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MAGNETIC HELICITY FLUX FOR MEAN MAGNETIC FIELD

EQUATIONS

P. M. Akhmet’ev∗

The mean magnetic field equation describes the process of generating a magnetic field on a large scale as a

result the EMF arising on a small scale. We consider the case where the large-scale magnetic field is also

random and determine the density function of magnetic helicity. This function is invariant under gauge

transformations of the magnetic vector potential. We study the equation for the magnetic helicity flux of

a large-scale field and introduce a correction term related to the quadratic magnetic helicity invariant.
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1. Introduction

Studying a magnetic field in a liquid conducting medium [1] is relevant in modern mathematical
physics. If the density of the magnetic liquid conducting medium is low, then the approach discovered
in the framework of classical hydrodynamics in the middle of the last century by Steinbeck, Krause, and
Redler, whose principles were described in [2], works. The equation of the mean magnetic field also arises
in other problems, for example, when taking the interaction of a magnetic field with elementary particles
into account [3].

The concept of the α-effect, which underlies the mean field theory, allows obtaining a simple equation
for the magnetic helicity flux. We study this equation.

Here, we apply the Kolmogorov theory of turbulence (see, e.g., [4] for the details of this theory) to the
mean field equation. In the framework of the theory of turbulence, taking the influence of the magnetic
field on the hydrodynamic velocity vector (Lorentz force) into account leads to cascade MHD models [5].
Magnetic helicity plays an important role in the theory of cascade models. The mean magnetic field
equations are significantly simpler than the complete system of MHD equations because they are linear in
the magnetic field. We assume that the hydrodynamic velocity is known (but complex and multiscale) and
the magnetic field is random with the Kolmogorov distribution.

Together with magnetic helicity, which should be regarded as the zeroth moment of the magnetic
field distribution, we can determine and consider higher-order helicity moments. The need to study the
distribution function of the link indices of magnetic lines was explicitly indicated in [6] (the remark after
Example 5.2). The second magnetic helicity moments, called quadratic helicities, were constructed and
studied in [7]; they are denoted by χ

(2)
B and χ

[2]
B .
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The possibility of using the concept of higher moments of helicity as an obstruction to the increase
of magnetic energy was analyzed in [8] by analogy with magnetic helicity. The main conclusion in that
work was that the density of the quadratic magnetic helicity is unknown and this invariant hence cannot
be used in practical calculations. Moreover, the expression for the density of magnetic helicity, which is
typically used in MHD problems, depends on the gauge of the magnetic potential and is not invariant under
coordinate transformations. Therefore, even magnetic helicity is difficult to use in the theory of turbulence.

In [6], the magnetic field was regarded as a dynamical system with a magnetic flux (with a dynamical
flux defined by magnetic field vectors in which particles of a liquid conducting medium move along magnetic
lines). The density of the magnetic helicity was defined invariantly as the result of averaging the function
(A(x),B(x)) in the phase volume Ω over the magnetic flux. The invariance of the density of magnetic helicity
means that this density function does not change under the action of noncontracting diffeomorphisms of the
phase space that transform the magnetic field (see [9] for more about this standard definition). Nevertheless,
the density of magnetic helicity in [6] was not defined explicitly but was obtained from general considerations
of ergodic theory as some measurable function. It was verified in [7] (see formula (3) there) that the density
of magnetic helicity is integrable together with its square and it therefore belongs to the same Hilbert space
as the density of magnetic energy.

Using an idea in [10], where a local formula for the density χ
(2)
B of magnetic helicity was written, we here

write local formula (6) for the gauge-invariant density of magnetic helicity. Many physicists have variously
attempted to make the density of magnetic helicity gauge-invariant and hence practically calculable [11]–
[13].

Our gauge transformation of the expression (A(x),B(x)) coincides, for example, with a particular case
of the gauge transformation in [12], where v = B should be set in formula (7), i.e., the case where the
hydrodynamic velocity is proportional to the magnetic field and directed along the magnetic lines should
be considered.

