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THE SELF-CONSISTENT FIELD METHOD AND MACROSCOPIC

EINSTEIN EQUATIONS FOR THE EARLY UNIVERSE
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Using a self-consistent field, we construct a complete theory of the macroscopic description of cosmological

evolution, including a subsystem of linear equations for the evolution of perturbations and nonlinear

macroscopic Einstein equations and a scalar field. We present example solutions of this system showing

the principal difference between cosmological models of the early universe constructed on homogenous and

locally fluctuating scalar fields.
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1. Introduction

In [1]–[3], the main statements of the macroscopic theory of gravitation were formulated based on a
self-consistent field method, and the macroscopic Einstein equations were obtained and integrated for the
cosmological model with a Λ term in the second order of the perturbation theory in transverse gravitational
perturbations. A practically empty universe filled with gravitational radiation was considered in [1], [2].
Scalar gravitational perturbations, for which the existence of matter is required, cannot exist in such
a universe. More precisely, scalar gravitational perturbations can appear only in the second order of a
perturbation theory as perturbations of the average energy density of gravitational radiation. A cosmological
model with a scalar field was considered in [3], but only transverse perturbations of the metric corresponding
to gravitational waves were taken into account. Such perturbations do not lead to perturbations of the
scalar field in a linear approximation, and such a model is therefore almost identical to the model of an
empty universe filled with gravitational radiation. Here, we consider a complete macroscopic model of the
universe taking both longitudinal (scalar) perturbations and vector and tensor perturbations of the metric
into account. We regard a classical Higgs scalar field as matter.

2. Self-consistent statistical approach for describing local metric
fluctuations

2.1. Self-consistent field method. The statistical theory for obtaining the macroscopic Einstein

equations can be developed similarly to many-body theory in the framework of the self-consistent field
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approach, which originated in celestial mechanics and was then applied in many-particle theory (see the
well-known classical papers Weiss 1907, Langmuir 1913, Thomas 1927, Fermi 1928, Hartree 1928, and Fock
1930). Vlasov had a special role in developing the self-consistent field method; in his seminal paper [4],
the physical properties of charged plasma particles were first analyzed in depth, the inapplicability of the
Boltzmann gas-kinetic equation for describing plasma was shown, and a new kinetic plasma equation (the
Vlasov equation) describing the collective interaction of plasma particles via a self-consistent field was
proposed (also see [5], [6]). Vlasov’s theory was subsequently refined by Landau [7], then rigorously proved
and generalized by Bogoliubov [8], and brilliantly applied to quantum statistics and superfluidity theory [9].
We note Chandrasekhar’s classic monograph [10], where the principles of stellar dynamics were formulated
based on the self-consistent field method and the theory of galactic structures was essentially constructed.

According to the self-consistent field method, the motion of an individual particle can be described
as the motion in an aggregate averaged field of particles of the rest of the system neglecting the back
reaction of this single particle on the system dynamics. The applicability conditions for the self-consistent
field method are that particle interactions are long range and the number of interacting particles is large,
N � 1. We can similarly consider the method applied to a nonlinear system of pure fields. In this case,
an individual small field mode characterized by certain field degrees of freedom plays the role of a single
particle, and the applicability conditions for the self-consistent field method are that the field is long range
and the number of its degrees of freedom is large. The gravitational interaction corresponds perfectly to
these conditions: the law of conservation of total energy–mass and the absence of negative “gravitational
charges” ensure that it is long range while a large number of degrees of freedom is fundamental to the field
nature of the interaction itself. Therefore, we can consider systems with a gravitational interaction using
the self-consistent field method, where each microscopic mode of gravitational perturbation is small and
the macroscopic self-consistent gravitational field is large.

We note that a more complete macroscopic model of the early universe would be a model based on
quantum field statistics. Quantum gravitational effects in the early universe are essential for wavelengths
comparable to the curvature radius rk = σ−1/4 of the universe:

σ =
√

RijklRijkl = 6H4(1 + w2),

where H is the Hubble constant and w is the invariant cosmological acceleration. Hence, quantum effects
are important for field modes with the wave vector

k4 ∼ 6H4(1 + w2).

For the inflationary stage of the Universe H = Λ, w = 1, where Λ is the cosmological constant, this
condition becomes k ∼ Λ. Because k ∼ n/a(t) = ne−Λt, the last condition becomes n ∼ ΛeΛt. As a result,
massless particles with a fixed mode n(t) are created at each instant, which ultimately leads to the known
flat spectrum of generated gravitons [11] (also see [12]).

The back reaction of the creation of massless particles on the background geometry of the early universe
was discussed in [13]–[16]. We note that these works were based on a semiphenomenological approach in
which particle creation is described by a thermal spectrum with a temperature determined by the curvature.
In these works, the stability of the classical background metric with respect to the back reaction factor was
considered, and different authors reached directly contradictory conclusions. In particular, it was noted
in [15] that conclusions about the stability of the background metric were based on a scheme without an
averaging operation and are therefore incorrect. We also note that back reaction of the perturbed metric
on the particle creation process was not taken into account in these papers; hence, the models studied in
them are not self-consistent and take only a one-sided relation into account.
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Therefore, we can assert that the problem of a quantum statistical description of the macroscopic early
universe in quantum cosmology1 has not been investigated sufficiently seriously. Here, we develop a classical
theory of the macroscopic universe. We note that there is a “semiclassical” bridge relating the classical
statistical description of the early universe to quantum theory. Perturbations of the metric are random and
are determined by arbitrary initial conditions in the classical case; these perturbations are deterministic,
including a sharply defined energy spectrum, and are determined by the instability of the vacuum state in the
quantum case. The energy spectrum should complement the classical theory, eliminating its arbitrariness
and thus playing a role of the abovementioned relation between the quantum and classical theories.

