal parts of S)

Ṡii = −
M∑

k : k �=i

SikSki(E1(qik + η) + E1(qik − η) − 2E1(qik)),

Ṡij =
M∑

k : k �=j

SikSkj(E1(qkj + η) − E1(qkj)) −
M∑

k : k �=i

SikSkj(E1(qik + η) − E1(qik))

(20)

and
q̈i = Ṡii, (21)

where i �= j and qij = qi − qj . The Lax pair with a spectral parameter

Lij(z) = Sijφ(z, qij + η), i, j = 1, . . . , M,

Res
z=0

L(z) = S ∈ Mat(M, C),

Mij(z) = −δij(E1(z) + E1(η))Sii − (1 − δij)Sijφ(z, qij),

(22)

satisfies the Lax equation with an additional term (here μi = q̇i − Sii)

L̇(z) = [L(z), M(z)] +
M∑

i,j=1

Eij(μi − μj)Sijf(z, qij + η), f(z, q) = ∂qφ(z, q), (23)

which vanishes with the on-shell constraints

μi = 0 or Sii = q̇i, i = 1, . . . , M. (24)

More precisely, Eq. (23) is equivalent to (20), and under condition (24), Lax equations (23) with an addi-
tional term become the ordinary Lax equations (18), and (21) is satisfied. A detailed derivation of (23) can
be found in [3] in addition to the original paper [11]. This derivation is convenient below in considering a
more general system where the functions in (20)–(22) are replaced with their R-matrix analogues. Although
the Hamiltonian structure is not used in the description indicated above, we note that it is known for the
rational and trigonometric systems (see [12]–[15]).

Our main result here is the following generalization of simultaneously both relativistic top (17)–(19)
and spin Ruijsenaars–Schneider model (20)–(22). We consider a Mat(NM, C)-valued Lax pair subdivided
into M×M block-matrices Lij(z) = Lij(Sij , z) each of size N × N :

L(z) =
M∑

i,j=1

Eij ⊗ Lij(z) ∈ Mat(NM, C), Lij(z) ∈ Mat(N, C),

Lij(z) = tr2(Rz
12(qij + η)P12Sij

2 ), Sij = Res
z=0

Lij(z) ∈ Mat(N, C),

M(z) =
M∑

i,j=1

Eij ⊗Mij(z) ∈ Mat(NM, C), Mij(z) ∈ Mat(N, C),

Mij(z) = −δij tr2
(
R

(0),z
12 P12Sii

2

)
− (1 − δij) tr2

(
Rz

12(qij)P12Sij
2

)
.

(25)
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The R-matrix in this definition satisfies associative Yang–Baxter equation (6) and also conditions (8)
and (15) and expansions (13) and (14). The Lax equation with an additional term

L̇(z) = [L(z),M(z)] +
M∑

i,j=1

(μi
0 − μj

0)Eij ⊗ tr2(F z
12(qij + η)P12Sij

2 ), (26)

where by analogy with (23)
F z

12(q) = ∂qR
z
12(q) (27)

and μi
0 = q̇i − tr(Sii), i = 1, . . . , M , is then equivalent to the equations of motion (we assume that i �= j

in (26))

Ṡii = [Sii, Jη(Sii)] +
M∑

k : k �=i

(
SikJη,qki(Ski) − Jη,qik(Sik)Ski

)
, (28)

Ṡij = SijJη(Sjj) − Jη(Sii)Sij +
M∑

k : k �=j

SikJη,qkj (Skj) −
M∑

k : k �=i

Jη,qik (Sik)Skj . (29)

With the on-shell constraints μi
0 = 0 or q̇i = tr(Sii), i = 1, . . . , M , Eqs. (26) reduce to the Lax equations,

and we have the equations

q̈i = tr(Ṡii) =
M∑

k : k �=i

tr
(
SikJη,qki(Ski) − Jη,qik(Sik)Ski

)
. (30)

The linear functionals Jη and Jη,q in the equations of motion are given by

Jη(Sii) = tr2
(
(R(0),η

12 − r
(0)
12 )Sii

2

)
, Jη,q(Sij) = tr2

(
(R(0),q+η

12 − R
(0),q
12 )Sij

2

)
. (31)

The presented Lax pairs and equations of motion reproduce the results in the elliptic case in our
previous paper [3]1 and the results in the nonrelativistic limit in [1]. With N = 1, the used R-matrix
operators become the scalar functions in (1), thus reproducing spin Ruijsenaars–Schneider model (20)–
(24). With M = 1, the Lax matrices have a single block. We thus obtain relativistic top (17)–(19). In the
nonrelativistic elliptic case, models of the described type were first obtained in [16] and were later described
as Hitchin systems on bundles with nontrivial characteristic classes [17]. Explicit examples of the systems
can be easily obtained using R-matrices used in [1] in the same normalization as here.