If we assume that in the problem posed in [13], the magnetic field is everywhere tangent to the boundary
of the region with the magnetic field, then the concept of “helicity of magnetic lines” studied there also
coincides with our concept of the density of magnetic helicity. But in this case, we must additionally
perform a suitable limit transition where the lengths of the magnetic lines tend to infinity.

A gauge-invariant density of magnetic helicity for random small-scale magnetic fields was proposed
in [11]. On one hand, such an assumption does not allow using the visual representation that the density
of magnetic helicity is a function frozen in the phase volume. On the other hand, this assumption is more
convenient for subsequently developing the theory. For higher moments of magnetic helicity (not only for
the quadratic magnetic helicity χ

(2)
B ), local formulas exist and can possibly be applied practically. For

moments of magnetic helicity of a sufficiently high order, the formulas for a gauge-invariant density similar
to (6), even if they exist, can be inapplicable in practice.

The main idea, which is justified by the proposed formula, can be stated as follows. Because the
density function of magnetic helicity is frozen in a phase volume, it is transported by the hydrodynamic
velocity vector, and we assume that the density function is fractalized to an arbitrarily small scale. For
simplicity, we assume that this happens instantly. If this happens with some delay, then the parameter ε−1

is introduced in the theory of turbulence, and the transfer rate is observed over the spectrum (depending
on the scale) in the stationary mode. We merely outline the construction of the density of magnetic helicity
with a finite dissipation rate because it requires a more detailed study of the mathematical side of the
theory of moments of magnetic helicity and is beyond the scope of this paper (some results were obtained
in [14]).

We assume that the velocity vector distributes the magnetic helicity generated by the α-term according
to Eqs. (1) and (2) instantly over the entire phase volume. The magnetic helicity flux equation then has a
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main term that determines the exponential growth of magnetic helicity. For example, it was noted in [15]
that the magnetic helicity can vanish while the magnetic energy does not vanish and the magnetic helicity
flux is nonzero. This means that the magnetic helicity flux equation cannot be satisfied even approximately
if the magnetic helicity is zero at the initial instant.

The main correction to the magnetic helicity flux equation is given by the quadratic magnetic helicity.
This correction does not reduce to a correction for the square of magnetic helicity, because the square of
the magnetic helicity also vanishes if the magnetic helicity is zero.

This paper has the following structure. In Sec. 2, we recall what the mean field equation is and consider
a two-scale approximation. On the small scale, EMF is generated in the form of an α-term and a β-term
(we assume that η-term in the equation vanishes, which does not lessen the mathematical problem). On
the large scale, we also assume that the magnetic field is random. Formally speaking, we consider the mean
field equation in the two-scale approximation [1]. We give the magnetic helicity flux equation (without
details of the proof). A complete proof is simple and can be found, for example, in [16].

In Sec. 3, we give well-known formulas for the eigenvector functions of the vorticity operator for
magnetic fields with a three-dimensional continuous spectrum. In Sec. 4, we write local formula (6), which is
invariant under gauge transformations, for the density of magnetic helicity. We prove that the corresponding
integral over the phase volume converges to the helicity invariant. Based on this local formula, we prove
the preliminary result in Sec. 6 and the main result in Sec. 8. To prove the preliminary result, we must
study the magnetic helicity density spectrum (we call it a Kolmogorov spectrum; Kolmogorov considered
similar spectra for hydrodynamic equations [4]). To prove the main result, we use the simple arguments
presented in Sec. 7.

2. The mean magnetic field equation

As in [1], [2], we consider a region Ω in R
3 filled with a conductive fluid. For simplicity, we assume that

this region is compact. The vector u of the hydrodynamic velocity of the liquid medium and the magnetic
field vector B are defined in Ω. We assume that both the velocity vector and the magnetic field vector are
represented as the sum of large-scale and small-scale components:

B = B + B′, u = ū + u′.