2.2. Procedure for averaging local metric fluctuations. We assume that the exact microscopic
metric of a Riemannian space–time V4 can be written in the form [17], [18]

gik(x) = gik(x) + δgik(x), (1)

where gik(x) is a certain average macroscopic metric corresponding to the macroscopic space–time V 4 and
δgik(x) are microscopic fluctuations of the metric, and hence

δgikδgjk � 1 (2)

and
δgik = 0. (3)

Here and hereafter, an overline denotes a certain operation of averaging the metric and the corresponding
quantities, which we do not specify yet. We merely note that this operation is a quite delicate procedure and
depends significantly on the measurement method (see [17], [18] for details). We also note that “pioneer”
methods for statistically averaging metrics that are used by some researchers and essentially represent
a transfer of classical averaging methods by integrating the metric quantities over a spatial volume are
obviously unsuitable in relativistic gravitation. First, as is known from Riemannian geometry, integration
of a tensor over a volume is an ambiguous operation, and the result is not a tensor quantity. Second, because
synchronization of observations is only possible in a synchronized reference frame, the physical meaning
of the result of integrating the metric tenor over a volume cannot be determined. Third, a macroscopic
instrument measuring the metric of the universe simply cannot be realized. Therefore, following the methods
developed in [17], [18], we average the metric over certain arbitrary quantities, for instance, wave vectors,
oscillation phases, etc. For example, in the cited papers, the metric was generated by massive particles,
and the averaging was performed over the coordinates of these particles, which are not arguments of tensor
fields. Generally speaking, correct averaging of metrics and also other tensor fields can be performed as
follows. A general theorem, well known in functional analysis, states that a function in a metric space can
be expanded over a complete orthogonal set of eigenfunctions of a linear self-adjoint operator in this space,
such as the d’Alembertian. Therefore, we can define this set by eigenfunctions of the d’Alembertian, which
is a linear self-adjoint operator in the Riemannian space V4 corresponding to the eigenvalues λ as

�ψλ = λψλ, (4)

where
� = ∇i∇

i
=

1√
g

∂

∂xi

√
g g ik ∂

∂xk

1We note that such a description should be based on a density matrix but the corresponding mathematical tools have not
been developed for quantum gravitation.
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is a d’Alembertian defined with the metric gik. We note that the eigenfunctions ψλ are defined by a certain
state vector �λ = [�1, �2, . . . , �n], over which the statistical averaging should be performed. We note that such
an averaging procedure is totally identical to averaging in quantum field theory. Here, we should impose
certain requirements on the distribution function f(xi, �λ) reflecting the macroscopic symmetry properties
of the tensor fields being averaged.

It must be understood that together with metric fluctuations, there are also associated small fluctua-
tions δφa of physical fields,2

φa = φa + δφa, (5)

and hence
δφaδφa � φ2

a (6)

and
δφa = 0. (7)

Averaging the Einstein equations with a similar procedure, we obtain

Gi
k(g) = 8πT i

k(g, φa) + Λδi
k. (8)

Because the Einstein and energy–momentum tensors are nonlinear, we have

Gi
k(g) �= Gi

k(g), T i
k(g, φa) �= T i

k(g, φa), (9)

i.e., the a macroscopic source does not correspond to a macroscopic metric, as happens in electrodynamics.
How do we obtain equations for the macroscopic metric in this case? The general principles for

averaging microscopic metrics in a WKB approximation and obtaining macroscopic Einstein equations
were presented in Isaacson’s papers [19], [20], and we later used them to construct a theory of relativistic
statistical systems with gravitational interaction in [17], [21], [22] (also see [18], [23]). In [24]–[26], this theory
was used to derive the kinetic equation for photons propagating in a gravitationally fluctuating Friedmann
universe where massive particles generate local fluctuations. In particular, it was shown in [25], [26] and
conclusively in [27] that taking such spherically symmetric local fluctuations of the gravitational field into
account is equivalent to adding a fluid with the inflationary state equation (ε+p = 0) to the Friedmann dust
or adding the Λ term to the Einstein equations. Also close to this problem, we mention Zakharov’s work [28]
devoted to deriving the kinetic equations for massive particles with pairwise gravitational interactions in the
Friedmann universe but without the back reaction of massive particles on the background metric. Exactly
this influence was taken into account in [24]–[26].

We average the Einstein equations and the corresponding equations of physical fields. We pay attention
to the following circumstance. To start the averaging, we must have a certain “primeval” macroscopic metric
g
(0)
ik (x) and certain primeval physical fields φ

(0)
a to serve as a zeroth-order approximation in the process of

consecutive averaging iterations. These primeval fields satisfy a self-consistent set of field equations:

Gi
k(g(0)

jm) = 8πT i
k((g(0)

jm, φ(0)
a ) + Λδi

k,

(0)

∇kT k
i (g(0), φ(0)

a ) = 0.

(10)

In accordance with the usual approach for averaging gravitational fields, we consider a certain macro-
scopic Riemannian space and now let g

(0)
ik (x) ≡ gik(x) and φ

(0)
a (x) ≡ φa(x) be certain not yet known

macroscopic averages of the field values.
2In the considered case, this is a single field φa = Φ(x), but the statement holds for any number of physical fields of any

nature.
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Assumption 1. In what follows, we assume that the operations of differentiation or integration with

respect to the coordinates commute with the averaging operation:

∂iφ(x) = ∂iφ(x),

∫
φ(x) dx =

∫
φ(x) dx.

(11)

We note that the averaging operation defined above completely satisfies Assumption 1. Let

δgik = gik − g
(0)
ik , δφa = φa − φ(0)

a (12)

be small local deviations of the metric and physical fields from the average values. Hence,

δgik = 0, ∂jδgik = 0,

δφ = 0, ∂jδφ = 0.
(13)

We expand the field equations in Taylor series in the deviations of the metric and physical fields from
their average values up to the second order in perturbations:

G(0)i
k + G(1)i

k + G(2)i
k = 8π(T (0)i

k + T (1)i
k + T (2)i

k) + Λδi
k, (14)

and we average these equations with (3) and (7) and also the linearity of the operators G
(1)
ik and T

(1)
ik with

respect to fluctuations taken into account,

G(1)i
k(δg) = G(1)i

k( δg ) = 0,

T (1)i
k(δg, δφ) = T (1)i

k( δg, δφ ) = 0.