2. Derivation of the equations of motion

2.1. R-matrix identities. To derive the equations of motion in the spin Ruijsenaars–Schneider
model, we should use identity (4). We rewrite it differently:

φ(z, q1)φ(z, q2) = φ(z, q1 + q2)(E1(q1) + E1(q2)) − ∂zφ(z, q1 + q2), (32)

where we use the fact that (1) implies that ∂zφ(z, q) = φ(z, q)(E1(z + q)−E1(z)). In this form, identity (4)
is generalized to the matrix case:

Rz
12(x)Rz

23(y) = Rz
13(x + y)r12(x) + r23(y)Rz

13(x + y) − ∂

∂z
Rz

13(x + y). (33)

1In [3], the elliptic case was described in a slightly different normalization. It differs from the one used here by qj → qj/N ,
which leads to the additional factor 1/N in the equations of motion in [3].
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Applications of this identity can be found in [8]. We also write its corollary:

Rz
12(qik)Rz

23(qkj + η) − Rz
12(qik + η)Rz

23(qkj) =

= Rz
13(qij + η)(r12(qik) − r12(qik + η)) + (r23(qkj + η) − r23(qkj))Rz

13(qij + η). (34)

Moreover, we need degenerations of (33). We expand both its sides in a neighborhood of x = 0:
(

1
x

P12 + R
(0),z
12 + · · ·

)

Rz
23(y) =

(
Rz

13(y) + xF z
13(y) + · · ·

)
(

1
x

P12 + r
(0)
12 + · · ·

)

+

+ r23(y)
(
Rz

13(y) + xF z
13(y) + · · ·

)
− ∂

∂z

(
Rz

13(y) + xF z
13(y) + . . .

)
, (35)

where F z
ab(y) is defined as in (27). In the zeroth order in x, we obtain

R
(0),z
12 Rz

23(y) = F z
13(y)P12 + Rz

13(y)r(0)
12 + r23(y)Rz

13(y) − ∂

∂z
Rz

13(y). (36)

Expanding (33) with small y, we similarly obtain

Rz
12(x)

(
1
y
P23 + R

(0),z
23 + · · ·

)

=
(
Rz

13(x) + yF z
13(x) + · · ·

)
r12(x) +

+
(

1
y
P23 + r

(0)
23 + · · ·

)
(
Rz

13(x) + yF z
13(x) + · · ·

)
−

− ∂

∂z

(
Rz

13(x) + yF z
13(x) + . . .

)
, (37)

Rz
12(x)R(0),z

23 = Rz
13(x)r12(x) + r

(0)
23 Rz

13(x) + P23F
z
13(x) − ∂

∂z
Rz

13(x). (38)

It follows from (36) and (38) that

R
(0),z
12 Rz

23(qij + η) − Rz
12(η)Rz

23(qij) = F z
13(qij + η)P12 + Rz

13(qij + η)(r(0)
12 − r12(η)) +

+ (r23(qij + η) − r23(qij))Rz
13(qij + η). (39)

2.2. Lax equation. We write Lax equation (26) with an additional term explicitly in terms of N×N

blocks. For the diagonal blocks, we obtain

L̇ii(z) = Lii(z)Mii(z) −Mii(z)Lii(z) +
∑

k �=i

(
Lik(z)Mki(z) −Mik(z)Lki(z)

)
. (40)

Similarly, for the off-diagonal part, we have

L̇ij(z) = Lii(z)Mij(z) −Mii(z)Lij(z) + Lij(z)Mjj(z) −Mij(z)Ljj(z) +

+
∑

k �=i,j

(
Lik(z)Mkj(z) −Mik(z)Lkj(z)

)
+

+ (μi
0 − μj

0) tr2
(
F z

12(qij + η)P12Sij
2

)
. (41)

The problem is to show that (40) and (41) are equivalent to the respective equations of motion (28) and (29).
We note that

Res
z=0

L(z) = S = −Res
z=0

M(z) ∈ Mat(NM, C), (42)

i.e., the second-order pole in z cancels in the commutator [L(z),M(z)].
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2.2.1. Off-diagonal part. In the left-hand side of (41), we have