In this decomposition, we assume that B is the mean of the random vector B. We additionally assume
that the component B is itself a random field. The mean ū is not assumed to be random but is assumed
to be fractal up to the boundary of the turbulence region.

We assume that the mean velocity field ū(t) is given. In this case, the equation for the mean magnetic
field has the form

curl(η curlB) − curl(ū × B + E) +
∂B
∂t

= 0,

E = B′ × u′, div B = 0.

(1)

Equation (1) is called the kinematic dynamo equation of the mean magnetic field. The conditions η = 0
and E = 0 are called the freezing conditions for the magnetic field.

We assume that the equation

E = αB − β curlB (2)

is satisfied. Under this assumption, we take the scalar product of both sides of Eq. (2) with the vector
B, additionally assuming that η = 0 (molecular diffusion is absent), and integrate the result over the
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phase volume Ω. Using E = ∂A/∂t, we obtain an equation describing the transfer of the magnetic helicity
χB =

∫
(A,B) dΩ:

dχB

dt
= 2α

∫
(B,B) dΩ − 2β

∫
(B, curlB) dΩ. (3)

The integral UB = 2
∫
(B,B) dΩ is called the magnetic energy (of the mean magnetic field), and the integral

χcurlB = 2
∫
(B, curlB) dΩ is called the current helicity (of the mean magnetic field). The turbulent diffusion

coefficient β always plays a role comparable to or even greater than the α-effect because of the presence
of the first term in (2). The magnetic helicity flux is due to the fact that these two related characteristics
behave differently, which is the focus of our investigation.

3. State space of a system of magnetic fields

Let the magnetic field B be distributed throughout the whole space R
3. We assume that the energy

and helicity are normalized to the volume vol(Ω) of the conventional region Ω ⊂ R
3. This allows assuming

that the spectrum of the vorticity operator is continuous.

We understand the spectrum of a magnetic field as the expression

B(�x) =
∫

k

B(k)eik·x dk, (4)

where k·B(k) = 0 (the condition for the absence of magnetic charges), B(−k) = B∗(k) (real vector condition
for B; the asterisk indicates complex conjugation). Right-hand wave vectors with a positive eigenvalue
k = ‖k‖ and left-hand wave vectors with a negative eigenvalue −k = −‖k‖ appear in expression (4). An
identical amplitude of the indicated pair of wave vectors corresponds to the case of a right–left mirror pair
of wave vectors.

We understand an observable quantity (or an observable random vector) as a random distribution
of vectors in accordance with formula (4). Moreover, we assume that the distribution density is such
that the mean strength ‖B(k)‖ of a random vector B(k) with the wavenumber k satisfies the power law
‖B(k)‖ = Ckℵ (we briefly write kB ∼ kℵ), where C is a positive parameter of dimension G cmℵ and
ℵ is a dimensionless parameter. Magnetic fields corresponding to the same wave vector ±k differ in the
choice of B(k). The distribution of the measure on such a family is invariant under translations along the
direction of the wave vector. Therefore, in calculating the measure of (right-hand) wave vectors with a
given wavenumber k > 0, we must include not only the factor 4πk2 (the area of a sphere of radius k) but
also the additional factor k−1, responsible for the rate of rotation in the frontal plane of the vector B(�x)
with a parallel transport of the magnetic field along the direction of the wave vector.