(15)

In the first order of the perturbation theory, we thus obtain microscopic linear equations of the first
order in the perturbations of the metric and physical fields,

G(1)i
k(δg) = 8πT (1)i

k(δg, δφ) + Λδi
k,

∇kT (1)i
k(δg, δφ) = 0,

(16)

which we call the microscopic evolution equations for perturbations. Setting (we note that substitution (17)
is a formal metric renormalization)

g
(0)
ik = gik, (17)

in the second order of the perturbation theory after averaging, we obtain the macroscopic Einstein equations
for the macroscopic metric,

G(0)i
k(g) = −G(2)i

k(δg) + 8πT (0)i
k(g, φ ) + 8πT (2)i

k(δg, δφ) + Λδi
k, (18)

according to which the macroscopic metric in the second order of the perturbation theory is determined by
the Einstein equations with a cosmological constant and the summed effective energy–momentum tensor,

T̃ i
k = T (0)i

k(g, φ ) + T (2)i
k, (19)

where
T (2)i

k ≡ T (2)i
k − 1

8π
G(2)i

k. (20)

Hence, the macroscopic Einstein equations of the second order in perturbations take the standard form

Gi
k(g) = 8πT̃ i

k + Λδi
k. (21)

To close the macroscopic Einstein equations, we must calculate the macroscopic averages that are
quadratic in the local fluctuations of the metric and physical fields. These averages are determined by
evolution equations (16).
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2.3. Macroscopic symmetries. The Lie derivative of Ωi
k in the direction of a vector field ξi is

defined as [29]

L
ξ
U i

k = lim
dt→0

Ωi
k(xi + ξi dt) − Ωi

k(xi)
dt

, (22)

and hence
L
ξ
U i

k = ξj ∂jU
i
k − U j

k ∂jξ
i + U i

j ∂kξj . (23)

In particular, if U i
k is a tensor and we can replace the partial derivatives in (23) with covariant derivatives,

then
L
ξ
U i

k = ξj∇jU
i
k − U j

k∇jξ
i + U i

j∇kξj , (24)

which is a tensor of the same valency as the initial tensor.
We regard a pseudo-Riemannian space V4 as the primeval space admitting a certain group Gr of

motions that have Killing vectors ξ
(α)

and determine macroscopic symmetries:

L
α
g
(0)
ik = 0, L

α
φ(0)

a = 0, (L
α
≡ L

ξα

). (25)

In what follows, we assume the following.

Assumption 2. The macroscopic average of the Einstein tensor inherits the symmetry properties of

the macroscopic metric:
L
ξ
gik = σgik ⇒ L

ξ
Gik = σ1gik, (26)

where L
ξ

is the Lie derivative (see, e.g., [29]) and σ(x) and σ1(x) are certain scalar functions.

We note that we obtain the group of motions of V 4 at σ = 0 and σ1 = 0 and a group of conformal
transformations at nonzero values of these scalars. We explain Assumption 2. As is known from Riemannian
geometry (see [18]), all geometric objects inherit the symmetry properties of the metric tensor. For example,

L
ξ
gik = 0 ⇒ L

ξ
Γj

ik = 0, L
ξ
Rijkl = 0, L

ξ
Tik = 0. (27)

It hence follows, for example, that all symmetric covariant tensors of valency two have the same algebraic
structure as the metric tensor. It is therefore logical to assume that the algebraic structure of macroscopic
tensors is also the same. We note that because the equalities

L
α
G(0)i

k = 0, L
α
Λδi

k = 0, L
α
T (0)i

k(g, φ ) = 0 (28)

are satisfied, the total energy–momentum tensor of the second order in the perturbations as a result of
Assumption 2 must also inherit the symmetries of the macroscopic metric under averaging:

L
α
T (2)i

k = 0 ⇒ L
α
T̃ i

k = 0. (29)

We note that Assumption 2 imposes certain necessary conditions on the symmetry of a scalar distribution
function f(xi, �λ) of random tensor fields, in particular,

L
α
f(xi, �λ) = 0. (30)
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2.4. Macroscopic second-order Einstein equations. We finally write a set of equations defining
the macroscopic metric in the second order of the perturbation theory. These equations consist of a system
of linear equations for local perturbations of the metric and physical fields

G(1)i
k(δg) = 8πT (1)i

k(δg, δφ), ∇kT (1)i
k(δg, δφ) = 0 (31)

and the macroscopic Einstein equations

Gi
k(g) − Λδi

k = −G(2)i
k(δg) + 8π

(
T (0)i

k(g, φ ) + T (2)i
k(δg, δφ)

)
, (32)

where the values Gi
k(g) are calculated with respect to the macroscopic metric gik.

We make an important remark. Obtaining the macroscopic Einstein equations, we renormalized the
metric g

(0)
ik → gik, which has some consequences. First, according to the self-consistent field method, the

macroscopic averages G
(2)
ik (δg) are not necessarily small compared with Gik(g), because they are not a result

of summing an infinite number of degrees of freedom of gravitational perturbations. Second, the indicated
metric renormalization leads to the change Gik(g(0)) → Gik(g), which in turn means that macroscopic
Einstein equations (32) are immediately solved for the macroscopic metric and not by the method of
consecutive iterations:

gik = g
(0)
ik + δgik + . . . .

This is one of the main advantages of the self-consistent field method of Hartree–Fock–Vlasov–Bogoliubov.
The method of consecutive iterations would have pulled us in a completely different direction. To understand
that, it suffices to imagine the Einstein equations for the Friedmann universe, where the energy–momentum
tensor would have been defined by a gas of an infinite number of “small photons.” Following the method
of consecutive approximations, we would take the Minkowski tensor as the zeroth-order approximation.
It is clear that we would never obtain a cosmological singularity with that approach, given the smallness
of gravitational perturbations brought by “small photons” compared with units of the Minkowski metric.
This example clearly illustrates that in the theory of relativistic gravity, all researchers unconsciously use
the self-consistent field method without attempting to justify it.