L̇ij(z)1 = tr2(F z
12(qij + η)P12Sij

2 q̇ij) + tr2(Rz
12(qij + η)P12Ṡij

2 ). (43)

The subscript 1 in the left-hand side means that the Lax equation is in the first tensor component. We
consider expression in the right-hand side of (41):

(Lik(z)Mkj(z) −Mik(z)Lkj(z))1 =

= tr23
(
−Rz

12(qik + η)P12Sik
2 Rz

13(qkj)P13Skj
3 +

+ Rz
12(qik)P12Sik

2 Rz
13(qkj + η)P13Skj

3

)
=

= tr23
(
(Rz

12(qik)Rz
23(qkj + η) − Rz

12(qik + η)Rz
23(qkj))P12Sik

2 P13Skj
3

) (34)
=

(34)
= tr23

(
Rz

13(qij + η)(r12(qik) − r12(qik + η))P12Sik
2 P13Skj

3

)
+

+ tr23
(
(r23(qkj + η) − r23(qkj))Rz

13(qij + η)P12Sik
2 P13Skj

3

)
. (44)

We transform the two obtained terms using (15) and (16) and the respective permutation operator properties
P12U12 = U21P12 and P12U23 = U13P12. We transform the first term in the right-hand side of (44):

tr23
(
Rz

13(qij + η)(r12(qik) − r12(qik + η))P12Sik
2 P13Skj

3

)
=

= − tr3
(
Rz

13(qij + η)P13P13 tr2((R
(0),qik+η
12 − R

(0),qik

12 )Sik
2 )P13Skj

3

)
=

= − tr3
(
Rz

13(qij + η)P13 tr2((R
(0),qik+η
32 − R

(0),qik

32 )Sik
2 )Skj

3

)
=

= − tr2
(
Rz

12(qij + η)P12 tr3((R
(0),qik+η
23 − R

(0),qik

23 )Sik
3 )Skj

2

)
. (45)

Using definition (31), we obtain

tr23
(
Rz

13(qij + η)(r12(qik) − r12(qik + η))P12Sik
2 P13Skj

3

)
= − tr2

(
Rz

12(qij + η)P12J
η,qik(Sik)2 S

kj
2

)
. (46)

We similarly transform the second term in the right-hand side of (44):

tr23
(
(r23(qkj + η) − r23(qkj))Rz

13(qij + η)P12Sik
2 P13Skj

3

)
=

= tr23
(
Rz

13(qij + η)P12Sik
2 P13Skj

3 (r23(qkj + η) − r23(qkj))
)

=

= tr23
(
Rz

13(qij + η)P13P23Sik
2 Skj

3 (R(0),qkj+η
23 − R

(0),qkj

23 )P23

)
=

= tr23
(
P23R

z
13(qij + η)P13P23Sik

2 Skj
3 (R(0),qkj+η

23 − R
(0),qkj

23 )
)

=

= tr23
(
Rz

12(qij + η)P12Sik
2 Skj

3 (R(0),qkj+η
23 − R

(0),qkj

23 )
)

=

= tr2
(
Rz

12(qij + η)P12Sik
2 tr3 (Skj

3 (R(0),qkj+η
23 − R

(0),qkj

23 ))
)

=

= tr2
(
Rz

12(qij + η)P12Sik
2 Jη,qkj (Skj)2

)
. (47)

From (46) and (47), for the initial expression (44), we finally obtain

(
Lik(z)Mkj(z) −Mik(z)Lkj(z)

)

1
= tr2

(
Rz

12(qij + η)P12(SikJη,qkj (Skj) − Jη,qik(Sik)Skj)2
)
. (48)
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We next consider the expression from (41)
(
Lii(z)Mij(z) −Mii(z)Lij(z)

)

1
=

= tr23
(
−Rz

12(η)P12Sii
2 Rz

13(qij)P13Sij
3 + R

(0),z
12 P12Sii

2 Rz
13(qij + η)P13Sij

3

)
=

= tr23
(
(R(0),z

12 Rz
23(qij + η) − Rz

12(η)Rz
23(qij))P12Sii

2 P13Sij
3

)
. (49)

We apply relation (39),
(
Lii(z)Mij(z) −Mii(z)Lij(z)

)

1
= tr23

(
F z

13(qij + η)P12P12Sii
2 P13Sij

3

)
+

+ tr23
(
Rz

13(qij + η)(r(0)
12 − r12(η))P12Sii

2 P13Sij
3

)
+

+ tr23
(
(r23(qij + η) − r23(qij))Rz

13(qij + η)P12Sii
2 P13Sij

3

)
. (50)