We understand the turbulence interval as an arbitrary finite closed interval (δ0, δ1) ⊂ R+ = (0, +∞)
on the half-line of positive wavenumbers. The turbulence interval is

Δ = δ1 − δ0, (5)

and the length of this interval is measured in cm−1. It determines the region of turbulence, i.e., the region
of wave vectors with the prescribed eigenvalues. This region is finite and separated from zero. We assume
that 0 < δ0 � 1 and 1 � δ1. The turbulence region comprises right-hand (+) (for k > 0) and left-hand
(−) (for k < 0) wave vectors with prescribed absolute values of their eigenvalues in the turbulence interval.
Therefore, the region of turbulence is bounded and does not contain an eigenvalue zero.
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4. Magnetic helicity density

The function χ : Ω → R, χ ∈ L1(Ω) is called the density of magnetic helicity in the phase region Ω
with the magnetic field defined as the result of averaging the function (A(x),B(x)) over the magnetic flux
(see [6] and Chap. III, Lemma 4.12, in [9]).

According to the ergodic theorem, we have χ ∈ L1(Ω) [17]. It is easy to prove (see Eq. (11) in [7]) that
χ ∈ L1(Ω)∩L2(Ω) (i.e., the function χ is not only measurable and absolutely integrable but also integrable
together with its square). We write the local formula for χ as a series. In this formula, all terms (except
the term with i = 0) have a zero mean along a magnetic line starting at an arbitrary point x ∈ Ω.

Definition 1. We define the density of magnetic helicity by the formula

χ(x) = lim
a→+∞

∞∑

i=0

ai

i!
[(∇B)2i(A(x),B(x))]. (6)

We let ∇B(. . . ) denote the derivative of the corresponding function along the vectors B: ∇B(g(x)) =
(B, grad g(x)). We should understand the expression in the right-hand side of (6) as a function in L2(Ω)
that is the limit of trigonometric polynomials in an arbitrary Fourier basis in Ω. This follows because
χ(x) ∈ L1(Ω) in the right-hand side of (6) everywhere (perhaps except a subdomain in Ω of arbitrarily
small measure) uniformly tends to the limit of its means along magnetic lines with the magnetic length
T as the magnetic length tends to infinity. Therefore, without loss of accuracy, it suffices to consider the
Fourier series in the space of magnetic lines of fixed length T ; the limit T → +∞ leads to the exact value.

We verify that formula (6) is invariant under transformations of Ω by an noncontracting diffeomorphism.
We obtain the gauge transformation A �→ A + grad f ,

χ(x) �→ χ(x) + lim
a→+∞

∞∑

i=0

ai

i!
[(∇2

B)i(gradf,B(x))].

On each magnetic line l of the field B, we have (grad f(x),B(x)) = g(x), x ∈ l, where the mean ḡ = 0 along
l. We expand g(x), x ∈ l, in a Fourier series and verify the invariance in the case g = sin(kx) because the
right-hand side of (6) is linear in f :

χ(x) �→ χ(x) + lim
a→+∞

∞∑

i=0

ai

i!
[(∇2

B)i(grad f(x),B(x))].

We rewrite the gauge term using the coordinate x on the line l and taking into account that B(x) is a
coordinate vector field on the magnetic line l with an invariant coordinate in the magnetic flux. We obtain

lim
a→+∞

∞∑

i=0

ai

i!
d2i sin(kx)

(dx)2i
= lim

a→+∞

∞∑

i=0

(−1)i(k2a)i

i!
sin(kx) = e−∞ sin(kx) = 0.

In the case of the spectral distribution of the magnetic field in the whole space R
3, we must pass from

a Fourier series (for a bounded domain) to a Fourier integral, where the spectral density is supported in
the turbulence interval, and the magnetic field itself is the Fourier transform of the density function. It is
convenient to introduce the dimensionless parameter δ1/δ0, which is assumed to be large because δ0 → 0+
and δ1 → +∞. Because the parameter a in (6) is large and has the dimension G−2 cm2, we define

a‖B2
0‖k2 =

δ2
1

δ2
0

, (7)

where ‖B2
0‖ is the normalization coefficient of dimension G2 and is equal to the mean magnetic energy on

the sphere of wave vectors of normalized radius and k is the wavenumber of the magnetic field vector for
∇B of dimension cm−1. The coefficient a depends on the eigenvalues of the basic magnetic fields in the
space of wave vectors.
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5. Kolmogorov magnetic helicity spectrum

To study the magnetic helicity spectrum, it is convenient to assume that all magnetic harmonics are
right-hand with positive wavenumbers, which does not lead to a loss of generality.