3. Basic relations of the model

3.1. Field equations. To realize the averaging method described above, we take the self-consistent
system of Einstein equations of a classical scalar field Φ with a Higgs potential as a concrete field model.
The Lagrangian function

Ls =
1
8π

(
1
2
gikΦ,iΦ,k − V (Φ)

)
(33)

corresponds to the scalar field Φ, where V (Φ) is the potential energy of the scalar field and for the Higgs
potential becomes

V (Φ) = −α

4

(
Φ2 − m2

α

)
2

, (34)

where α is a constant of self-action and m is the scalar boson mass.
Using the standard procedure, we obtain the equation for the scalar field from Lagrangian function (33):

�Φ + V ′
Φ = 0. (35)

Then

T i
k =

1
8π

(
Φ,iΦ,k − 1

2
δi
kΦ,jΦ,j + δi

km2V (Φ)
)

(36)
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is the energy–momentum tensor of the scalar field. We omit the constant term from Higgs potential (34)
because it leads to a simple redefinition of the cosmological constant Λ. We use the system of units with
G = � = c = 1, the metric signature is (−,−,−, +), and the Ricci tensor is obtained by contracting the
first and third indices.

The corresponding Einstein equations of the studied system have the form

Gi
k ≡ Ri

k − 1
2
Rδi

k − Λδi
k = 8πT i

k. (37)

For simplicity in what follows, we call Eqs. (35) and (37) the field equations.

3.2. Gravitational perturbations of the isotropic universe. We write the metric with gravita-
tional perturbations in the form (see, e.g., [30])

ds2
0 = a2(η)(dη2 − dx2 − dy2 − dz2),

ds2 = ds2
0 − a2(η)hαβ dxα dxβ .

(38)

We focus on the conformal factor −a2(η) of the covariant amplitudes of perturbations, which disappears
for mixed perturbation components hα

β . In this case, the covariant metric perturbations have the form

δgαβ = −a2(η)hαβ . (39)

We then have

hα
β = hγβgαγ

0 ≡ − 1
a2

hαβ , (40)

h ≡ hα
α ≡ gαβ

0 hαβ = − 1
a2

(h11 + h22 + h33). (41)

We consider a Laplacian � on the three-dimensional conformally Euclidian space E3 with the metric

d�2 = a2(η)(dx2 + dy2 + dz2) (42)

and find the eigenfunctions of the self-adjoint operator

�ψ ≡ 1
a2

�0ψ = k2ψ, (43)

where �0 is a Laplacian defined on the three-dimensional Euclidian space and k2(η) is a certain scalar
function. Therefore, the eigenfunctions of Laplacian � (43) are

ψn(r, η) = einr, (44)

where nα = const and k = n/a(η) is a wave vector. Hence,

k2 = −gαβ
0 nαnβ ≡ n2

a2(η)
. (45)

Further, because each perturbation mode must be real, we rewrite it as

hαβ(r, η) = hαβ(n, η)einr+iψ0 + h∗
αβ(n, η)e−inr−iψ0 , (46)
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where the asterisk denotes complex conjugation and ψ0 is an arbitrary constant phase for each harmonic
n. The introduced arbitrary phase of the perturbation mode reflects the fact that as a result of the
homogeneity of the three-dimensional space, each metric perturbation mode must be independent of the
choice of the origin of the Cartesian coordinate system. Hence, as a result of the translation symmetry, we
must have written a separate harmonic in the form e−in(r−r0), which we in fact did when we set ψ0 = −r0n.
Therefore, at each instant η0, a single independent mode of metric perturbations is fully described by the
three-dimensional tensor amplitudes hαβ(n, η0), whose classification along the direction of the spacelike
vector n and the three-dimensional Kronecker tensor δαβ was given by Lifshitz in [31].

For transverse perturbations, we have

hαβ = eαβ(Seinr+iψ0 + CC), (47)

where CC denotes a complex-conjugate quantity and S(n, η), S∗(n, η) is an amplitude of perturbations,
and hence

hα
βnα = 0, (48)

h = 0. (49)

In an arbitrary Cartesian coordinate system of the three-dimensional Euclidian space E3, the polarization
tensor eαβ in formula (47) becomes

eαβ = 2sαsβ +
nαnβ

n2
− δαβ , (50)

s2 = 1, sn = 0, n2 = n2. (51)

It is easy to verify that gauge condition (48) is automatically satisfied. Hence, each mode of transverse
gravitational perturbations is described by the numbers n = (n1, n2, n3), s = (s1, s2, s3), and ψ0. Con-
ditions (51) impose two constraints on these numbers. Therefore, each mode of transverse gravitational
perturbations has five degrees of freedom over which we must average.

For vector perturbations of the metric, we have

hαβ = Vαnβ + Vβnα, (nV) = 0, (52)

V = veinr+iψ0 + CC, (53)

where v(n, η) is the amplitude of vector perturbations. Each mode of vector perturbations is described by
five degrees of freedom.

Similarly, for the longitudinal perturbation of the metric, we have

hαβ = einr+iψ0(λPαβ + μQαβ) + CC, (54)

where λ(n, η), λ∗(n, η), μ(n, η), and μ∗(n, η) are amplitudes of scalar perturbations

Pαβ =
1
3
δαβ − nαnβ

n2
, Qαβ =

1
3
δαβ . (55)

We note the series of papers [32]–[36] (also see [37]) devoted to developing a gauge-invariant theory
of scalar, vector, and tensor perturbations of second and higher orders in the Friedmann universe. The
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main idea of this theory is to construct canonical field degrees of freedom of perturbations such that it
would be possible to separate the indicated perturbation modes in higher orders of the perturbation theory
and to construct physical observables such as energy–momentum, etc., corresponding to these modes. The
appearance of these papers was motivated by requirements of the quantum theory of the early universe. We
emphasize that the theory of macroscopic Einstein equations of the second order in perturbations developed
here, on one hand, is a classical theory and does not require selecting such pure field modes for calculating
physical observables corresponding to them. On the other hand, because it is a second-order macroscopic
theory (macroscopic averages of perturbations vanish), it requires satisfaction of the gauge conditions only
in the first order of the perturbation theory, for which the Lifshitz perturbation expansion presented above
holds.

3.3. Averaging the Einstein equations over the states of a mode of metric perturbations.
As previously noted, each independent perturbation mode on the background of a Friedmann space is
described by five independent numbers. For a given wave vector n, the polarization vector s of a gravitational
wave has only one remaining degree of freedom. Practically, this is the angle of rotation of a unit vector in a
plane orthogonal to the wave vector. The wave vector n itself has three degrees of freedom. One other degree
of freedom is related to the oscillation phase, which can be defined on the interval [0, 2π]. Longitudinal
perturbations are completely determined by four numbers n and ψ0, i.e., they have four degrees of freedom.
In connection with this, we average of the metric over four degrees of freedom, leaving the polarization
vector of the transverse gravitational perturbations fixed.