We simplify all three terms in the right-hand side of (50). We transform the first term,

tr23
(
F z

13(qij + η)P12P12Sii
2 P13Sij

3

)
= tr2(Sii

2 ) tr3
(
F z

13(qij + η)P13Sij
3

)
=

= trSii · tr2
(
F z

12(qij + η)P12Sij
2

)
. (51)

The third term is already known:

tr23
(
(r23(qij + η) − r23(qij))Rz

13(qij + η)P12Sii
2 P13Sij

3

)
= tr2

(
Rz

12(qij + η)P12Sii
2 Jη,qij (Sij)2

)
. (52)

For the second term in the right-hand side of (50), we obtain

tr23
(
Rz

13(qij + η)(r(0)
12 − r12(η))P12Sii

2 P13Sij
3

)
=

= tr23
(
Rz

13(qij + η)P13(r
(0)
32 − r32(η))P32Sii

2 Sij
3

)
=

= tr2
(
Rz

12(qij + η)P12 tr3
(
(r(0)

23 − r23(η))P23Sii
3

)
Sij

2

)
=

= − tr2
(
Rz

12(qij + η)P12J
η(Sii)2Sij

2

)
. (53)

Expression (50) thus becomes
(
Lii(z)Mij(z) −Mii(z)Lij(z)

)

1
= tr2

(
Rz

12(qij + η)P12

(
SiiJη,qij (Sij) − Jη(Sii)Sij)2

)
+

+ trSii · tr2
(
F z

12(qij + η)P12Sij
2

)
. (54)

We transform one more expression in (41), Lij(z)Mjj(z) −Mij(z)Ljj(z), similarly to (50). This yields
(
Lij(z)Mjj(z) −Mij(z)Ljj(z)

)

1
= tr2

(
Rz

12(qij + η)P12(SijJη(Sjj) − Jη,qij (Sij)Sjj)2
)
−

− trSjj · tr2
(
F z

12(qij + η)P12Sij
2

)
. (55)

Collecting terms (48), (54), and (55), we obtain the ijth block of the commutator:
(
[L(z),M(z)]ij

)

1
= (trSii − trSjj) tr2

(
F z

12(qij + η)P12Sij
2

)
+ tr2

(
Rz

12(qij + η)P12A2

)
,

A = SiiJη,qij (Sij) − Jη(Sii)Sij + SijJη(Sjj) − Jη,qij (Sij)Sjj +

+
∑

k : k �=i,j

(
SikJη,qkj (Skj) − Jη,qik(Sik)Skj

)
.

(56)
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Also taking the last term (with μ0
i ) in the right-hand side of (41) into account, we obtain the second

equation in (20) in the form

Ṡij = SiiJη,qij (Sij) − Jη(Sii)Sij + SijJη(Sjj) − Jη,qij (Sij)Sjj +

+
M∑

k : k �=i,j

(
SikJη,qkj (Skj) − Jη,qik(Sik)Skj

)
. (57)

Here, we must clarify the transition from (56) to (57). Strictly speaking, we proved that the Lax
equations hold on the equations of motion, but we did not prove the converse. To prove the converse, we
must verify that all components of matrix equation (57) are independently contained in (56) taking into
account that R12 is a linear operator that somehow mixes these components in linear combinations. In
other words, we must show that it follows from tr2(Rz

12(qij +η)P12C2) = 0 that C = 0. For this, we consider
the Lax equation near z = 0. It follows from (13)–(15) that Rz

12(qij + η)P12 has a simple pole at z = 0 with
the residue equal to P12. The needed statement then follows from the fact that tr2(P12A2) = A.

2.2.2. Diagonal part. We now consider equation (40), whose left-hand side has the form

L̇ii(z)1 = tr2
(
Rz

12(η)P12Ṡii
2

)
. (58)

Using (34), we transform the expression in the summation in the right-hand side of (40):

(
Lik(z)Mki(z) −Mik(z)Lki(z)

)

1
=

= tr23
[
−Rz

12(qik + η)P12Sik
2 Rz

13(qki)P13Ski
3 + Rz

12(qik)P12Sik
2 Rz

13(qki + η)P13Ski
3

]
=

= tr23
[
(Rz

12(qik)R23(qki + η) − Rz
12(qik + η)Rz

23(qki))P12Sik
2 P13Ski

3

] (34)
=

(34)
= tr23

[
Rz

13(η)(r12(qik) − r12(qik + η))P12Sik
2 P13Ski

3

]
+

+ tr23
[
(r23(qki + η) − r23(qki))Rz

13(η)P12Sik
2 P13Ski

3

]
=

= tr2
[
Rz

12(η)P12(SikJη,qki(Ski) − Jη,qik(Sik)Ski)2
]
. (59)