We let k · · · ∼ denote the distribution density of a quantity in the space of wave vectors and k · · · ∼
denote the distribution density of a quantity in the space of wavenumbers. We assume that kB ∼ kℵ.
We recall that A is the vector potential for B: curlA = B. In the case where B is an eigenvector of
curl, we obtain A = k−1B, where k is the eigenvalue of B. We now obtain kA ∼ kℵ−1, and therefore

k(A,B) ∼ k2ℵ−1. Because the distribution B is assumed to be independent of the wave vectors and the
distribution has a zero mean for each wave vector, the mean (A,B) contains only harmonics with the same
wave vectors. We assume that vol(Ω) = 1. Then we have k

∫
(A,B) dΩ ∼ k2ℵ−1. The magnetic helicity

density is uniformly distributed along a straight line k if ℵ = 1/2.
We can draw the same conclusion starting from the dimension G2 cm of the magnetic helicity density

function χ(x). Changing the scale by a factor of λ (x �→ λx) and the magnetic field by a factor of λ−1/2

(B �→ λ−1/2B), we find that the magnetic helicity density χ transforms invariantly. The parameter a in (6)
has the dimension G−2 cm2, and all terms of the series hence have the same dimension. Under the given
assumption, for the transformations to be invariant, we must have ℵ = 1/2. The same conclusion holds for
the function (A,B) itself, which serves as the leading term in series (6).

To apply the theory of turbulence in our case, it suffices to show that expression (6) with the obtained
exponent ℵ is uniformly distributed over the space of wave vectors. Each term of the series is distributed
in the space of ordered pairs of wave vectors {k1 × k2}, where the first wave vector k1 determines the
distribution k1(A,B) and the second wave vector k2 determines the distribution of the vector along which
the iterated derivative ∇B is calculated.

We pass to the dimensionless wavenumber k′
2 = k2/4πδ0, 1 ≤ k′

2 ≤ δ1/4πδ0. We prove that at each
point x ∈ Ω with a fixed k′

2, series (6) is distributed proportionally to the leading term with the coefficient√
π/2 independently of k′

2. We note that the terms of the series are distributed identically at different
points x ∈ Ω.

We assume that the expression k1(A,B) is distributed with the value χ0. The ith term, i ≥ 1, of
series (6) is distributed with the coefficient

χ0
(ak2

1‖B2
0‖)i(−1)i

i!
k′
2

∫

S2
cos2i(θ) sin(θ)dθ = χ0

4π(−1)ik′
2(ak2

1‖B2
0‖−1)i

i!(2i + 1)
,

where θ is the angle between the vectors B2(x) and grad(A(x),B(x)), which is uniformly distributed over
the sphere S2 of directions, and sin(θ)dθ is area element on the sphere of directions. The factor k′

2 is
required because the angle element of the sphere of directions is taken into account proportionally to k2

and is dimensionless. The parameter ak2
1‖B2

0‖ is dimensionless. The limit ‖B2
0‖δ−2

0 a → +∞ as δ0 → 0+
and δ1 → +∞ is reached according to formula (7), and we can therefore assume that the Laplace integral
with x = k−2

1 δ−2
0 satisfies the relation

∫ √
xk2

1‖B2
0‖a

0

e−t2 dt =
√

π

2
.