We also do not average over the length of the wave vector because this requires setting the perturbation
spectrum (we can average with a given perturbation spectrum in the final stage). As a result, we can write
the average of a certain quantity f(n, r) over arbitrary perturbations as

f(n, r) =
1

8π2

∫ 2π

0

dψ0

∫

Ωn

f(n, r) dΩn, (56)

where averaging over wave-vector directions reduces to calculating the integral over a two-dimensional
sphere of radius n. Because the phase space is isotropic and homogeneous, we have the relations

n = 0, nαnβ =
1
3
n2. (57)

In averaging, we must take into account that the perturbations of the metric hαβ and the scalar field
ϕ are random. As a result, we have

hαβ = 0, ϕ = 0. (58)

As a consequence of the isotropy of the macroscopic metric and relations (58), the thus averaged total
energy–momentum tensor must be isotropic, i.e., it must have the structure of the energy–momentum tensor
of an ideal fluid (see [2] for the notation),

T (2)
ik = a2(E + P)δ4

i δ4
k − a2ηikP, (59)

where ηik = diag(−1,−1,−1, +1) and

E =
1
a2

T (2)
44 , P =

1
3a2

3∑
α=1

T (2)
αα (60)

are the macroscopic energy density and pressure of the field gravitationally scalar matter.
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We note that because the perturbations of the gravitational and scalar fields and their first derivatives
enter the total energy–momentum tensor in degree two, the average of the product must be understood as

ab = ab∗ + a∗b. (61)

Because the macroscopic metric is isotropic and homogeneous after such averaging, we can find macroscopic
Einstein equations (18) of the second order in perturbations for it:

3
a′2

a2
= E0 + E ,

a′2

a2
− 2

a′′

a
= P0 + P.

(62)

We note that according to the self-consistent field method, the scale factor in these equations is a macroscopic
value.

We represent the potential of the scalar field in the form

Φ = Φ0(η) + φ(η)einr+iψ0 + φ∗(η)e−inr−iψ0 . (63)

We further expand the Einstein tensor and the energy–momentum tensor in series in the amplitude
of perturbations of gravitational and matter fields S(η), V (η), λ(η), μ(η), φ(η), δε, and δuα. Using the
isotropy of the unperturbed metric and also orthogonality conditions (51) and (52), we find it convenient
to introduce a local system of coordinates in which

n = n(0, 0, 1), s = (1, 0, 0), v = (0, v(η), 0), (64)

where s is the unit vector of the transverse polarization perturbation. In this system of coordinates, we
have

h11 =
[
−S(η) +

1
3
λ(η) +

1
3
μ(η)

]
einz + CC,

h22 =
[
S(η) +

1
3
λ(η) +

1
3
μ(η)

]
einz + CC,

h12 = h13 = 0, h23 = υ(η)einz + υ∗(η)e−inz ,

h33 =
[
−2

3
λ(η) +

1
3
μ(η)

]
einz + CC,

h = μ(η)einz + μ∗(η)e−inz .

4. Expanding the field equations in perturbation orders

4.1. Zeroth approximation. Expanding the Einstein tensor in the metric perturbations, we find
the known expressions in the zeroth approximation

G(0)1
1 = G(0)2

2 = G(0)3
3 = 2

a′′

a3
− a′2

a4
, G(0)4

4 = 3
a′2

a2
. (65)

937



For scalar field equation (35), we obtain

Φ′′
0 + 2

a′

a
Φ′

0 + a2(m2Φ0 − αΦ3
0) = 0. (66)

The nonzero components of the energy–momentum tensor of the scalar field are

T (0)1
1 = T (0)2

2 = T (0)3
3 ≡ −P0 = − Φ′2

0

16πa2
+

m2Φ2
0

16π
− αΦ4

0

32π
,

T (0)4
4 ≡ E0 =

Φ′2
0

16πa2
+

m2Φ2
0

16π
− αΦ4

0

32π
.

(67)

In the zeroth approximation in gravitational perturbations, we thus obtain two independent Einstein equa-
tions

3
a′2

a4
− Φ′2

0

2a2
− m2Φ2

0

2
+

αΦ4
0

4
− Λ = 0, (68)

2
a′′

a3
− a′2

a4
+

Φ′2
0

2a2
− m2Φ2

0

2
+

αΦ4
0

4
− Λ = 0. (69)

These two equations comprise a system of equations of the basic cosmological model for a scalar field with a
Higgs potential. Differentiating (68) with respect to time and substituting the expression for a′′/a3 obtained
from (69) in the resulting equation, we obtain field equation (82) with Φ0 �≡ 0 (see below). As previously
noted, in accordance with the self-consistent field method, we do not solve background equations (82), (68),
and (69). Instead, we add the averaged quadratic corrections, which are already not small quantities, to
them.

4.2. First-order equations: Evolution equations for perturbations. In the approximation
linear in S − V − λ − μ − φ, we obtain, first, the equation for the perturbation of the scalar field (the
equations for the complex-conjugate amplitudes do not differ from it)

φ′′ + 2
a′

a
φ′ + a2φ

(
m2 +

n2

a2
− 3αΦ2

0

)
+

μ′

2
Φ′

0 = 0, (70)

second, the nonzero Einstein tensor components G(1)1
1, G(1)2

2, G(1)3
3, G(1)3

2 = G(1)2
3, G(1)1

4 = −G(1)4
1,

G(1)2
4 = −G(1)4

2, G(1)3
4 = −G(1)4

3, and G(1)4
4, and, third, the components of the energy–momentum tensor

corresponding to them. Separating the harmonics e±ikz in the obtained equations, we write the independent
combinations of the corresponding nontrivial equations:

(
4
2

)
: v′ = 0, (71)

(
2
2

)
−

(
1
1

)
: S′′ + 2

a′

a
S′ + n2S = 0, (72)

(
4
3

)
:

1
3
(λ + μ)′ + φΦ′

0 = 0, (73)

2
(

3
3

)
−

(
2
2

)
−

(
1
1

)
: λ′′ + 2

a′

a
λ′ − n2

3
(λ + μ) = 0, (74)