Using (39), we simplify the rest of the right-hand side of (40):

(
Lii(z)Mii(z) −Mii(z)Lii(z)

)

1
=

= tr23
[
−Rz

12(η)P12Sii
2 R

(0),z
13 P13Sii

3 + R
(0),z
12 P12Sii

2 Rz
13(η)P13Sii

3

]
=

= tr23
[(

R
(0),z
12 Rz

23(η) − Rz
12(η)R(0),z

23

)
P12Sii

2 P13Sii
3

] (39)
=

(39)
= tr23

[
Rz

13(η)
(
r
(0)
12 − r12(η)

)
P12Sii

2 P13Sii
3

]
+

+ tr23
[(

r23(η) − r
(0)
23

)
Rz

13(η)P12Sii
2 P13Sii

3

]
+

+ tr23
[
F z

13(η)P12P12Sii
2 P13Sii

3

]
− tr23

[
P23F

z
13(η)P12Sii

2 P13Sii
3

]
. (60)

We note that the two last terms are equal and therefore cancel:

tr23
(
F z

13(η)P12P12Sii
2 P13Sii

3

)
= tr23

(
P23F

z
13(η)P12Sii

2 P13Sii
3

)
= trSii tr2

(
F z

12(η)P12Sii
2

)
. (61)
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The first and the second terms in (60) have the form

tr23
[
Rz

13(η)
(
r
(0)
12 − r12(η)

)
P12Sii

2 P13Sii
3

]
+ tr23

[(
r23(η) − r

(0)
23

)
Rz

13(η)P12Sii
2 P13Sii

3

]
=

= tr2
[
Rz

12(η)P12

(
Jη(Sii)Sii − SiiJη(Sii)

)

2

]
. (62)

From (59) and (62), we finally obtain

(
[L(z), M(z)]ii

)

1
= tr2(Rz

12(η)P12B2), (63)

where
B = Jη(Sii)Sii − SiiJη(Sii) +

∑

k �=i

(
SikJη,qki(Ski) − Jη,qik(Sik)Ski

)
. (64)

Here, we should also use the argument given after (57). We have thus verified the equations of motion for
the diagonal blocks.

2.3. Interacting tops. As explained in [3], in the particular case rk(S) = 1, we can write the
equations of motion in terms of only the diagonal blocks. We recall the main idea. The additional property
rk(S) = 1 yields

Sik
1 P12Ski

1 = Sii
1 Skk

2 . (65)

Further, for an arbitrary J(S) = tr2(J12S2) of form (12) and J̆12 = J12P12, we have

J(S) = tr2(J12S2) = tr2(J̆12P12S2) = tr2(S2J̆12P12) = tr2(S2P12J̆21) = tr2(P12S1J̆21). (66)

Therefore,
SikJ(Ski) = tr2(Sik

1 P12Ski
1 J̆21) = Sii tr2(J̆21Skk

2 ), (67)

where J̆21 = P12J̆21P12 = P12J12. Similarly,

J(Sik)Ski = tr2(J̆12Sik
1 P12Ski

1 ) = tr2(J̆12Skk
2 )Sii. (68)

We finally write Eqs. (28) and (30) in the forms

Ṡii = [Sii, Jη(Sii)] +
M∑

k : k �=i

(
SiiJ̃η,qki (Skk) − J̆η,qik(Skk)Sii

)
,

q̈i = tr(Ṡii) =
M∑

k : k �=i

tr
(
SiiJ̃η,qki(Skk) − J̆η,qik(Skk)Sii

)
,

(69)

where
J̃η,qki(Skk) = tr2(J̆

η,qki

21 Skk
2 ) = tr2(P12J

η,qki

12 Skk
2 ),

J̆η,qik(Skk) = tr2(J̆
η,qik

12 Skk
2 ) = tr2(J

η,qik

12 P12Skk
2 ).

(70)

Written in form (69), the equations of motion are interpreted as the dynamical equations for M particles
with additional “spin” degrees of freedom, i.e., the particles can be identified with tops that also have
coordinates and velocities in addition to their own internal degrees of freedom. The interaction between
the tops depends on both the distance and the spin dynamical variables.
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