Because
∞∑

i=0

(−1)i
(√

xk2
1‖B2

0‖a
)2i

i!(2i + 1)
=

(√
xk2

1‖B2
0‖a

)−1 ∫ √
xk2

1‖B2
0‖a

0

e−t2 dt,

we obtain

k′
2

∞∑

i=0

(−1)i
(√

xk2
1‖B2

0‖a
)2i

i!(2i + 1)
=

√
π

2
√

xk2
1k−2

2 ‖B2
0‖aδ2

0

=
√

πδ0

2δ1
.
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In this formula, we substitute a = δ2
1/‖B2

0‖δ2
0k

−2
2 from (7) for k = k2 and the value x = k−2

1 δ−2
0 . Because

k′
2

∞∑

i=0

(−1)i
(√

xk2
1‖B2

0‖a
)2i

i!(2i + 1)
= k′

2

∞∑

i=0

(−1)i(k2
1‖B2

0‖a)i

i!(2i + 1)
,

we obtain

χ0k
′
2

∞∑

i=0

(−1)i(k2
1‖B2

0‖a)i

i!(2i + 1)
= χ0

√
πδ0

2δ1
, (8)

where a → +∞. The terms are defined for each wave number k2, but the sum is independent of this
number.

To calculate the total distribution of series (6), we use formula (8) and again pass to the distribution
over the turbulence interval δ0 ≤ k2 ≤ δ1. We find that series (6) is distributed in proportion to the leading
term (except the distribution of means, which vanishes) with the proportionality coefficient

√
π/2.

6. Equation for the magnetic field flux of the mean field

We assume that η = 0 in Eq. (1). For physical reasons, the case α ≥ 0 is interesting. We assume that
α and β are strictly positive constants that are independent of both time and the coordinates of a point
in Ω.

We assume that the random magnetic field B is right-polarized. We determine the spectral density
χ(k) of the magnetic helicity invariant χB. The spectral density is related to the magnetic helicity invariant
by the formula (see (6))

χB =
∫ δ1

δ0

χ(k) dk. (9)

We obtain an equation that is the spectral form of Eq. (3) with respect to the wavenumbers k in the
turbulence interval:

dχ(k)(t)
dt

= 2αχ(k)(t)k − 2βχ(k)(t)k2. (10)

We assume that magnetic helicity density (6) is evenly distributed over the wave frequencies in the
turbulence interval. In the formula (5), we take δ1 = Δ because δ0 is small and the magnetic spectrum is
regular at zero. Under this assumption, we obtain χ(k)(t) = χ(t), χB(t) = Δχ(t), and

dχB(t)
dt

= αΔχB(t) − 2βΔ2

3
χB(t). (11)

We see that the increase of the right-hand helicity is substantially suppressed by turbulent diffusion for a
sufficiently large turbulence interval Δ.

We pass to the case where the transport of magnetic helicity in the spectrum does not occur instan-
taneously but is controlled by a large parameter ε−1. Our reasoning until the end of the section is not
rigorous and is based only on dimensional considerations. In the limit ε → 0, we obtain the case already
investigated, which is characterized by a uniform spectral distribution of the magnetic helicity density.

In the case ε > 0, the magnetic helicity spectrum must contain a small mode that is linearly distributed
in the turbulence interval (the value of the magnetic helicity flux of this mode over the spectrum should be
independent of the scale). This is possible if kB ∼ Ckℵ, where ℵ = 0. In the table of cubic helicities in [14],
there is a third moment, there are two variants of such moments ( χ(3,1) and χ(3,2)), and we choose one of
them and let χ

((3))
B denote it. The density χ((3)) of this moment has the dimension G6 and does not involve

the dimension cm. We can therefore assume that the small term αUB((3)) is present in the right-hand side of
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Eq. (12). The found hypothetical term corresponds to the magnetic mode B((3)), which is an eigenmode for
the invariant χ

((3))
B and has the corresponding value UB((3)) of magnetic energy. Of course, we now already

have another term corresponding to the value of the current helicity of the found mode.