(
1
1

)
+

(
2
2

)
+

(
3
3

)
: μ′′ + 2

a′

a
μ′ +

n2

3
(λ + μ) + 3φ′Φ′

0 − 3a2Φ0φ(m2 − αΦ2
0) = 0, (75)
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(
4
4

)
:

a′

a
μ′ +

n2

3
(λ + μ) − Φ′

0φ
′ − a2φΦ0(m2 − αΦ2

0) = 0. (76)

The equation
(
2
3

)
is a differential consequence of Eq. (71). We write the equation

(
3
3

)
, which is an algebraic

consequence of Eqs. (74) and (75) (one third of their sum)

(
3
3

)
: (λ + μ)′′ + 2

a′

a
(λ + μ)′ + 3Φ′

0φ
′ − 3a2Φ0φ(m2 − αΦ2

0) = 0. (77)

We note that the equations for the scalar (λ, μ, φ), vector (v), and tensor (S) perturbations are uncou-
pled. Hence, Eqs. (71) and (72) define the amplitudes of vector and tensor perturbations. The remaining
five Eqs. (70) and (73)–(76) define three functions: the amplitudes of the scalar metric perturbations λ and
μ and the amplitude of the perturbation of the scalar field φ. Moreover, Eq. (74) is independent of the
scalar field and completely coincides with the corresponding equation in the Lifshitz theory. We note that
we can use the consequences of the zeroth-approximation equations in the evolution equations because the
subsequent terms already have the third order of the perturbation theory. We also note that among all
the first-order conservation laws ∇kT i

k = 0, only two are nontrivial, ∇kT i
3 = 0 and ∇kT k

4 = 0: the first is
equivalent to Eq. (82) for the field of the zeroth approximation, and the second is equivalent to field equa-
tion (70) of the first-order perturbation theory. Therefore, with Eq. (70) for the scalar field perturbations
taken into account, only two of the four Eqs. (73)–(76) are independent. Hence, as the basic equations for
the three functions μ, λ, and φ, we can choose, for example, the subsystem of Eqs. (70), (74), and (75).

In what follows, we call system of linear equations (70)–(72), (74), (75) the evolution equations for
perturbations of the gravitational and scalar fields. The solutions of these equations determine the quadratic
corrections to the energy–momentum tensor and hence the macroscopic metric of the universe.

4.3. Second-order approximation. We now calculate the second-order corrections to the Einstein
tensor and the energy–momentum tensor in accordance with (20):

G(2)i
k = G(2)i

k − 8πT (2)i
k ≡ −8πT (2)i

k. (78)

Calculating these corrections, we must take equations of the zeroth and first orders in perturbations into
account. We immediately obtain

G(2)1
2 = G(2)1

3 = G(2)1
4 = G(2)2

4 = 0. (79)

The remaining nonzero component is G(2)4
3 ∼ n3 (n). Therefore, as a consequence of (57), we have

G(2)4
α = 0. (80)

Moreover, in the calculation of the mean-square corrections to the energy–momentum tensor, terms con-
taining e±2ikr vanish because the three-dimensional space is isotropic. Therefore, only terms that do not
contain such factors are essential in formulas for corrections to the energy and pressure given by (60). Tak-
ing these comments and evolution equations (70)–(77) for the perturbation amplitudes into account and
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averaging, we obtain corrections to the background pressure P0 and the energy density E0 given by (67):

P =
1

24π

3∑
α=1

G(2)α
α =

1
8π

[
n2 7

6a2
SS∗ − 5

6a2
S′S′∗ −

− n2

9

(
7
6
λλ∗ +

2
3
(λμ∗ + λ∗μ) − 1

6
μμ∗

)
− 5

18
λ′λ′∗ +

1
18

μ′μ′∗ − φ′φ∗′

a2
−

− φφ∗
(

n2

3a2
+ m2 − 3αΦ2

0

)]
,

E = − G(2)4
4 =

1
8π

[
n2

(
SS∗

2a2
+

λμ∗ + λ∗μ

9
− λλ∗

18

)
+

S′S′∗

2a2
+

λ′λ′∗

6
− μ′μ′∗

6
+

+ 2
a′

a3
(SS∗)′ +

1
3

a′

a
(μμ∗)′ +

φ′φ∗′

a2
+ φφ∗

(
n2

a2
+ m2 − 3αΦ2

0

)]
.

(81)

Here and hereafter, FF ∗ denotes the average over the spectrum of oscillations f(n) ≥ 0 if there is no single
isotropic mode of oscillations with the wave vector n,

∫ ∞

0

f(n) dn = 1.

In this case, we must also introduce averaging over the “frequencies” n in the right-hand sides of macroscopic
equations (81), ∫ ∞

0

F (n, η)f(n) dn.

4.4. Second-order equations for the macroscopic scalar field in perturbations and the
macroscopic Einstein equations. To construct a closed theory of a macroscopic universe, we must
obtain the equations of the second order in perturbations for the scalar field Φ based on field equation (35).
Calculating the quadratic correction to the field equation, we obtain

δ(2)(�Φ + V ′
Φ) = − Φ′

0

[
(SS∗)′ +

1
3
(λλ∗)′ +

1
6
(μμ∗)′

]
+

+
1
2

φ′μ′∗ + φ′ ∗μ′

a2
− 1

2
n2

a2
(φμ∗ + φ∗μ) − 6αΦ0φφ∗. (82)

According to the self-consistent field method, to determine the macroscopic scalar field Φ0(η), instead
of (82), we have

Φ′′
0 + 2

a′

a
Φ′

0 + a2(m2Φ0 − αΦ3
0) − Φ′

0a
2

(
SS∗ +

1
3
λλ∗ +

1
6
μμ∗

)′
+

+
1
2
φ′μ′∗ + φ′∗μ′ − 1

2
n2(φμ∗ + φ∗μ) − 6a2αΦ0φφ∗ = 0. (83)

Proceeding similarly with Einstein equations (68) with (81) taken into account, we replace them with
the macroscopic Einstein equations

3
a′2

a4
− Φ′2

0

2a2
− m2Φ2

0

2
+

αΦ4
0

4
− Λ =

= n2

(
SS∗

2a2
+

λμ∗ + λ∗μ

9
− λλ∗

18

)
+

S′S′∗

2a2
+

λ′λ′∗

6
− μ′μ′∗

6
+

+ 2
a′

a3
(SS∗)′ +

1
3

a′

a
(μμ∗)′ +

φ′φ∗′

a2
+ φφ∗

(
n2

a2
+ m2 − 3αΦ2

0

)
, (84)
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2
a′′

a3
− a′2

a4
+

Φ′2
0

2a2
− m2Φ2

0

2
+

αΦ4
0

4
− Λ + n2 7

6a2
SS∗ − 5

6a2
S′S′∗ −

− n2

9

(
7
6
λλ∗ +

2
3
(λμ∗ + λ∗μ) − 1

6
μμ∗

)
−

− 5
18

λ′λ′∗ +
1
18

μ′μ′∗ − φφ′

a2
− φφ∗

(
n2

3a2
+ m2 − 3αΦ2

0

)
= 0. (85)

System of linear evolution equations (71)–(74), (76) and system of macroscopic equations (83)–(85)
together comprise a complete closed system of equations defining the macroscopic Friedmann universe.

4.5. Some considerations about macroscopic equations. We first note that vector perturbations
do not influence the macroscopic equation of the scalar field and the macroscopic Einstein equations. In
what follows, we therefore assume that local vector perturbations are equal to zero, taking into account
that their linear equations (71) are autonomous.

Second, adding Eqs. (74) and (75) and substituting the expression for (λ + μ)′ obtained from (73) in
the result, we obtain

φ

[
Φ′′ + 2

a′

a
Φ′ + a2Φ(m2 − αΦ2)

]
= 0. (86)

The expression in square brackets coincides with the left-hand side of the unperturbed equation for the
background scalar field,

Φ′′
0 + 2

a′

a
Φ′

0 + a2(m2Φ0 − αΦ3
0) = 0. (87)

The difference between this equation and the macroscopic equation for the background scalar field is of
the second order of smallness in perturbations (see (83)). Therefore, the left-hand side of (86) is of the
third order in perturbations, and we can consequently assume that the expression in square brackets in (86)
is equal to zero in the second-order perturbation theory. Because we obtained (86) as a differential–
algebraic consequence of Eqs. (73)–(75), we can discard one of these equations in the framework of the
approximation quadratic in perturbations. Therefore, we consider the system of the four evolution equa-
tions (70), (72), (74), and (75) for the four functions φ(η), S(η), λ(η), and μ(η).

Finally, we also note a feature of the equations of the macroscopic model mentioned in Sec. 1: linear
evolution equations (70), (72), (74), and (75) for the perturbations φ(η), S(η), λ(η), and μ(η) of the scalar
field and the Friedmann metric are defined on the background of the macroscopic quantities Φ(η) and a(η),
which are in turn defined by nonlinear equations (83)–(85) using quadratic fluctuations of perturbations.
This feature of the equations of the macroscopic model does not allow solving them by direct methods.
The corresponding evolution equations in the standard perturbation theory are solved with a given metric
a(η). In our case, we must solve these equations with undetermined background functions. Therefore, we
must solve both the evolution equations and the macroscopic equations simultaneously, making assumptions
regarding the background functions a(η) and Φ(η) and the perturbations φ(η), S(η), λ(η), and μ(η). One
such assumptions concerns the characteristic scales of change of these functions, which are defined by the
wave number n and the characteristic dimension of the background inhomogeneity f , �−1 = f ′/f .

4.6. Consistency of the system of equations of the macroscopic model. The system of macro-
scopic equations comprises the three second-order differential equations (83)–(85) for the two macroscopic
functions a(η) and Φ(η). Therefore, we should first investigate the consistency of this system. From the
standpoint of the Einstein equations, the problem of the consistency of this system of equations is related
to satisfaction of the Bianchi identities for the Einstein tensor. In the case of an isotropic homogenous
metric, the differential Bianchi identities reduce to one relation. We prove the consistency of the obtained
equations.
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To avoid using cumbersome formulas, we write system (83)–(85) in the form

Φ′′ + 2
a′

a
Φ′ + a2Φ(m2 − αΦ2) = F, (88)

3
a′2

a4
− Φ′2

2a2
− m2Φ2

2
+

αΦ4

4
− Λ = G, (89)

2
a′′

a3
− a′2

a4
+

Φ′2

2a2
− m2Φ2

2
+

αΦ4

4
− Λ = H, (90)

where the functions F , G, and H are determined by mean-square perturbations of the metric and scalar
field:

F = Φ′
[
(SS∗)′ +

1
3
(λλ∗)′ +

1
6
(μμ∗)′

]
+ 6a2αφφ∗ − 1

2
φ′μ′∗ + φ′∗μ′ +

1
2
n2(φμ∗ + φ∗μ),

G = n2

(
SS∗

2a2
+

λμ∗ + λ∗μ

9
− λλ∗

18

)
+

S′S′∗

2a2
+

λ′λ′∗

6
− μ′μ′∗

6
+

+ 2
a′

a3
(SS∗)′ +

1
3

a′

a
(μμ∗)′ +

φ′φ′∗

a2
+ φφ∗

(
n2

a2
+ m2 − 3αΦ2

)
,

H = n2 7
6a2

SS∗ − 5
6a2

S′S′∗ − n2

9

(
7
6
λλ∗ − 1

6
μμ∗ +

2
3
(λμ∗ + λ∗μ)

)
−

− 5
18

λ′λ′∗ +
1
18

μ′μ′∗ − φ′φ′∗

a2
− φφ∗

(
n2

3a2
+ m2 − 3αΦ2

)
.

Differentiating (89) and using (88) and (90) in the resulting expression, we obtain the relation

3
a′

a
(H − G) − Φ′

a2
F = G′, (91)

which is the necessary and sufficient consistency condition (the proof of sufficiency is elementary) for
macroscopic equations (83)–(85). In the absence of local fluctuations (F = G = H = 0), this condition
is satisfied identically. With local perturbations, we must calculate directly to verify relation (91). For
this, we must first take the commutativity of differentiation, complex conjugation, and averaging into
account. Second, we must use evolution equations (70)–(75) to determine the second derivatives with
respect to fluctuations, which appear in the right-hand side of (91). We do not present the quite cumbersome
calculations here and merely show the main techniques for calculating such values in a simple example.