7. Quadratic magnetic helicity

The quadratic helicity invariant was defined in [7], and its local formula was given in [10]. This
invariant is denoted by χ

(2)
B and has the dimension G4 cm5. The value of the quadratic helicity invariant is

defined as the result of integrating the square χ2(x) of the local magnetic helicity density over the region
Ω. Therefore, for right-polarized magnetic fields, the distribution of the quadratic helicity density coincides
with the distribution of the square of the magnetic helicity density, which is given by formula (6). With
ℵ = 1/2, we obtain a uniform distribution of the quadratic helicity density with respect to the scale in the
region Ω.

The quadratic helicity invariant is used for a random field B without left–right polarization. For general
fields, it should be modified,

χ
(2)
0 (B) = χ

(2)
B − χ2

B

vol(Ω)
, (12)

and we again let χ
(2)
B denote the new invariant χ

(2)
0 . For right-polarized magnetic fields with the Kolmogorov

spectrum at ℵ = 1/2, quadratic helicity calculated by formula (12) is zero.

8. Main result

For simplicity, as in Sec. 6, we assume that η = 0 in Eq. (1). By the sense of the problem, we have
α ≥ 0 and β ≥ 0. We consider the case where the magnetic field is not spiral and is given by identical
distributions of the left- and right-hand wave vectors: B = B

(2)
.

The density function χ(2)(k) is nonnegative. The distribution of the quadratic helicity density is given
by the squared function for ℵ = 1/2 and is independent of k. Therefore, in this case, we have

χ
(2)

B
(2) =

∫ δ1

0

χ(2)(k) dk = Δχ(2). (13)

The magnetic energy (for dimensional reasons) is related to the helicity density by the formula

U
(2)

B
=

√
χ(2). (14)

The formula for the helicity flux becomes

dχB(t)
dt

= α

√

χ
(2)

B
(2)Δ. (15)

Interestingly, the term that suppresses the growth of the emerging right-hand helicity is absent. This follows
because the current helicity vanishes as a result of our assumption that the right- and left-hand magnetic
harmonics are distributed identically.

We assume that a random magnetic field B is represented by orthogonal components of spiral and
nonspiral fields: B = B

(1)
+ B

(2)
. We combine Eqs. (11) and (15) into one equation. Under the given

assumptions, it is obvious that UB = U
B

(1) + U
B

(2) and χ
B

(2) = 0. In Sec. 7, we proved that χ
(2)

B
(1) = 0,

where the quadratic helicity is calculated by formula (12).
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According to the preceding calculations, kB
(1)

, kB
(2) ∼ k1/2. we assume that the magnetic helicity

χB(t) = χ
B

(1)(t) is known at the initial instant t = t0 and the quadratic magnetic helicity χ
(2)

B
(2) does not

change with time. Under the assumption that ε = 0, Eq. (11) contains a new additional term:

dχB(t)
dt

= αΔχB(t) − 2βΔ2

3
χB(t) + α

√
χ

(2)

B(2)Δ−1. (16)

As can be seen, the new correction term containing the quadratic helicity is proportional to
√

Δ−1. As-
suming that the turbulence interval Δ is sufficiently large, the correction term is substantially smaller than
the leading terms containing the magnetic helicity, which are proportional to Δ and Δ2.

9. Conclusions

Equation (3) for the helicity flux of the mean field can be studied using methods of the theory of
turbulence under the assumption that the mean field itself is determined by a probability distribution
and the fast hydrodynamic velocity field fractalizes the magnetic helicity density. In the framework of
such a study, it is assumed that not only the magnetic helicity but also the quadratic magnetic helicity
regulate the increase in the magnetic energy of the mean field. It turns out that if the right-hand magnetic
helicity is only just emerging, then turbulent diffusion does not prevent this at the initial stage. It can be
assumed that all moments of the magnetic helicity regulate the increase of the magnetic energy of the mean
field in a hierarchical structure. From the mathematical standpoint, this leads to a special section of the
analytic theory of differential equations, which was called power-law geometry in [18]. We hope that the
theoretical study of the moments of magnetic helicity, whose first steps were taken in [14], can be motivated
by experiment.
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