As an example, we calculate (S′S′∗)′: we have (S′S′∗)′ = S′′S′∗+S′S′′∗. From evolution equation (72),
we obtain

S′′ = −2
a′

a
S′ − n2S.

We hence have

(S′S′∗)′ = −4
a′

a
S′S′∗ − n2SS′∗ − n2S′S∗ ⇒ (S′S′∗)′ = −4

a′

a
S′S′∗ − n2(SS∗)′.

Proceeding in the same way with the second derivatives of φ, λ, and μ, we prove that condition (91) is
satisfied.

In what follows, we define the macroscopic cosmological model by evolution equations (70) and (72)–
(75) and macroscopic equations (83) and (84).
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5. Examples of constructing macroscopic models of the universe

5.1. The case of purely transverse perturbations. The obtained system of equations for macro-
scopic cosmology is extremely complicated to analyze in a single paper. We intend to return to its study
in the nearest future. Meanwhile, as an example of studying this system, we consider the case where scalar
and vector perturbations of the gravitational field are absent, μ = λ = v = 0. In this case, we obtain
φ = 0 from Eq. (73), and from the system of evolution equations, there remains only Eq. (72) for transverse
perturbations. Equation (83) thus reduces to the simpler equation

Φ′′
0 + Φ′

0

[
2
a′

a
− (SS∗)′

]
+ a2Φ0(m2 − αΦ2

0) = 0. (92)

The mean-square correction to the macroscopic equation for the scalar field in this case hence influences
only the value of the Hubble constant H = a′/a via the energy of gravitational waves.

From (81), we get expressions for the corrections to the effective pressure and energy density:

P =
1

8πa2

(
7
6
n2SS∗ − 5

6
S′S′∗

)
, E =

1
8πa2

[
n2 SS∗

2
+

S′S′∗

2
+ 2

a′

a
(SS∗)′

]
. (93)

5.2. The WKB approximation for transverse perturbations. We now consider the WKB ap-
proximation of evolution equation (72)

n � a′

a
, S′ � a′

a
,

representing the solution in the form

S = S̃(η) exp
[
i

∫
u(η) dη

]
,

where S̃(η) and u(η) are functions slowly changing with the scale factor such that

a′ � a{n, u}, S̃′ � S̃{n, u}, u′ � {n, u}. (94)

Hence, in the WKB approximation we obtain

S =
1
a
S0

+einη +
1
a
S0
−e−inη, (95)

where S0
± are constant amplitudes and hence S0

+S0
− = |S0|2. Therefore, in the WKB approximation, we

find that

SS∗ � |S0|2
a2

⇒ SS∗ � |S0|2
a2

,

S′S′∗ � n2 |S0|2
a2

⇒ S′S′∗ � n2 |S0|2
a2

, (SS∗)′ � 0.

Using these relations in formulas (93), we find that in the WKB approximation,

P � 1
24π

n2 |S0|2
a4

, E � 1
8π

n2 |S0|2
a4

⇒ P � 1
3
E , (96)

i.e., taking high-frequency transverse gravitational perturbations into account in the WKB approximation
is equivalent to adding a component of an ultrarelativistic fluid to the macroscopic Einstein equations [2].

Substituting WKB solution (95) in the macroscopic equation for the scalar field, we reduce it in the
WKB approximation to the explicit form

Φ′′
0 + 2

a′

a
Φ′

0

(
1 +

|S0|2
a2

)
+ a2Φ0(m2 − αΦ2

0) = 0. (97)

Similarly, we reduce the independent Einstein equation to the explicit form

3
a′2

a4
− Φ′2

0

2a2
− m2Φ2

0

2
+

αΦ4
0

4
− Λ = n2 |S0|2

a4
. (98)
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5.3. A particular solution of the macroscopic Einstein equations. To solve the equations for
the macroscopic gravitation, we must first solve macroscopic equation (97) for the scalar field, which itself
is challenging with an unknown scale factor. Examples of investigations that allow bypassing this major
difficulty were presented in [38], [39]. Below, we consider a simple example of a particular exact solution of
field equation (97) that allows obtaining a solution of the problem as a final result.

Indeed, assuming that α > 0, we set Φ0 = ±m/
√

α in (97). In this case, Eq. (97) becomes an identity.
and Einstein equation (98) reduces to the explicit form

3
a′2

a4
− λ = n2 |S0|2

a4
, (99)

where

λ = Λ +
m4

4α
. (100)

We integrate (99) in elementary functions,

a(t) =
(
|S0|2n2

λ

)1/4
√

sinh
(

2

√
λ

3
t

)
. (101)

We found a similar solution for the simpler macroscopic model of the universe with a cosmological term
where the scalar field is absent [2]. The difference of the particular solution of the cosmological model with
scalar field (101) from that case practically reduces to a renormalization of cosmological constant (100).

6. Conclusion

We have obtained a closed system of macroscopic Einstein–Higgs equations describing the evolution
of a macroscopically homogenous and isotropic universe filled with a fluctuating scalar field with a Higgs
potential. This system contains a subsystem of ordinary linear differential equations describing the evolution
of perturbations of the gravitational and scalar fields and a system of nonlinear macroscopic equations
describing the macroscopic dynamics of the cosmological model.

We note an important property of such macroscopic models that distinguish them from standard
cosmological models with homogenous scalar fields Φ(t): self-consistent solution (101) always contains a
cosmological singularity. Indeed, solution (101) behaves as a solution a � (4n2|S0|2/3)1/4

√
t → 0 for an

ultrarelativistic universe as η → 0 and as an inflationary solution a �
(
n2|S0|2/(4λ)

)1/4
e
√

λ/3t as t → ∞.
A self-consistent description of the macroscopic model thus changes the real cosmological scenario radically,
removing the infinite past of the universe from the standard scenario. On one hand, the universe is a
macroscopic classical object. On the other hand, its local properties in the early stages of its evolution
are determined by quantum processes. But these quantum processes in turn occur on a classical (massive)
gravitational background governed by macroscopic laws.3
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